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2 Y. KIFER
1. INTRODUCTION

Starting from the beginning of sixties a lot of work has been done on products
of independent identically distributed random matrices. This paper yields that
many of these results can be extended to products of independent random matrices
whose distributions evolve according to a stationary process. Actually, the paper
deals with a more general case of compositions of independent random bundle maps
whose distributions form a stationary process. I shall generalize to this situation
the result from [FK| and [Kil] on invariant filtrations, derive conditions which
ensure positivity and simplicity of the biggest Lyapunov exponent, obtain a cen-
tral limit theorem type result, and exhibit applications to continuous time models
such as solutions of linear stochastic differential equations in a random stationary
in time environments. Some results concerning random harmonic functions and
measures for products of independent random matrices with stationarily changing
distributions will be derived, as well. I am trying to implement here the general
ideology saying that many results concerning products of independent or Markov
dependent random matrices remain true in some form in the more general situation
of stationary matrix sequences (processes) which can be represented as sufficiently
nondegenerate independent or Markov matrix sequences (processes) conditioned to
another stationary process. I do not discuss here an interesting question when such
representations are possible.

The set up consists of a complete probability space (€2,.4, P) with an invertible
P-preserving ergodic map 6 of Q into itself and of another measurable space (X, B)
where X' is a Borel subset of a Polish space (i.e. of a complete separable metric
space) and B is the Borel o-algebra on X'. A pair F' = (fp, Tr) is called a (vector)
bundle map of the direct product E = X x R? (where R? is the d-dimensional
Euclidean space) over a Borel map fr : X — X if Tp = Tp(x) is a Borel function

of x with values in the group GL(d, R) of real d x d invertible matrices and
(1.1) F(z,a) = (fpz, Tp(x)a), z€ X, a€cR

Denote by 7 the space of all vector bundle maps endowed with a measurable

structure such that the map 7 x E — E sending (F,u) to Fu, u € E is measurable
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with respect to the product measurable structure in 7 x E. Set = = T2+ = {¢ =
(&0, &1, ---), & € T}. Given a measurable in w family of probability measures u on
T denote by II“ the product measure ]o_o[ ,uai“’ on Z. Let Iy : Q x 2 — 7T be the
measurable map F¢ (£) = & € 7. Set E“?(f) = & = FU'“('¢), where o is the left
shift on = acting by (0€); = &41. Then F*, i € Z is a sequence of independent
random bundle maps with distributions /ﬁi“’.

The actions on X yield time inhomogeneous Markov chains X'(§) = X¢(§,x) =
fe. L0 -0 fe o feow, X§(€) = x such that X, (€) € I’ with probability p® “{F :
fry € T'} provided X¥ (&) = y. Let p be an ergodic probability invariant measure
of the skew product Markov chain (0"w, X¥(£),0™¢) having marginals I1¥ on =
and P on , i.e. dp(w,x, &) = dp*(x)dlI¥(§)dP(w). Set T(n,w,z) = T(n,w,x,§) =
T, (X5_1(6))- . Te, (X¢(E)) T, (x) and assume

/(1055r |1 T, ()] +log™ || T, * ()N dp(w, =, €) < oo.

Then by Kingman’s subadditive ergodic theorem (see, for instance, [Kil] Section

A.2) p-a.s. the limit

(1.2) Bo(p) = Tim ~log || T(n,w,a)|

n—oo
exists and it is finite and nonrandom.
A more precise result follows from Oseledec’s “multiplicative ergodic theorem”

(see, for instance, [Ar], Ch. 4) which yields that for any vector v € R? the limit

(1.3 5 (p.6,0) = lim log [T (., o]

exists p-a.s. but, in general, it may depend on w, &, and v. Still, in the ergodic
situation “(p,&,v) may take on only a finite number of values co > Ag(p) >
A1(p) > ... > Ag—1(p) > —oo called the Lyapunov exponents and the biggest such
value coincides with (y(p). In the next section I shall show that for P-almost all
(a.a.) w € € the number 3“(p, &, v) depends only on w and v but not on £ and its
dependence on v can be described by a filtration of subspaces of R which depend on
w but not on £&. When €2 degenerates to one point one has the situation considered
in [FK] and [Kil] and if 7 is a point then my arguments provide another proof of

a part of Oseledec’s theorem.
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Clearly, Ao(p) > d~! [log|det Tp(z)|dp” (z)du” (F)dP(w) and I provide condi-
tions when this inequality is strict. Under certain nondegeneracy conditions on
distributions p“ I derive also the simplicity of Ag(p), i.e. that all other Lyapunov
exponents are strictly less than Ag(p), which yields the contraction of actions of
T(n,w,x,&) on the projective space. Under some conditions I also show that for
P-a.a.w the distribution of n=/2(log||T(n,w, z,£)|| — X§(p)) is asymptotically (as
n — oo) Gaussian (in &), where A§(p) are certain centralizing random variables
satisfying [ Ag (p)dP(w) = Ao(p).

In the last section I consider random harmonic functions and measures for
Markov chains with stationary changing transition probabilities. More specific
results are obtained for random harmonic measures of products of independent
random matrices with stationarily changing distributions which I apply to random
continued fractions.

The set up above enables me to treat also a seemingly more general following
situation which provides also a continuous time version. Let now 6!, t € 7Z or
t € R be a group of P-preserving maps of €2 into itself and Q“(t, (x, M),-), w € Q,
t >0, ze X, M € GL(d,R), be a measurable family of probability measures
on G = X x GL(d,R). By Kolmogorov’s extension theorem this yields a time
inhomogeneous Markov process Y evolving according to {Qet”}tzo, ie. Y¥ €
I' C G with probability Q?"“(t — s,y,T) provided Y =y € G, s < t. In particular,

the Chapman-Kolmogorov formula holds true:

(14) Q“(tyD) = [ Q*(5.0.42)Q" (¢ = 5.2.1).
Such Markov process Y, is called multiplicative if

(1.5) Q“(t, (z, M), UxV)=Q"“(t,(x,1d),U x VM)

forallt > 0, z € X, and M € GL(d,R). The process Y is the pair (X, M)
with X¢ € X and MY € GL(d,R). If ¢*(t,2,U) = Q“(t, (v,1d),U x R?) then by
(1.4) and (1.5),

(1.6) ¢ (t,,U) = / ¢ (5,0, ) (t = 5,1, U),
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i.e. Xy is also a Markov process on X’ with transition probabilities ¢* (¢, z,-). I
call processes like X;” and Y, Markov processes in random environments with €2
interpreted as an environments space. The multiplicative Markov processes with
Q“(t,y,T") independent of w were considered in [Bol,2].

Let F(§) = &, i = 0,1,... be independent random bundle maps and X¥ =
fe, 1020 feox. Set MY = MY (€) = T(n,w,z,§). Then V¥ = (X¥, M¥) with
Ys" = (x,1d) becomes a multiplicative Markov process in random environments
with transition probabilities
(1.7) Q°(x,M),UxV)=pu{F : frx € U Tp(x)M € V}
foralz € X, M € GL(d,R), U C X,V C GL(d,R). Thus the asymptotic re-
sults for random bundle maps described above can be studied via multiplicative
Markov processes. On the other hand, by [Kil], Section 1.1 any Markov chain can
be considered as a composition of independent Borel maps which yields (see Propo-
sition 2.4) that any discrete time multiplicative Markov process can be represented
via independent random bundle maps as above, and so, essentially, these setups
are equivalent. Observe, that considering the skew product multiplicative Markov
chain Z,, = (("w, X¥), M) one can formally eliminate random environments but
this helps only for basic results when a strong nondegeneracy of matrix products is
not required.

It turns out that the asymptotic behavior of ||[Mv||, v € R? as t — oo for a
multiplicative Markov process Y = (X, M;’) can be studied considering only
discrete times t € Z, which, as explained above, leads to compositions of random
bundle maps. This enables me to apply results to the specific continuous time
example when M}’ is a solution of the matrix linear stochastic differential equation
(1.8) dMy = Ao(XP,0'w)MPdt + Y~ Ai(Xy, 0'w)MPdBy, M§ =M

i=1

where B], ... | B are independent one dimensional Brownian motions independent

of a Markov process X on X as above and of a stationary process {#'w}icr.

2. INVARIANCE, ERGODICITY AND I.I.D. REPRESENTATIONS

Throughout this paper I assume that (€2, A, P) is a Lebesgue space, i.e. that

it is measurably mod 0 isomorphic to an interval [a,b) (may be empty) with the
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completion of the Borel o-algebra and the Lebesgue measure on it together with
countably many atoms. It is known (see [Ro]) that if  is a Borel subset of a
Polish space and A is the completion of the Borel o-algebra with respect to P then
(Q, A, P) is a Lebesgue space. Note also that any Borel subset of a Polish space
is Borel measurably isomorphic to a Borel subset of the unit interval (see [Kul],
§36-37).

I shall deal in this paper with different Markov chains 7’ in random environ-
ments on a Borel subset of a Polish space V having some transition probabilities
R¥(v,-) measurably depending on (w,v) € € x )V and whose n-step transition prob-

abilities have the form

R“’(n,v,U):/---/

R“(v,dv;)R% (vy,dvy) --- R

(2.1)

O (09, dop 1) RO (01, U).
In particular, Zi7, , € U with probability Rek‘”(v, U) provided Z¢ = v. For each
fixed w this defines an inhomogeneous in time Markov chain whose transition op-
erator R“ acts by the formula R“h(v) = [ h(y)R“(v,dy). Denote by P(V) the
space of probability measures on V considered with the topology of weak conver-
gence. A measurable in w family v¥ € P(V), w € Q is called R¥-stationary if
vWRY = % P-as., ie. [dv*(v)R*(v,U) = v%(U) for any Borel U. If v is
defined by dv(w,v) = dv¥(v)dP(w) then v is an invariant measure of the skew
product Markov chain Z,, = (0"w, Z¥) on Q x V. Conversely, any probability in-
variant measure v of Z,, whose marginal on  is P has the above desintegration
with v¥, w € € being an R¥—stationary family.

An R“-stationary family v, w € € will be called ergodic if the corresponding
invariant measure v of Z,, is ergodic. This means that any bounded measurable

function h = h,, (v) such that

(2.2) R¥hg (v) = / o () R (v, dw) = ho, (1)

for v-almost all (a.a.) wv, satisfies h = const v-almost surely (a.s.). In view of

Lemma 1.2.4. from [Kil] such a family v* is ergodic if and only if for any family of
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Borel sets A, C V such that A = {(w,v),v € A,} is measurable and
(2.3) R“(v, Agy,) =1 for v*-a.a. v and P-a.a.w,

one has either v¥(A,) =1 P-a.s. or v*(A,) =0 P-a.s.
Next, let ® be the space of Borel maps of V into itself and let u“, w € Q be a
measurable family of probability measures on ®. This determines a Markov process

Z7 in random environments on ) with transition probabilities
(2.4) R(v,U) = pu” % 6,(U) = p“{p € ®: pv € U}

where v € V, U C V is Borel, 0, is the Dirac measure at v and, as usual, for any

v e PV)Iset

(2.5) pe kv = /wvduw(w),

ie. [gdu® *xv = [g(pv)du“(¢)dv(v) for any bounded Borel function g on V. In

particular, I can write now

n—1

(2.6) R¥(n,v,U) = p @ sk 4% % 4 % 6, (U)

and a family v* € P(V), w € Q is R¥-stationary if and only if
(2.7) pe s v =% P-a.s.

in which case I call v* a pu“-stationary family.

Set 2 = 0%+ = {€ = (€0, &1, ... ), & € @} and [1¥ = [] uf'. Let 7: @x VxE —
Q xV x Z be the skew product transformations actingzlz);)f T(w,v,&) = (Ow, &ov, 0§),
¢ € = where ¢ is the left shift on Z. Let ¢y : Q2 x 2 — & be the measurable
map ¢§(§) = & € ®. Then ¢¥ () = & = cpgi“’(alf) yield a sequence ¢§, ¢{, ...
of independent random Borel maps of V such that ¢ has the distribution ugi“’.
Now the Markov chain Z;' can be written in the form ZY = ¢, 0---0 ¢{ o pgv

provided Z§ = v. The following result relates py“-stationary families and 7-invariant

measures.
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2.1. Lemma. Given a measurable in w family v¥ € P(V), w € Q the following
properties are equivalent
(i) v, w € Q is a p¥-stationary family;

(ii) vm € P(QxVXE), defined by dvn(w, v, &) = dII¥(&)dv* (v)dP(w), is T-invariant.

Proof. For any bounded measurable function g on €2 X V x =,

(2.8) /ngVH = /g(ﬁw,fov,ai)dﬂw(g)dy“’(v)dp(w)
= [ 960, 0. )" (€ (2)av* (0)aP ()

- / 9w, o, )T (€')du® ™ (p)d® " (v)AP(w).

and so Tv = vy if and only if pf @ %% ¢ = ¥ P-as. Thus (i) and (i) are

equivalent. [

The following result which generalizes Theorem 1.2.1. in [Kil] and which may
be called the “random” random ergodic theorem enables me to employ ergodic

theorems, in particular, the subadditive ergodic theorem which yields (1.2).

2.2. Proposition. Given a measurable in w family v¥ € P(V), w € Q the follow-
ing properties are equivalent
(i) v, w € Q is a pu¥-stationary ergodic family;

(ii) v, defined in (ii) of Lemma 2.1, is a T-invariant ergodic measure.

Proof. Call any measurable function A on €2 x V p-harmonic if

(2.9) R?hg,, (v) = / how (v)dp” (@) = he(v)

for P—a.a.w and v*-a.a.v. Assuming that v is ergodic I shall show that all bounded
p-harmonic functions are a.s. constants. So let h be bounded and p-harmonic. Let
I4 denotes the indicator of a set A, i.e. I4(v) =1 if v € A and = 0 otherwise.
Considering the skew product Markov chain Z,, = (0"w, Z¢') I derive in the same
way as in the proof of Lemma 1.2.4 from [Kil] that for any C the function I 44 (v),
where AY = {v : h,(v) > C}, is p-harmonic. But f]IA%w(gov)du“’(go) = Lay(v)
means that v € A% if and only if pv € A%’ for p“-a.a.p. Therefore I 400 (&ov) =

L 44 (v) vn-a.s., and since vy is ergodic with respect to 7 then 44 (v) = const for
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P—a.a.w and v*—a.a.v. It follows that h is constant too, and so (i) follows from
(ii).
Next, assume that v is an ergodic p“-stationary family and let a bounded

measurable function g = g, (v,&) on Q x V x E satisfies g o 7 = g vpj-a.s. Then

(2.10) g0 () 4 / 0 (0, €)dTT® (€) = / gou (E0v, 0€)dTI(€)
- / 960 (100, €A () AT (') = / 9 () dp® ().

Hence ¢(© is p-harmonic, and so g( )( ) = const for P—a.a.w and v*—a.a.v since

v is an ergodic family. Let F,” be the o-algebra generated by ¢f, ¢%, ..., ¢. Set

gas)n)(UQEO; oy én) = E(gu(v, )| F))(€)

then the 7-invariance of g yields
(2.11)
985 (v3 o, -+ 1 &n) = / Gont10(&n 0 - -+ 0 &1 0 &ov, 0™E)dIT¥ (€)

= /gamw(son 0 -+ 001 0o, E)dpe (@0) - . . A" (g )dIT®" " (€)

0 w "w
/g(gn)ﬂw(go -0 v)du” (¢o) - - dp® (¢n) = const
for P—a.a.w, v¥—a.a.v, I¥-a.a.£. It follows that g, (v,-) depends only on the tail
o-field () of{yy, ¥5 1,-..}and since o, ¢f,... are independent then the zero-one
n=1

law yields that g is constant vq-a.s. O

Consider another Markov chain

Z8=(2°¢%), n=1,2,..., Z¢=(v,¢%)
with the state space V x ® and with the transition probabilities
(2.12) RY((v,9),U xT) = 8,,(U)p®(T), UcV, TcCd

so that the corresponding transition operator acts by the formula

(2.13) Rg(v, ) = /g(wv, V)du’ ().
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2.3. Proposition. a) One has a one-to-one correspondence between R“ -stationary
families v € P(V), w € Q and R¥-stationary families \* € P(V x®), w € Q which

1S given by
(2.14) dX” (v, ) = dv® (v)dp” ();

(b) A R¥-stationary family v¥,w € Q is ergodic if and only if the corresponding

R -stationary family \*,w € Q is ergodic.

Proof. a) Let A*R* = A% and set v*(U) = [L(pv)d\? “(v,¢) for any Borel
U C V. Then for any Borel U C V and T" C ®,

MU XT) = AR(U xT) = /d)\“’(v, ©)R“((v,¢),U x T)
= (0) [ 0 @Tuler) = w0,

and so d\¥ (v, ¢) = dv* (v)du®(p). But in this case
/d)\“(v, ©)R®((v,¢),U x T) = p(I) /]IUde * U

Thus AYR¥ = A% if and only if (2.14) holds true and p* * v = 1%,

b) Let A\, w € Q be an ergodic R“-stationary family satisfying (2.14). Let
A C Q x V be a measurable set such that its sections A, = {v € V : (w,v) € A}
satisfy (2.3) which for R¥(v,-) given by (2.4) means that pv € Ay, for p“-a.a.p,

vW-a.aw € A,, and P—a.a.w. But then for A“-a.a.(v, ¢) and P—a.a.w,

R“’]IAgwx@(U, @) = /HAgux<I>(§Oan)d:u9w(w) =Ty, (¢v) = T4, xa(v,¥)

Since A, w € 2 is an ergodic family one must have either A“ (A, x®) = v¥(A,) =1
P-as. or A¥(A, x ®) =v*(A,) =0 P-as., and so v*, w € 2 is an ergodic family.

It remains to show that if a R“-stationary family v“, w € Q is ergodic then
the R“-stationary family \*, w € Q determined by (2.14) is also ergodic. Let
h = hy (v, @) be a bounded measurable function on V x ® satisfying for A“-a.a.(v, )

and P—a.a.w,

(2.15) R%hge, (v, @) = /hgw(gov,w)duew(w) = hy (v, ¢).
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Set iy (v) = [ hu(v,9)dp (¢) = Enehy (v, ¢g) where, again, II* = T] 4 and
i=0
En is the corresponding expectation. By (2.15), for v¥—a.a.v and P—a.a.w,

(2.16) o (0) = / Fow (00) A () = R*Fog ()

which together with the ergodicity of the family v, w € € imply that k., (v)=C=
const for v¥—a.a.v and P—a.a.w. This means that if T, = {v € V : h,(v) = C}
then v*(I',,) = 1 for P—a.a.w. Thus for P—a.a.w,

1= /]Ipawdyg“’ = /]ngwdu“’ x Y = /]ngw(gov)du‘”(@)dy‘”(v),

i.e. hgw(pv) = C for v*—a.a.v and p¥-a.a.¢. This together with (2.15) yield that
h,(v,¢) = C for P—a.a.w, v¥-a.a v, p“-a.a., completing the proof of Proposition

2.3. 0O

Next, I consider a multiplicative Markov process V¥ = (X% M¥), X¥ € X,
My € GL(d,R) in random environments with the discrete time n € Z and transi-
tion probabilities Q¥ ((z, M),U x V) = Q“ (1, (x, M), U x V) satisfying (1.5). The
skew product Markov chain Y,, = (0"w, X¥, M%) is a multiplicative Markov process

(in the deterministic environment) with transition probabilities
(2.17) Q((w,2, M), x U x V) = 6g,(1)Q*((z, M)),U x V).

Let ® and ¥ be the spaces of Borel maps of X x GL(d, R) and of Q x X x GL(d, R),
respectively, into itself and let 7 : Q@ x X x GL(d,R) — X x GL(d,R) be the
natural projection on two last factors. Denote by 7, : ¥ — ® the corresponding
projections acting by (7,G)(x, M) = n(G(w,z, M)). Let T and 7y be the subsets
of maps from ® and W, respectively, acting by F(z, M) = (fr(x),Tr(x)M) and
G(w,z, M) = (Qw, g&(z), T&(x) M) for some Borel maps fr and g¢& of A into itself

and for some Borel measurable GL(d, R)-valued functions Tr(x) and Tg ().

2.4. Proposition. (c¢f. Lemma 2.6 in [Bol]) There exists a probability measure p
on ¥ such that u(Tg) =1 and for any measurable T C Q, U C X,V C GL(d,R),
(2.18)

p{G : Gw,z, M) = (Ow, g&(x), Te(x)M) e I x U xV} =Q((w,z, M), xU x V),
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and so p* = w,u satisfies u¥(7e) = 1 and
(2.19) pAF : F(x,M) = (fr(z), Tr(z)M)} = Q“((z, M),U x V).

It follows that if {G;}i>0 is a sequence of independent random maps from Ty all
having the same distribution p then Y, =Gp_10---Gyo Go(w,x, M) is a version
of the Markov chain Y, (i.e. both processes have the same distributions) provided
Yy =Yy = (w,x, M). Finally, if F¥ = 14i,G; then Y = F¥_o---0F¥ o F (z, M)

is a version of the Markov chain (in random environments) Y.

Proof. By Theorem 1.1.1 form [Kil] there exists a probability measure m on the
space ¥ such that for any Borel U € X, V C GL(d,R), I' C Q and z € X,
M € GL(d,R), w € Q,

(2.20) Q(w, 2, M) eT xUxV)=m{ge V:g(w,z,M)eT xU x V}.

Denote by P the product measure m%+ and let go, g1, g2, ... be a sequence of inde-
pendent random maps all having the same distribution m.. Then the Markov chain
Zpn =gn_19---0g10go(w,x, M) is a version of the skew product Markov chain Y,.
In view of (2.17) one can write gi(w,z,1d) = (w, g¢(z), T (z)) with ¢g¢(x) € X
and T (z) € GL(d,R).

Forn = 0,1,... and each z € X, u € R?, w € Q define independent random
bundle maps G,, and F¥ by G,(w,z,u) = (w, 9% (x), T (x)u) and F¥(x,u) =
(99"« (2), T?"“(x)u). By construction the distribution of G, does not depend
on n and I denote it by p. Then F;’ has the distribution pu?"¢ where p¥ =
mp for each w € Q. Set F(n,w) = F¥_,o0---0 F¥ o Fy then F(n,w)(z,u) =
(9(n,w,x), T(n,w,z)u) where g(0,w,z) =z, T(0,w,z) =1Id and for n > 1,

(2.21)

n—1
gn,w,x) =gl 1 “o---0g{og¢(x) and

n—1

T(n,w,x) = Tg—l w(g(n - 2,w, JJ)) T 'wa(g(law’x))T(‘)U(x)'

Set W¢ = (¢9(n,w,z), T(n,w,x)M), x € X, M € GL(d,R) and denote by F,
n = 0,1,... the o-algebra generated by {W, k = 0,1,...,n — 1}. Then for any
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Borel U ¢ X and V C GL(d,R) assuming that W = (y, M) one has by (1.5),
(2.17), and (2.20),
(2.22)
P{Wy', €U VI|F} =P{gy “(y) € UT, “(y)M € V}
=P{g,(0"w,y,1d) € Ax U x VM '} =m{g € ¥: g(0"w,y,1d)

€EQxUXxVM 1} =Q%“((y,M),UxV).

Thus (0"w, W) and W are versions of the Markov chains Y;, and Y, respectively,

completing the proof of Proposition 2.4. [

Proposition 2.4 says, essentially, that the behavior of M“u, u € R? for a multi-
plicative Markov process Y = (X, MY), X§ = x is the same as the behavior of
T(n,w,x)u given by (2.21) for some independent random bundle map Fy’, Fy’,. ..,

and so I can deal only with the latter set up.

3. INVARIANT FILTRATION

Let P4~! be the (d — 1)-dimensional projective space whose points can be iden-
tified with lines passing through the origin R?. Since all matrices from the group
GL(d,R) send these lines to themselves, one has a natural action of GL(d,R) on
P4~ which induces the action of 7 on PE = X x P4~! by the formula (1.1), only
now a € P41

Note that the space of probability measures v on €2 x PE having desintegrations
dv(w,z,u) = dv¥(u)dp(w, ) = dve (u)dp® (x)dP(w) is compact with respect to the
topology determined by duality with the space L}, (Q2x X, C(P41)) which consists of
measurable maps ¢ :  x X — C(P?!) such that [ sup,cpe 1 |[@w(u)|dp(w,z) <
00. Those of such v whose desintegrations v“ are u“-stationary families form a
closed nonempty subset.

The following result was proved as Theorem II1.1.2. in [Kil] for the partial case
when Q consists just of one point or, in other words, for the case of identically

distributed independent random bundle maps.

3.1. Theorem. Let u“, w € Q2 be a measurable family of probability measures on

the space T of bundle maps F = (fr,Tr) acting on E = X x R? by the formula
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(1.1). Suppose that p* € P(X), w € Q is a p“-stationary ergodic family such that

(3.1) /(10g+ ITp ()| + log* | T () I dp” (z)dp (F)dP(w) < oo.
Then there exist Borel sets X;;’ C X such that P-a.s.

(3.2) (X)) =1, [frX) = ng“’ for u“-a.a.F

and for any x € X’ there exists a sequence of linear subspaces
(3-3) 0o=Lret e e cel,cLl, =R

and a sequence of numbers B;i(p) = Bi(P, i, p), —00 < Brp)(p) < ... < Bi(p) <
Bo(p) < oo such that 11°-a.s. [Bo(p) is given by (1.2) and if u € £;’w \ Eit},
i=0,1,...,7(p) then I1¥-a.s.,

1
(3-4) Jim - log [|T(n, w, z)ull = Gi(p)

where T'(n,w, x) is the same as in (1.2).

The numbers B;(p) are the values which the integrals

vy Y o I TE @)
[l

take on for different pu®-stationary ergodic families v¥ € P(PE), w € Q having

(3.5) e i (w)dp® (x)dp” (F)dP(w)

marginal p° on X, where i € R is a nonzero vector on the line corresponding to
u € P41, Purthermore, P-a.s. the dimensions of Ei,w do not depend on x and w,

provided x € X, and L= {ﬁi’w} form Borel measurable subbundles of X’ X R4

which satisfy
(36) TF‘Ci,w = Z]-"Fm,ew

for P-a.a.w, pu*-a.a.F, and p*-a.a.x.

Proof. Let Z, be a Markov chain on Q x X’ x GL(d, R) with transition probabilities
(37) Q((waxa M),FX U % V) :69w(F)Qw(('Ta M)aUX V)

for Borel ' ¢ Q, U C X, and V C GL(d,R) where Q“(-,-) is defined by (1.7).
Then Z, is a multiplicative Markov process on X x GL(d,R), where X = Q x X,
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and so by Proposition 2.4 there exists a probability measure p satisfying (2.18).
Thus there exists a sequence of independent random bundle maps G;, ¢ = 0,1,...
of E = X x R? into itself over ga, : X — X all having the same distribution p
and acting by G (w,z,u) = (9a, (v, 2), Tg, (w, r)u) with gg, (v, z) = (Ow, g& (x))
where w € Q, v € X, u € RY, g¢ (v) € X, and T, (w,z) = Tg (z) € GL(d, R).
Then G,,—1 0---0G1 0o Go(w,x, M) is a version of the Markov chain Z,, provided
2y = (w,x, M), and so without loss of generality I can assume that both objects
coincide.

Define p € P(X) by dp(w,z) = dp®(xz)dP(w). As explained at the beginning of
Section 2 p is p-stationary (i.e. p* p = p) and ergodic if and only if p* is a p“-
stationary ergodic family and the latter holds true by the assumption. Let 7 and
T be the spaces of bundle maps F': E — E and G : E— E acting by the formulas
F(z,u) = (fr(z), Tp(x)u) and G(w,z,u) = (Qw, g (z), Ta(w, x)u), respectively,
where fp,g¢ : X — X are Borel maps and Tr(z),Tg(w,z) € GL(d,R). Let
T, : T — T be determined by m,G(x,u) = 7(G(w,x, u)), where 7 : @ x X x R —
X x R? is the natural projection, then by Proposition 2.4, i« = m,u. Thus if ¢ is

a p“-integrable function on 7 then
(3.8) [ ewGiu(@) = [ oFan ()
7 T

This together with (3.1) and (3.5) give

(3.9) /(105r 1T (w, @)l +log™ TG (w, 2)])du(G)dp(=)

= /(log+ 1w ()| + log™ | Tz (2)[|)dp® (F)dp® (z)dP(w) < oo
and

(3.10) y(v) = /log Wdu((?)du(w,x,u)

where dv(w,z,u) = dv*(x,u)dP(w) and dv¥(z,u) = dv¥ (u)dp“(z). As explained
at the beginning of Section 2 v is u-stationary, i.e. u * v = v, and ergodic if and
only if v is a u“-stationary ergodic family. Now I apply Theorem III.1.2. from

[Kil] to the sequence of independent random bundle maps G;, i = 0,1, ... having
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the same distribution u which in view of the above yields the assertions of Theorem

23. O

Consider now a continuous time multiplicative Markov process Y;* = (X, M}’),

Mg = Id described in the end of Introduction and assume
(3.11) // sup E(log™ [|M7°]| +log™ [|(M*) " [ dp* ()dP (w) < oo

where EY is the expectation given that X3 = x. Then in the same way as in

Lemma 2.6 from [Bol] I derive from (3.11) that for any u € R?, P—a.a.w, P¥-a.s.,
(3.12) lim n~"log|| M, ull = lim n™"log ||Mul

where Py is the path distribution of Y* given that X§ = x. This leads to the

continuous time version of Theorem 3.1 where the corresponding spaces [,i,w satisfy
(3.13) MPL, = Ly gi,

Py-as. for p¥-a.a z and P—a.a.w.

IfY® = (X, M) is given by the stochastic differential equation (1.8) with, say,
bounded ||A4;(z,w)||,i=0,1,...,m then employing standard estimates of moments
of stochastic integrals together with Gronwall’s inequality one verifies that (3.11)
will be satisfied in this case.

4. LARGEST LYAPUNOV EXPONENT

The main result of this section is the following

4.1. Theorem. In the set up of Theorem 3.1 suppose that there exists no u®“-

stationary family v¥ € P(PE) having marginal p* on X such that

(4.1) Tp(z)vy = V?;"w for p¥-a.a.x, u“-a.a.F, and P-a.a.w.

Then Ao(p)(= Bo(p)) satisfies

(4.2) Ao(p) > %//log\det Tr(x)|dp” (x)dp” (F)dP(w).
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In particular, if det Tp(x) = 1 for p-a.a. x, p¥-a.a. F, and P—a.a.w then Ao(p) >
0.

Proof. Observe that the right hand side of (4.2) equals d~! times the sum of all
Lyapunov exponents of the random matrix product T'(n,w,x) (see, for instance,
[Ar], Section 5.3 ) and since Ag(p) is the biggest such exponent the inequality (4.2)
is equivalent to the claim that A\g(p) is larger than the minimal Lyapunov exponent
Amin (p) which for p“-a.a.x, @¥-a.a., and P-a.a.w is given by

(4.3) Aein () = — lim ~log [T~ (n, w, 7, ).

n—oo N

The existence of the limit follows from the subadditive ergodic theorem which
together with Proposition 2.2 yields that Amin(p) is constant.
Set

K=XixE2=XxT)={r=((2:,&),i € L),z € X,& €T}

and let n : K — K be the shift transformation (nx); = kix1 = (x;11,&11)- Intro-
duce on K a probability measure R which is the Markov measure corresponding

to the process (X, F¥) with the initial distribution p* x u*. Namely, if
(4.4) R¥((2, F), U X T) = 8,0 (U)u (T)

then for —oo < m < n < oo,

(4.5)
R*{k = ((z;, F, ;€U;, F; €Ty, j=mm+1,...,n}

/ / A" ()i (Fn )R (s Fon)s d(@ g1, Fons 1)) - .
Up X' UpxI'y

. Rgn_lw((-rn—la Fn—l)a d(xna Fn))

By Proposition 2.3, p“ x u“ is a R“-stationary family and it is ergodic if and only
if p is an ergodic family.

Set T'(w, k) = T(w, (%;,&;)) = T¢ (vo). Then one has a stationary sequence of
matrices T(0"w,n"k), n € Z on the space 2 x K with the invariant measure Rp

such that dRp(w, k) = dR¥(k)dP(w). Thus I have the set up of Theorem 1 from
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[Le] which implies that if Ag(p) = Amin(p) then there exists a measurable in w, x

family of measures v, , € P(P?~1) such that
(4.6) T(w, K)Vu,x = Vow,ni Rp-a.s.

and v, . is measurable with respect to the o-algebra G4 NG_ where G is generated
by all T(0"w,n™k), n > 0 and G_ is generated by all T(0"w,n"k), n < 0.

Let GY = {AY = {k : (w,k) € A}, A € G} and G¥ = {BY = {k : (w,k) €
B}, B € G_}. Since for each w € Q the measure R“ defines a Markov chain on
X X 7T then

0¥ NG* = G¢ C o{XY, FY.

Thus v, . depends only on w and kg i.e. Uy x = Vi z0.,¢,- BY (4.6),
(4'7) Tfa(; (xo)yw,xo,ﬁo = Vow,z1,61 Rp-as.
Since x1 = fg, 2o and the left hand side of (4.7) does not depend on &; then in fact,

I/ewawlafl = ngaffomo RP — a.s.

and it does not depend on &;. Similarly, v, »,.¢, = Voo, fe_ w1 does not depend on

€0, 1-€. Vi zg,60 = Vw,zo Rp-a.s., and I arrive at (4.1). O

Under (3.11) all Lyapunov exponents of the continuous time system are the
same as for the same system considered only at integer times n = 0,1,..., and so

Theorem 4.1 can be applied in this case, as well.

5. SIMPLICITY OF LYAPUNOV EXPONENTS

Let I' be a measurable subset of Q with P(I') > 0. Set np(w) = min{k >
0:60Fw € T} then Oy : T — T acting by the formula frw = 077 (“)w is called
an induced transformation. Since P is an ergodic invariant measure of 6 then

(see, for instance, [Br], p. 30 or [CFS], p. 22) its normalized restriction to I,

i.e. Pr = (P())~!P, is an ergodic invariant measure of fp. Set n(Fl) = nr and

recursively ngﬂ) = ng) +nrodi. Let ¢, : T — GL(d,R) be the map acting by
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¢z (F) = Tp(z). This map induces the map of P(7) into P(GL(d,R)) which will
be denoted again by ¢,. For any w € I and z € X set

w > _ k=1 Orw w w,T w
(5.1) np = ZZ k,urf -k otk pp and (FF = @y
k=1

np(w)—1
onr w*_._*uﬂw*uw-

where up = p

Recall, that a measure v € P(P4~!) is called proper if v(L) = 0 for any L C P4~1
corresponding to a proper linear subspace of R?. A subset S C GL(d,R) is called
k—contracting if there exists a sequence A,, € S, n = 1,2,... for which ||4,] 14,
converges to a matrix A of rank < k. If such a sequence {A4,,} can be found in S for

any u € R?, u # 0 with the limiting matrix A satisfying Au # 0 then I shall call S

strongly k—contracting. Let p be a u“-stationary ergodic family from P(X).

5.1. Assumption.

(i) There exists a measurable set T C Q with P(I') > 0, a compact subset N' C
P(P1Y) (with respect to the weak convergence topology) consisting of proper
measures, and a measurable in w,x family v¥ € N, v € X, w € T such that for

Pr-a.a.w and p“-a.a.x,

(5.2) / T () du (F) = v

where M* is the conjugate of a matric M € GL(d,R);
(ii) ForT from (i) thereis an integer k > 1 such that supp("” is strongly K— contracting

for Pr-a.a.w and p*-a.a.x.

5.2. Theorem. Let p¥ be a p“-stationary ergodic family from P(X) satisfying
(3.1) and suppose that Assumption 5.1 holds true. Then Ao(p) > As(p) where,
recall, Mo(p) > A1(p) > ... > Ai—1(p) are Lyapunov exponents of the sequence of

random bundle maps F;*, 1 =0,1,....

Proof. Consider the multiplicative Markov process (Zg, M), where
Zy = (9113_100’Xw(k)( )), and M = T(n(Fk)(w),w,x), w €T, x € X, which has
nr w

the transition probabilities

(5.3) Rr(((w,x),1d),U x V x W) = g0 (U)p{F : frx € V,Tr(x) € W}
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for all measurable U C Q, V C X, and W C GL(d,R). Since p¥ is u“-stationary

w

then p¥ * p¥ = pfrv ie. p¥ is a p¥-stationary family. Let 7 : Q x X' x = —
2 x X x E be the skew product transformation acting by 7(w, z, §) = (Qw, fe,x, o).
Set 1 (w,z,&) = 7@ (w, 2,€). Since p* is an ergodic family then according
to Lemma 2.1 and Proposition 2.2 the measure p € P(Q x X x E) defined by
dp(w,x,§) = dlI¥(€)dp* (x)dP(w) is T-invariant and ergodic. Then by the general
results on induced transformations (see [Br], p. 30 or [CFS], p. 22) the measure
pr defined by dpr(w, z, &) = dII¥ (§)dp* (x)dPr(w) is mr-invariant and ergodic. This
together with Proposition 2.2 yield that pfr,w € T' is a pp-stationary ergodic family.

Now by (3.1) and the ergodic theorem pr-a.s,

(5.4)

1 k—1

Qo8 I+ 108 15 ) = i 5508 100 -+ log ™ 1) o
£=0

ni.‘k)(w)—l
< lim o 3T (logt 1T, (X5 (€)] + log* 1T (X3 (€))
= o g 4 A & lltg; Ay
=0

= (P(M))™" [ (og™ || Tp(2)ll +log™ | T " ()))dp* (x)dp” (F)dP(w) < co.
Let Al (p) > AL (p) > ... > AL_,(p) be the Lyapunov exponents of the multiplicative
Markov process (Zg, M) then by the ergodic theorem A;(p) = A} (p)P(T). The
arguments above enable me to apply Proposition 3.3 from [Bo2] to (Zx, M} ) which

yields Aj (p) > AL(p) and the assertion of Theorem 5.2. follows. [

In general, it is not possible to verify directly Assumption 5.1 and in the remain-
ing part of this section I shall derive it from more straightforward nondegeneracy
conditions. Since the evolution in w is quite degenerate here I cannot employ the
corresponding results from [Bo2] any further and have to proceed in an w-wise
fashion.

Observe, that by Lemma 4.1 from [Bo2| there always exists a measurable in w, x

family v% € P(P?~!) such that for P-a.a.w and p“-a.a.z,

(5.5) [ i@z e ) = vz
and so (5.2) holds true, as well.
To ensure other requirements of Assumption 5.1 I introduce the following as-

sumption.
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5.3. Assumption.

(i) X is a compact metric space;

(ii) p* € P(X), w € Q is a p“-stationary ergodic family and suppp® = X P-a.s.;
(iii) The operator Q“, acting by the formula

(5.6) Q“g(z, M) = / g(fre, To(2)M)du® (F),

maps the space of bounded continuous functions on X x GL(d,R) into itself;
(iv) There exist random variables v = 7y, € (0,1) and C = C(w) € (0,00) such that

for P-a.a.w, all x € X, each n € Z,, and any Borel set U C X,
(5.7) ¢° " (n,2,U) = p*(U)] < Clw)(1 = 70)"

where ¢¥(n,z,U) is the n-step transition probability of the Markov chain Xy
appearing in (1.6).

It is easy to give simple sufficient conditions which ensure that (ii) and (iii) in
Assumption 5.3 are satisfied. For instance, this will be the case when u“-a.s. F
is a continuous bundle map and P-a.s. the set {fpx : F € suppu®} is dense in
X for all z, though, in fact, much less is needed. The property (iv) holds true
if the random Doeblin condition introduced in [Ki2] is satisfied. This means that
there exist random variable N = N, € Zy, ¢t = 1, > 0 and a measurable family

m® € P(X) such that for P-a.a.w, any x € X, and each Borel U C X,
(5.8) ¢ "N, 2, U) > 1om® ().

I say that the family pu“ € P(7), w € Q is strongly irreducible if there exists
no finite collection {VCSIQZ, VQS?;, e ,V(,Ekm)} of proper subspaces of R? (with 0 being
not a proper subspace) measurably depending on w € Q, x € X’ and such that for

P-a.a.w and p“-a.a.F,

k k
(5.9) Tr(@)(JVED) = U Vil fre

=1 =1
If (5.9) can not hold true only for k = 1 then I call the family u* € P(7), w € Q
irreducible. It is clear that irreducibility and strong irreducibility follow if suppu®
is sufficiently large with positive probability. The following result is a generalization

of Proposition 4.4 from [Bo2].
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5.4. Theorem. Let pu* € P(X), w € Q be a strongly irreducible family and
p¥ € P(X), w € Q be a pu”-stationary ergodic family. Suppose that Assumption 5.3
holds true then Assumption 5.1(i) is satisfied and for any € > 0 the set T' can be
chosen there with P(T') > 1 —e.

Proof. Let v® € P(P41), w € Q, 2 € X be a measurable family satisfying (5.5).
Define a measurable map g : Q x X — P(P4~1) by g,(z) = v*. By a version of
Lusin’s theorem (see [Do|, Section V.15) for any integer n > 1 there exists closed
subsets C C X such that g, (z) is continuous in z on C¥ and p*(C%) > 1—1. Take
a continuous function ¢ on P?~! and for each v € P(P~1) set r(v) = [ p(u

which defines a continuous function on P(P¢~!). Then B, (x, M) = r(M *y;’) =
[ o(M*u)dv¥ (u) is a continuous function in (z, M) € C¥ x GL(d,R). By the Tietze
extension theorem (see [Ku], §14) there exists a function ﬁé,n)(x, M) continuous in
(z,M) € X x GL(d,R) and such that 8 (z, M) = Bu(z, M) for all (z, M) €
C¥ x GL(d,R) and |B£,”)(3:, M)| < a = sup|e(u)|. By (5.5) for P—a.a.w and

w
p¥-a.a. x,

Bule1d) = [ o) = [ [ o(Tp@wdr, @du(F) =

- / B (e, T () A (F) = Q B (2, 1d)

(5.10)

with the operator Q* defined by (5.6). Set Q¥ = Q“Q% ...Q"" '“ then (5.10)

yields that for P—a.a.w, p“-a.a.x and all integers n > 1,

(5.11) r(90(z)) = Bu(z,1d) = Q Boro (2, 1d).

Put h&,")(ac, M) = I¢ow(x) then for w, x satisfying (5.11) I derive from (5.7) that
(5.12)

| [ ot )~ QB (2. 1)] = Q3 (Bona — B2 1)

<20Q2(1 - hl))(w,1d) = 20(1 — Q2hr), (v,1d))

= 20(1 = ¢*(n,2,C%")) < 2a(1 — p"(CT) + C(0"w)(1 = 3on0)")

< M% +C(0mW) (1 — ygn)™).
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Fix L > 0 large enough so that I'y, = {w : C(w) < L and 7, > L~!'} satisfies
P() > 0. Then by ergodicity of @ it follows that for P—a.a.w there exists a
sequence n; = n;(w) — 0o as i — oo such that i@y e fL. Thus for P-a.a.w and

p“-a.a.x [ @(u)dvg (u) is the uniform in 2 limit of the sequence Q¢ (w)ﬂ(ni(w)) (z,1d).

ni (@)

In view of Assumption 5.3(iii) the latter sequence consists of continuous in x
functions which together with Assumption 5.3(ii) yield that P-a.s. and p“-a.s.,
[ ¢(u)dve (u) coincides with a continuous in z function, i.e. it has a continuous in
x modification. Applying this to a countable dense set of continuous functions ¢
on P4~! T conclude that there exist a measurable in w and continuous in x family
satisfying (5.5) for P-a.a.w and p“-a.a.x. By Assumption 5.3(i) this implies, in

W
Vx

particular, that for P-a.a.w (5.5) holds true for all z € X.

Consider a specific representation of (€2, A, P) where 2 is an interval [a,b) to-
gether with countably many points A;, ¢ = 1,2,..., P is the Lebesgue measure
on [a,b) and has atoms at A;’s, and A is the completion of the Borel o-algebra
on €. Then by a version of Lusin’s theorem (see [Do], V.15) there exists a se-
quence of compact sets I',, C Q such that P(Q\T,) < % and v¥ is continuous in
(w,z) € ')y x X. Assumption 5.1(i) would follow if I show that for P—a.a.w the
measures v, are proper for all x € X'. Indeed, if this is true I can choose a sequence
of closed sets I',, € Q such that P(Q\T,) < L and v¥ is proper when w € [,. Now,
given ¢ > 0 take I' =T, N T, for some n > 2e=1. Then N = {vWwel,z e X}

will be a compact set of proper measures.

In order to show that v¥ are proper denote by II(¢) the set of projective sub-
spaces of P?~! having the dimension ¢ and set (~(z) = min{¢ € {0,...,d — 1} :
dH € II(¢),v¥(H) # 0}. Clearly, II({“(z)) may contain at most countably many
subspaces, and so I can define r*(z) = max{v¥(H) : H € I[I(¢“(x))} and L*(x) =
{H € II(t“(x)) : v¥(H) = r¥(x)}. As in Proposition 4.4 of [Bo2] I see that (“(z)

and r¢(x) are measurable on each set I',, X X (where v¥ is continuous), and so

these functions are measurable on the whole 2 x X.

Put m* = essi)lflff‘*’(x). I have to show that m* = d — 1 P-a.s. Set ¢“(x) =
z€

(X)L gi0w(e)=mey- If H € I(m*) then v/ (H) < ¢“(x) for any x € X. If (“(x) =
m® and H € L¥(x) then by (5.5) (which is true now for all z € X)) P-a.s. for all
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r e X,

(5.13) ¢ (x) = vy (H) =/V?‘F"x((TF(w))_IH)du“’(F)-

If m* = dim H < m? this would imply that v*(H) = 0, and so m® > m°® P-as.
By ergodicity of 6 T conclude that m* = m = const P-a.s. But then P-a.s. the
right hand side of (5.13) does not exceed ¢* % (x) d:eff 0% (frx)du” (F). Hence

(5.14) ¢ (x) < ¢“ ™ (z)

and since ¢¥(x) = 0 if £¥(x) # m® then, in fact, (5.14) holds true for all z € X
and P-a.a.w.

Set ¢¥ = ¢¥¢%*...q""'“. Then (5.7) and (5.14) give that P-a.s. for all z € X,

(5.15) limsupgog_n‘”(x) < lim qu_(n_l)wgpw(x) — /@w(x)dp“’(:r) d:efaw.

n— oo n—0o0

It follows by ergodicity of # that P-a.s. ¢“(z) < o for all x € X which together
with (5.14) yield ¢*(x) < o for P-a.a.w and all x € X. The right hand side of
(5.15) and ¢* < a“ imply that

(5.16) e(x)=a* >0 p“-a.s., P-a.s.

which together with ¥ < af yield o < o P-a.s. and by ergodicity of 0 I derive
that a® = a = const P-a.s.

Set U¥ = {x € X : ¢“r%(2) = ¢“p?%(z) = r¥(x) = ¢’ (z) = a, ¥(z) =
m, uC{F : (% (fpx) = m} = 1}. Since p* * p* = p?@ P-a.s. it follows from above
that p“(U“) = 1 P-a.s. Let x € U¥ and H € L¥(x). Then H € II(m), and so
(Tx(x))"'H € (% (frx)) for p~-a.s.F, which implies that v% ((Tx(z)) ' H) <
r%(frz). Therefore by (5.5) for P-a.a.w and p®-a.a.z,

(5.17) 0> / (W0 (T ()~ H) — 1% ( f))dp (F)

= vy (H) = ¢*r*(z) = ¢*(x) —a =0.

It follows that V?‘;w((T;(ac))_lH) = 7% (fpx) for P-a.a.w, p“-a.a.z, p*-a.a.F, and
so H € Tx(x)L% (fpx). Since this is true for all H € L“(x) I conclude that
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L¥(x) C Ty(x) L% (fpx) for P-a.a.w, p*-a.a.x and p“-a.a.F. Thus for such w,z, F
the number n“(x) of subspaces in L*(x) (which is clearly finite and whose measur-
ability follows in the same way as in [Bo2]) satisfies n(z) < n%(fpx). Since p* is
an ergodic family, this together with Proposition 2.2 yield that n“(z) = n = const
for P-a.a.w and p“-a.a.wv. It follows that L*(x) = Tyx(z)L%(frx) for P-a.a.w,
p¥-a.a.x and p¥-a.a.F. This means that if W*(x) is the union of subspaces orthog-
onal to subspaces which form L“(x) then Tr(2)W*(x) = W% (frz) for P-a.a.w,
p“-a.a.x, p“-a.a.F" which contradicts the strong irreducibility assumption unless

m=d-—1. O
Next, I shall discuss sufficient conditions for Assumption 5.1(ii).

5.5. Theorem. Let ' be a measurable set with P(I') > 0 so that ug,w € I is an
irreducible family and either supp(™® is k— contracting for Pr—a.a.w and p*—a.a.x

or Assumption 5.3 holds true and for Pr—a.a.w,
(5.18) p“{x : supp((* is k—contracting} = 6, > 0

where 6 is a random variable. Then Assumption 5.1(ii) is satisfied.

Proof. 1shall show first that Assumption 5.3 together with (5.18) yield that supp(;™®
is k—contracting for Pr— a.a.w and for p¥—a.a.z (even for all x) and then I shall
obtain that this together with the irreducibility of the family pf* imply Assumption
5.1(ii).

As before, denote by Q“(n, (z,M),-) the n—step transition probability of the
multiplicative Markov process in random environments Y, where Q' (1, (x, M),U) =
QY((x,M),U) = pu{F : (frz,Tp(x)M) € U}. Let n(Fi) = ng)(w) be the arrival
times at I' defined at the beginning of Section 5, Or = 0”(r1), DL(L,k;)c be the support of
Q¥ (n(Fk)(w), (x,Id),-), and S(f,kg)c be the minimal closed subset of GL(d, R) such that
Q“(ntF (W), (z, Id), X x SEL) =1. Set SE)(y) = {M € GL(d,R) : (y, M) € D)
and ASL,’“L ={yeX: Sf,kg)c(y) # (}. It is not difficult to see that these are measur-
able sets (cf. [Bo2], Section 4). By the definition, ¢* (n%k)(w), x, Ag,kz,:) =1, and so
by Assumption 5.3(iv),

(5.19) sup |1 — p%(A%))| < C(08w) (1 — ypp,)"" )
reX
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Set S, 0 = Uz":Ongg)g and V, = {y € X : S, ,is k—contracting}. It is clear that

S,y Is k—contracting if and only if supp(["? is k—contracting, and so by (5.18),
(5.20) PR (Vo) = o

Observe that Sgllg%yngg;(y) C Sy for any z,y € X, w € Q, and n = 0,1, ... where
the product of sets of matrices is understood as the set of corresponding products
and the latter set is considered empty if one of the sets in the product is empty.
Hence, if Sgk,, , is K—contracting and ng; (y) # 0 then S, , is k— contracting. By
(5.19) and (5.20) for Pr—a.a.w I can choose k = k(w) so that pG’FW(AEU’fL nV,) >0,
i.e. the set in brackets is not empty, and so it contains a point y. Thus for Pr—a.a.w
and all x € X the set S, ., is K—contracting, and so supp(;™* is k—contracting, as
well.

w,T

Assuming that supp(; ™ is k—contracting the set
Ly, = ﬂ{KerA : A= lim ||A,||"'A,, rankA < & for some A,, € supp(p“}

is well defined (where KerA denotes the kernel of a matrix A) and it is either a

proper subspace of R? or it contains just 0. Then for any g € GL(d, R),

(5.21)
9 Lorwy = ﬂ{Ker(Ag) : A= lim ||A,||"*A,, rankA < kfor some

A, € supp(pr?) = ﬂ{KerB : B= lim ||B,| ' B,, rankB < &
for some B,, € (suppclqrw’y)g}
since Ker(lim, . ||Bng™|7'B,) = Ker(lim,, . || Bx|| "' B,) (provided both lim-

its exist) and rankB = rank(Bg~!). Now if g € SL(y) then (supp¢r™¥)g C

supp(p™”, and 80 ¢ 7' Lopw,y D Ly z. It follows that for Pr—a.a.w and pg—a.a.F,
(5.22) dimLgyo fpe > dimLe .

Since p¥—is an ergodic family, this together with Proposition 2.2 yield that (5.22)
is, in fact, an equality for Pr—a.a.w, puf—a.a.F, and p“—a.a.x, and so for such w, F,

and z,

(5.23) LOpw,fp:c = TF(.Z‘)LQ,,E.
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But if pt is an irreducible family then this is only possible if L, , = 0 for Pr—a.a.w

and p“—a.a.x which implies Assumption 5.1(ii). O

Under additional continuity assumptions it is possible to replace (5.18) by the
condition that for Pr—a.a.w there exists just one point x depending on w such
that supp("” is k—contracting (cf. [Bo2], Section 5). Since it is usually difficult
to verify the above xk—contraction condition I shall give also a simpler sufficient

condition based on richness of supports of up’s.

5.6. Corollary. Suppose that there exists a closed V. C GL(d,R) such that
supppzpup O V' for Pr-a.a.w and p“—a.a.x and the minimal semigroup S gen-
erated by V is strongly irreducible (i.e. it does not leave invariant a finite union of

proper subspaces of R?) and k-contracting. Then Assumption 5.1(ii) holds true.

Proof. Since supp(;™* contains the semigroup S for Pr—a.a.w and p“—a.a.z then

Assumption 5.1(ii) is satisfied in view of Theorem 5.5. [

Note that if suppy,u® both contains V' and the identity matrix Id for all z and
P—a.a.w then suppy, (,uek“’ - %% xp?) DV forall k = 0,1, ... and, in particular,
suppp. i O V. Recall, that if the algebraic (Zariski) closure of a semigroup S
coincides with GL(d, R) then S is 1-contracting, as well, as all its actions on exterior
products (see [GM]). As usual, in order to derive that all Lyapunov exponents are
different one has to ensure 1-contraction of the actions F/\k(x, up Aug A ..ug) =
(frx, Tp(x)urA. . . ATp(x)ug) on exterior products uj AugA. . Aug, k=1,2,...,d—1.

Observe that (5.7) holds true for the continuous time case given by (1.8) under
a version of Hormander’s hypoellipticity conditions which ensures that a Doeblin

type condition from [Ki2] is satisfied.

6. LIMIT THEOREMS

In this section I shall extend the machinery of [Bol] to derive an w-wise central

limit theorem for “random” random bundle maps under the following condition

6.1. Assumption.
(i) There exist random variables v = v, € (0,1) and C = C,, € (0,00) such that for
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P-a.a.w, all x € X, each n € Z, and any bounded Borel function ¢ on X,

(6.1) |/#W%ma@mw—/www@ns@u—%mwwn

where, as before, p* € P(X) is a p“-stationary ergodic family and || - || is the
supremum norm;
(ii) There exists a > 0 such that

(62) [ (sun [ expton(Tenans () are) < o

reX

where x(M) = max(log | M||,log||M~1||) for any M € GL(d,R);

(iii) Ao(p) > A1(p), where, recall, Ao(p) > A1(p) > ... > Aa—1(p) are the Lyapunov
exponents.

(iv) The filtration (3.3) of Theorem 3.1 is trivial, i.e. the number r(p) appearing

there is 0.

I note that Assumption 6.1(i) holds true under the random Doeblin condition
(5.8) which can be shown exactly in the same way as in [Ki2]. Assumption 6.1(iii)
is satisfied under conditions discussed in Section 5. Observe that when d = 2
Assumption 6.1(iii) is satisfied under the conditions of Theorem 4.1. Assumption
6.1(iv) holds true under an irreducibility condition, i.e. when there are no nontrivial
measurable subbundles satisfying (3.6) and the latter follows if the supports of
measures (" are sufficiently large, for instance, contain open sets.

Denote by Y, the Markov chain (in random environment) (XY, M) where
My =T(n,w, X§) and let P¥ and E¥ be the probability and the expectation for

n

{Y,¥ n > 0} provided Yy = (x,1d).

6.2. Lemma. Suppose that Assumption 6.1 holds true. Then uniformly in x € X

and u belonging to the unit sphere S~1,
(6.3) lim n='E% log ||M“u|| = Xo(p) P-a.s.
and

(6.4) lim n_l/E;" log || M, ul|dP(w) = Ao(p)-

n—oo
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Proof. Observe that

(6.5) X(T(n,w,2,8) < Y x(Te, (XF(£))),
and

B (T, (YE (€)= B2 B (Ted (X5 (©))* < sup [ (T @)Pau™(p).
Thus setting 2, = {£ : +x(T(n,w, z,&)) > K} I have

(6.6)

BT, (M) < KBS T, L (X (M3))?

n—1

k
o ZEW (T (K (O))* < K-t 3 sup [ (T ()™ ().
k=0 z€
By the ergodic theorem the right hand side of (6.6) converges P-a.s. to
(6.7) K—l/SUp/ X(Tr(x 1 (F)dP(w) < 00
cEX

and the latter integral exists in view of Assumption 6.1(ii) and Jensen’s inequality.
It follows that the sequence {%X(T(n, w,z,€)),n > 0} is uniformly integrable in £
for all x € X and P-a.a.w.

Set g¥(z) = sup,cga1 [n T E¥ log ||MZu|| — Ao(p)|- Then by (6.5) in the same

way as in (6.6),

(6.8) |9 (@) < [Xo(p)| +n™ EZ X (M)
< [Ao(p)[+n~ Zggg/ (Tp())dp® (F).

This together with the ergodic theorem yield that the sequence ¢ (x) is uniformly
in z bounded for P-a.a.w. It follows from Proposition 2.8 in [Bol] that if uw,, — u
on S9! then for p“-a.a.z, Q“-a.a.£, P-a.a.w the sequence n~'log || T (n,w, z, £)u,||
converges to Ag(p). Since this sequence is bounded by n~!x(T(n,w,z,§)), and so
it is uniformly integrable, it follows that g¥(x) — 0 as n — oo for p“-a.a.x and
P-a.a.w. I conclude from above that

(6.9) lim [ g¥(x)dp”(z) =0 P-as.

n—oo
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Set v, = v¢ = ||T(k,w, z)u||~*T(k,w, z)u then
[n~ B log || My ul| = Ao(p)] < [n ™ EZ || M ul||
+ [T B log||T(n — k, 0%w, X )urll = Xo(p)| < [n™ B x (M)

1 k
+ ‘n — k_E;}EBJ{; log |T'(n — k, 0% w, X vell = Ao(p)| + E|/\o(p)‘

k—1

— 2% w k
n IZAG + E; Qn e (X)) + E‘/\O<P)|
i=0

where A = sup [ x(Trp(z))du”(F). Hence
zeX

(6.10) 92(x) < BLgh 5 (XE) +n k(o) + k™ IZAG‘”

By (6.8) and Assumption 6.1(i),

(6.11) sup (207 40%0) = [ o)™ w)
n—1 }
< Cor (1= 7040) (Mo(p)| + (n = k)1 Y~ A7),
i=k
-1
By the ergodic theorem L, = sup({~! Y A%¥) < oo P-as. Set I'yy = {w :
e>1 i=0
max(Cu, 754 [Mo(p)| + Lu) < M}, Ten = {w : | [g¢(w)dp®(z)| < e V€ > N},

and FE,N,M = FM N PE,N' Then FS,N,M T as N T and M T and by (69),

P(U U Tenm) =1 for any ¢ > 0. Given ¢ > 0 choose M and N so that
N>1M>1

P nm)>0andset I' =T'; y . Let n(i) = n(i)(w) be arrival times to I' defined
in the beginning of Section 5. Then by (6.10) and (6.11) for any nr)(w) <n-—N,

(6.12) sup g ()] < & + M2(1 = M=) @) 4 =10 () M.
reX

Passing in (6.12) to limsup and taking into account that n!! )( ) — 00 as i — o0

n—oo

I obtain limsup sup |¢g¥(z)| < e. Since € > 0 is arbitrary, the uniform in = and u
n—oo X
limit (6.3) follows.
Fore > O0set ¥, ,, = {w : sup,cy |97 ()| < eVEk > n}. I know now that ¥, ,, T ¥,

asn ] oo and P(¥.) = 1. Then by (6.8) for any n > m,

/ sup g (2)|dP(w) < & + [Ao(p)|[P(2\ T. )

z€X
n—1
# [t s [T (PP ().
V., o TEX
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Employing the ! convergence in the ergodic theorem I obtain that for any m € Z_.,

limsup/ sup |g.(x)|dP(w) < e
TEX

n—oo

+ (ool + [ sup [ X(Te(e))d (F)IP@)P@\ Vo).

Letting, first, m — oo and then ¢ — 0 I obtain the uniform in x and u limit (6.4)

via the Jensen inequality. [

For each u € S?! denote by @ the corresponding element of P?~! and define
(6.13) d(a,v) = |sin Z(u,v)| = [|[u A

where u,v € S9! and Z and A denote the angle and the exterior product, respec-
tively. Set
D? = sup EYlog(6(Mu, M) /6(1u,v)).

n
T, U,V

6.3. Corollary. P-a.s.,

(6.14) limsupn~'D¥ < A1(p) — Ao(p)
and
(6.15) lim sup n_l/D;’dP(w) < Ai(p) = Ao(p)-

Proof. Let A2M, M € GL(d,R) denotes the exterior product action, i.e. A2M (u A
v) = Mu A Mv. By the same argument as in Lemma 6.2 T obtain that P-a.s.,
n~1E% log||A2M?|| converges uniformly in = to Ag(p) + A1(p) as n — oco. Since

§(1, ) = ||u Av||(||Jull|lv]])~! for any u,v, € R? \ {0} it follows that
(6.16) n~ E log(§(M%u, M*v)/6(u,v))
< n B log [[APM || — B log (|| My ull /]]ull)
— 0 B log(|[Mv]l/|lv]l)-
This together with the first part of Lemma 6.2 give (6.14). Taking in (6.16) the

supremum in z,u,v and then integrating the inequality against P I derive (6.15)

from the second part of Lemma 6.2. [

Observe that in Lemma 6.2 and Corollary 6.3 I used only (6.7) in place of (6.2).
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6.4. Proposition. Suppose that Assumption 6.1 holds true and o > 0 is small
enough. Then there exists a random variable K = K, and a number § € (0,1)

such that for alln > 1,z € X, and 4,0 € P41,

(6.17) EZ(6(Myu, M) /6(u,v))* < K,[".

Proof. By Corollary 6.3 there exists k such that

(6.18) / DEdP(w) < —1.
For any n € Z4 and x € X set

cp(x) = sup EZ(6(Mya, M;v)/6(a,0))"

n
u,5ePd—1

and r¥ = sup ¢¥(z). Observe that for any M € GL(d,R) and u,v € P41,
reX

(6.19) —4x(M) < log(é6(Mu, Mv)/é(q,v)) < 4x(M),
and so by (6.2) and (6.5) it follows that P-a.s.,

(6.20) rn < sup By exp(dax (M)
reX

n—1

< [[ sup / exp(dax(Tr(y)))du’™ (F) < oo

provided a < a/4. If n,m € Z set u,, = T(m,w,z)u and v,, = T(m,w, z)v. Let
F¢ be the o-algebra on E generated by the Markov chain Y = (X, M) for all
1t < m. Then by the Markov property

(6.21)
EZ((6(M) 1, MYy, 0)/6(, 9))%|F)

= E2((0(T(n,0"w, X2 )y, T(n,0™w, X2 )0,,)/0(a,0))"| Fn)

< 0" (S(T (m,w, z)a, T(m,w, z)0)/6(1, 7))°.

Taking E and sup in both parts of (6.21) I derive that P-a.s. for all m,n € Z,

xT,u,v

(6.22) Trm < rfrepe
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By (6.2) and (6.18) flogJr {YdP(w) < oo, and so I can apply the subadditive
ergodic theorem which yields that P-a.s.,

1 1
(6.23) lim —logr, = inf — /log redP(w).
n—oo N n 7
Since e® < 1+ s+ 2s%¢ll then by (6.19),

(6.24) EY(6(MyPa, MEo)/6(1,9))* < 1+ aDY + 8a”BY

where By = sup E% ((x(My))? exp(ax(My))). By (6.21), (6.23), and (6.24) P—a.s.,

rzeX
(6.25)
: 1 w 1 w 1 w 2 pw
lim —logr, < % logrydP(w) < z log(l + aDj + 8a” By )dP(w)
n—oo n Q
1 w 2w a 8a w
Choose a sufficiently small so that o [ BfdP(w) < 1z then lim Ilogry < —2&
Q n—oo

e

and (6.17) follows with g =e~3¢. O

w

For o > 0 denote by L, the space of Borel functions ¢ : X x P41 — R such
that [l¢lla = [¢la + [l¢]| < co where [p|o = sup{|p(z,7) — ¢(z,0)[/(6(w, )" : x €
X, 0,0 € P41} and ||¢|| = sup{|p(z,u)| : z € X,u € P71}, Set R¥p(x,u) =
E¥o(X%Y, M¥u), RY =Id, RY = R and R¥ = R* o R o...0 RI" %

Applying Lemma 3.5 from [Bol] to the Markov multiplicative system
(0"w, X, T(n,w,z)) I obtain that there exists v € P(Q x X x P4~1) such that

(6.26)  dv(w,z, @) = dv*(x,1)dP(w) = dv (a)dp* (r)dP(w) and v* R® = 1%,

i.e. v¥ is a p—stationary family and v is an invariant measure of the Markov

multiplicative system above. Set N¥o(z, @) = [ @dv®, ¢ € Ly,.

6.5. Proposition. Suppose that Assumption 6.1 holds true and o > 0 is small

enough. Then there exists a number v such that for P—a.a.w,

(6.27) v = lim ||RO " — N¥||/™ < 1.
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Proof. Let ¢ € Ly, x € X, and @, 7 € P4~ then for each n > m,
(6.28)
Ry, "ol u) — B "Co(Xy " T(m, 0w, X))
=By "o(Xy " T(n, 07" w,x)u) — By (X ", T(m, 0w, X)_)o))
< llellaEy " (O(T(n, 07" w, x)a, T(m, 0w, X;_,*)0))"
= llellaBy "“(Ey "“(8(T(m, 60~ "w, X3 )T (n — m, 0~ "w, )@,
T(m, 0~"w, Xy )0)* [ Fp_))

<ol ES " supE

< ”(P“aKG*mwﬁ

o, (6(My, " a, My, " en))?

n—m

where I employed the Markov property and the last inequality follows from Propo-

sition 6.4.

Now let v € P(Qx X xPI~1) satifies (6.26). Set ¢v% (z) = [ E¥ (X%, M2 v)dve (v),
then sup [¢5;, ()| = [|[¥[| < [l¢]la- Since X7 "(¢) = Xgl m“(U”_mﬁ) then
(6.20) [ T 0 X2 0 )

- / ES Te (X8 Y T(m, 0" w, z)0)dv® " (z, )|

< |0l e (x0T / WO (@) dp® " ()

< |lellaCo-mw(l = vg-me,)

where I employed Assumption 6.1(i).
Set R¥ = R% "» — N“. Since

/EG_ o ;21_ T(m, H_mw,ﬁ)dya_m“’(a:,@) :/an_m“’go(w,v)dve_m“(ac,v)

I obtain from (6.28) and (6.29) that for any m,n € Z, m < n,

Set Ty = {w : max(K,,C,,v;') < M} and choose M large enough so that
P(Tpr) > 0. Let m(o)(w) = 0 and recursively m\" +1)( ) = min{m > m{j)(w) :
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0—"mw € Ty}, i = 0,1,.... Set ip(w,n) = max{i : m(ri)(w) < %} and mp(w,n) =

m(ri(w’”))(w). Then by (6.30),
1R Nl < 2M max (8™, (1 - M%),

By the ergodic theorem P—a.s., lim,, .o, n™Yip(w,n) = 2P(T'y;) and since mp(w,n) >
ir(w,n) I obtain that P—a.s.,

(6.31) L im sup | R/ < 1.

n—oo

Observe that R* = R "« R since by (6.26), N "“R% ™« = N“ andso ||RY||, <
IR "¢ ||allR% ||la- By the subadditive ergodic theorem it follows that, in fact, the

limit in (6.31) exists and P—a.s. it is constant, concluding the proof of Proposition

6.5. O

Set L.(w) = min{L € Zy : ||[R® " — N¥||, < (1 —¢&)" Vn > L}. By (6.27),
L.(w) < 0o P-a.s. provided ¢ € (0,1 —p). Let T =T, = {w : L.(w) < ¢~}
and nt? = ngi)(w) = n(FZE) (w) be the arrival times at I' defined at the beginning of

Section 5. For any z € X, u € P! and F € F set

T
1,5, F) = log 2@y s
[u]
and denote
n—1 ]
X2 (p) = / n(e, @ F)dv* (z, 0)dpe (F), 12 = 3 M (p).
=0

Observe that since v* is the unique p“-stationary family it must be ergodic and
so by Theorem 3.1 [ A§(p)dP(w) = Ao(p). Next, I can derive the following limit

theorem.

6.6. Theorem. Suppose that Assumption 6.1 holds true and, in addition, for
some € € (0,1 —¢) with P(I';) > 0 and for some a > 0 one has

n{M (w)—1 ,
63 [0 T sw [epxTr@)i (P <

i=0 T€X

where P- is the normalized restriction of P to I'.. Then
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For P-a.s. w € Q and all z € X, u € S the limit
o? = lim n 'EY(log ||MZu| —t)?

exists. Moreover, there exists a measurable in w family of functions ¢, € L,

with ||¢w|la € L2(Te, P.) such that
(6.33) o2 = P(T.) / / 0% (2, ) dv* (z, @) dP.(w)

whe,"e g‘f(]}, ,u) = E:(Z‘) ( 1Og ||M:£-1) (w)u” _t:g)(w) +(P9n§1)(w)w(X:£1) (w)’ M:gl) (w)a) -
gow(a:,u))2. Furthermore, o = 0 if and only if for some family of functions
0w € Ly with ||¢,||a € L?(T., P.) the corresponding g = 0 v*-a.s., P.-a.s.

For eachu € S and w € Q define the sequence of continuous random processes

(6.34)
S (8, €) = (no®) 2 (log || Mg (E)ull -t

+ (nt — [nt])(log | M, 41 (E)ull + 25" (p) — log || M2, (€)ul))),

t € [0,1], distributed according to PY. Then for P-a.a.w the processes {S2(t,-),t €
[0,1]} converge in distribution as n — oo to the one dimensional Brownian mo-
tion on the time interval [0,1]. The same remains true if in the definition of S¥
the expressions ||M®(§)ul| are replaced by || M ()]

For each x,u and for P—a.a.w, PY-a.a.§ the set of limit points in C[0,1] of
the sequence {(2loglogn)~1/28%(t,£),t € [0,1]}, n = 1,2,... coincides with the
compact set of functions q absolutely continuous on [0, 1] such that ¢(0) =0 and

Ji(d'(s))%ds < 1.

Proof. Introduce Markov chains in random environments defined by

7Z¥ = (X2, U% F) where U® = T(n,w,z)u with z € X and u € S¢ 1.

Observe that

n—1 1

3
|

(6.35) log [[U2]] = > n(Xg, Ug, Fe) =Y n(Zy).

=
I

k=1 1

Let R“ be the transition operator of the Markov chain Z, i.e.

RYp(z,u, F) = /go(fpx,Tp(x)a, G)du® (G)
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for any bounded Borel function ¢ on X x P4~ x T and set R¥ = R* o R% 0---0
RO Let ¢, (z,u) = [ n(x,u, F)dp~(F) then
(6.36)
Ryn(z,u, F) = /n(Xﬁ_l(Uﬁ,wa),T(n — L, 0w, frz, o) Tr(2)u, F;(€))
I (€) = Ry2 1 Wgne, (fre, Tr(x)a)
where y in X}’ (7, y) indicates that X§ = y.

i (w)-1
Set Uy, (z,u) = >, R, (z,u). It follows from Lemma V.4.2 in [BL] that
k=0

for any « € (0, 1] and some constant C' > 0,

n(w)-1 j

(6.37) ||\I’w||a < COz_l Z Hsgp(/ egaX(TF(m))d,uaiw(F)).

j=0 =0

This together with (6.32) and the Hélder inequality yield that if 6a < a <1 then

(6.38) / 1T |2 dP. (w) < 0.

In view of Proposition 6.5 and the definitions of I'. and ng) it follows that for any

wely,,
Aw iw n("') w
(6.39) 1R Wos o, — NTWgi I < (1= )" Wt las

provided ng)(w) > ¢!, where f?‘f = R¥ and Or = 97 (@) is the P.-preserving

Q
ne’ (w)
ergodic transformation of I'. (see [Br], p. 30).

It follows that for P. — a.a.w the series

Pw = Z(R;u - Ng;‘w)\PG%w
=0

converges in L, and
(6.0 [ealzapw) < .
Since N¢"@RI™ = N9 Ly (6.26) then N“¢,, = 0, and so P- — a.s.,

(6.41) U, (z,0) — 19 = o (2, 0) — RY oo (@, T)
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where T set 1 = ¢ Observe also that

w .
nt (w)

ng) (w)—1

-1
§ :Aw . § : w

Ri \IJG}LU - Rk: w@kw
=0 k=0

and
/-1 nge)(w)—l ng)(w)—l
i k k
Sateug =3 W= )
1=0 k=0 k=0

Define Y3’(x,u) = 0 and recursively

(6.42)
w1 (@) = Y (a, @) + log (|| M7y yul[ || My w7

- (A(;m)+1 - tA(;:) + ‘P@;+1W(X:+1a M;f+1a) - @9?w(X::a quua)
where MY = M:(i)(w) =T(n?(w),w,z) and X¥ = X:(”(w)'
Let F;? be the o-algebra generated by {(X;, M), =0,1,...,n},n=0,1,...
and F¥ = ]-"“’(i)( ) Since M,‘;’H = T(ngl)(%w),Hlﬂw,X,‘;’)M,‘;’ I derive from (6.41),
(6.42) and the Markov property that
(643)  EX(Via(e,u) =Yy (@ w)| ) = Voo (X3, Mu) - 7
+ R g (X2, M2T) = popo(X3, M) = 0
Thus (Y (z, @), F¥),n = 0,1,... is a martingale for P. — a.a.w.
Next, I am going to check the conditions of invariance principles in the central

limit theorem and the law of iterated logarithm for martingales from Ch. 4 in [HH]

(cf. [Rul] and [Ki3]). First, I claim that P. — a.s.,

(6.44) lim n=' Y EY (Vi — Yi¥)?|F) = (P(T.)'o”

n— oo
=1

with o2 given by (6.33). Indeed, by (6.42)
(6.45) B (Yo (2, 0) = Y (2,0))?|FY) = gopoo (X3, My @)

where g = ¢¥ is the same as in (6.33). Since ¢, € L, then in view of (6.32),
gw € Ly. Set b, = [ g (x,@)dv*(x,u) then by Proposition 6.5 and the definition
of I', for any w € I, ngk)(w) >l ye X and v € P41,

w W AW nle) (o
(6.46) |Ey90’12w(Xk’Mk v) - b6’12w| <(l-g)te ( )||991’2w”a‘
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In view of (6.32), (6.41) and Lemma V.4.2 from [BL] I conclude that

/ 9w |2 dP-(w) < co.

This together with (6.46) yield that

1) [ B B — Y PIED — bop) PPA) < o6,

n=1
Since by the ergodic theorem

n—1

1 _
i > by = (PIT) o

both P. — a.s. and in L*(T., P.) then (6.44) follows by the Kronecker lemma and
the convergence in (6.44) is both P. — a.s. and in L*(T;, P.).
Next, I have to check the Lindenberg condition saying that for any £ > 0, P. —

a.s.,
. —1 w w w2 J—
(6.48) Jim 07ty BV = V) Lgve, v iseymy) = 0.
j=1
By (6.42),
w w wdef n n S>w O w
(6.49) |V — Y| < A= X(T(nl) (B7w), 0fw, X)) +81" + [logna, [+l popol

and it follows by the Markov property that
(6.50) Ey (A3)°Laws 1y < Br(0fw)
where

Brw) =4sup Eg (P (M) + (i7) + ()% + lleoral® + llewl?)

x ]I{X(M{”)Jrfi“JrllwpwllJrllww||>L})‘

By the ergodic theorem P. — a.s.,

n—1

1 .
6.51 lim — B (0rw) = | BrdP-
(6.51) Jim 3 B0 | B
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and it is easy to see from (6.32) and (6.40) that the right hand side of (6.51) tends
to zero as L — oo, which implies (6.48).

Consider random processes on the probability space (E, PY’) given by
Gw —1\ 2% ryw - _ w _
(652) S2(t.7) = (no®P(T2) )% (Vi (@, 1)+ (nt—[nt)) (Vg1 (@, 1)~ Yoy (2, ),

n=0,1,...,t €[0,1]. Then (6.43), (6.44) and (6.48) together with Ch. 4 in [HH]
yield that P. — a.s. as n — oo the processes 5”7“; (t,-) satisfy invariance principles
in the central limit theorem and in the law of iterated logarithm as described in

assertions (ii)—(iii) of Theorem 6.6.
n (w)—1
Set DZ(&) = >, x(Te (X)), where X§ = x, and £, (w) = max{/: ng)(w) <

i=0
n}. Then

Lz M tog | 0Mul — b - Y22, | < [ Drape @yan

ptn (@) L (w) L (@) )
+ /Dwr “dpft" e (2)dI" Y 4 DY+ DY, Y 4 ||g09£n(w>w||a + @0l a-
L (w)

By the ergodic theorem nli_)rrolo n~, = P(T.) P —a.s., and so, by (6.32) and (6.40)
I derive that for P — a.a.w, PY — a.s., nli_)n(iO n_%Lﬁ = 0 which yields the assertions
(i)—(iii) of Theorem 6.6 for S¥(¢,-) defined by (6.34). In view of Proposition 2.8
from [Bol] the same result follows if S¥'(¢,-) is defined with ||M“(£)|| in place of

M2 (E)ull. O

If (6.27) holds true in the supremum norm in place of || - ||, then Theorem 6.6
can be proved under weaker than (6.32) integrability conditions. According to [Ki2]

the former takes place if the following random Doeblin condition is satisfied.

6.7. Assumption. There exist random variables N = N, € Z4 and v =7, > 0
and a measurable in w family m* € P(X x P=1) such that for any x € X and a

Borel U C X x P4~ one has R?V_N‘*’IIU(QJ) > ~v,m“(U).

Under Assumption 6.7 it follows from [Ki2| that there exists a measurable in w

family v* € P(X x P4~1) such that for any bounded Borel function ¢ on X' x P4~!

(6:55) IR0~ [ adv?l < €t = )"l
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for some random variables C,, > 0 and k,, € (0,1). Let Tz = {w:max(N,,,7;') <

e~ 1} and define the sequence ngi)(w) in the same way as before Theorem 6.6. Set

c(w) = (/(log T (2)ul)*dp (F)dv (2, w))?.

In view of (6.35), the following result follows from [Ki4] (see also [Ru2]).

6.8. Theorem. The assertions of Theorem 6.6 hold true if (6.32) and Assumption
6.1 are replaced by Assumption 6.7 together with the condition that for some e > 0,
PT.) >0 and

ngl) (w)—1

(6.56) / (Y cob)2dP. <o,

i=0
where, again, P. is the normalized restriction of P to I'..

In the same way as in Corollary 4.6 of [Bol] the continuous time versions of

Theorems 6.6 and 6.8 follow if, in addition, one assumes that

/sup E?( sup x(MZ)?)dP(w) < oo.
zeX  0<t<1

7. RANDOM HARMONIC FUNCTIONS AND MEASURES

Let Z¥ be a Markov chain in random environments on a Borel subset of a Polish
space V with transition probabilities R“(v,-) as in the beginning of Section 2. I
denote by P¥ and E; the corresponding path distribution and the expectation
provided Z5 = v. Let also F};

m,n?

0 <m < n < > be the g-algebra on the path
space Z = VZ+ generated by all Z¥ m<j<n+landset Fy = () Fk,0o which
is called the tail o—algebra. A measurable in w family of functioxst(i)L = hy(v) is
called (random) harmonic if (2.2) holds true for all v € V and P-a.a.w (cf. [Rul]).

The following simple result is a basis for the boundary theory of random harmonic

functions.

7.1. Proposition. Let h = h,(v) be a harmonic family and

(7.1) ry =sup|hy,(v)] < 00 P-a.s.
veV
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Then hgn,(Z2) is a bounded martingale with respect to F, n = 0,1,... P-a.s.

n

Hence for P-a.a w the limit

(7.2) lim hony, (Z) = @u

n—oo

exists P*-a.s. (and in any L*(Z, P¥)) where ¢, is a random variable on the prob-

ability space (2, FL ,PY).

Proof. By (2.2),
To < /R‘*’(v,dw)rgw = Tow

and by ergodicity of # with respect to P I conclude that r, = r is a constant P-a.s.

Hence h,,(v) is a bounded measurable function on 2 x V. By the Markov property
(7.3) E5 (hontro(Z71)1Fy) = /Ran”(zﬁ, dw)hgn1,(w) = horw (Zy,),

and so hgn,, (Z%) is a bounded martingale. Now the result follows via the martingale

convergence theorem. [

By (2.2) and (7.2) I can also write
(7.4) ho(v) = Efhono(2,) = B¢

which is a general form of the Poisson formula and one of the main problems of
the boundary theory is a detailed description of such representations for specific
models.

Let now G be a locally compact semigroup, u“ be a measurable in w € 2 family
of probability measures on G, E = G%+, [I¥ = H pf@ and 95 (&) = ggi“’(a’f) =¢;
for £ = {(&),1 € Z} where o is the left shift ogleéjLThen g% are independent random
elements of G with distributions u?'“, i € Z,. Set L¥,(§) = Id, L¥ = L¥(¢) =
98 (&)gy (&) ---9¥_1(&) and Z¥ = gL¥ for g € G which defines a Markov chain in

random environments on G starting at g. The n-step transition probabilities of Z

can be expressed in the form
(7.5) R¥(n,g,T) = 8y % p 5 p% % -~ py

Let B be a compact space on which G acts minimally, i.e. for any u € B the

set Gu is dense in B. Then G acts also on the space P(B) of probability measures
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on B, and so for any v € P(B) the convolution u* * v is defined by (2.5). Suppose

that v € P(B) is a measurable in w family satisfying
(7.6) pe % =¥

which amounts to (2.7) with § replaced by 6! and then, 97" replaced by v*.

Then for any bounded Borel function ¢ on B the function

(7.7) ho(g) = / pgu)dv () = / o(v)dgr (v)

satisfies

(7.8) / R¥(g,dv)heu(v) = / how(g7)du (v) = / o(gv)dp® * v (v) = hy(g),

i.e. h, is a random harmonic function for the Markov chain Z according to the
definition (2.2). Thus, the study of families of measures satisfying (7.6), which
are naturally to call random harmonic measures, is important in the description of
random harmonic functions on G. By analogy with the deterministic case one may
call the pair (B,v) a random p-boundary. One can consider dual to h, and v*
objects replacing in (7.6) and (7.8) 6 by 6~1.

I shall not enter here into an extensive study of random p-boundaries (for some
results in this direction see [KKR]) but, instead, restrict myself to the case when
G = SL(d,R) and B = P?! (which is, essentially, the set up of previous sec-
tions with X being a point) though in order to describe the random Poisson
boundary here one has to deal with B being the space of flags. I assume that
[ x(g)du®(g)dP(w) < oo. Recall, that u* € P(G), w € Q is a strongly irreducible
family if there exist no finite collection {VLSI), VLSQ), ... ,V(,Sk)} of proper subspaces
of R? measurably depending on w such that g(LkJ Vugi)) = LkJ %(i) for u“-a.a. g and
P-a.a. w. The corresponding notion defined vaTtlh 61 inzzllace of # will be called
the reverse strong irreducibility. Let i“ denotes the distribution of g* provided g
has the distribution p“ then I conclude in the same way as at the end of proof of
Theorem 5.4 that u“ is strongly irreducible if and only if i is reverse strongly

irreducible.
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7.2. Proposition. (i) Measurable families v* € P(P?~Y) and v* € P(P41)

satisfying
(7.9) pe v = v and p¥ « 0% =

always exist. If u* is a strongly irreducible family or, equivalently, i* is a reverse
strongly irreducible family, then both v* and 0¥ are proper P—a.s. If, in addition,
the two largest Lyapunov exponents Ao, A1 of the product M¥ (&) = g<_1(§) - - 95 ()98 (£)
are different, i.e. A\g > A1, then for each proper measure m € P(P*1), in particu-

lar, for the normalized Lebesque measure on P4~ for P—a.a.w and I1*—a.a.£,

(7.10) w- lim (MY "“ oo ™™)m = w- lim (M? "“ oo ™! "¢ = dyw
and
(7.11) w- lim (M#)*m = w- lim (M®)*9%" = 6.,

where w-1im denotes the weak limit, d,, denotes the Dirac measure at u, and V¥ =
V() and V2 =V (€) are random points having the distributions v* and i, re-
spectively, i.e. [ Oye(gdll®(§) = v* andfévo%(‘f)dﬂ“’(f) =¥, and V2 and V¥ are
directions of the ranges of any limit point of the sequences |Mf "“oo™||71M? "o
o™ and |[(M&)*||7H(M&)*, respectively. Hence, under the conditions above, the
measurable families v, 0 € P(PI~1Y) satisfying (7.9) are unique.

(i1) Similarly, replacing 6 by 0=, if i is a strongly irreducible family or, equiv-

w

alently, p“ is reverse strongly irreducible then v* satisfying (7.6) and v* satisfying

Ow

nw

a® % 0¥ = 0% are proper. If, in addition, the two largest Lyapunov exponents of
the product LY = L% (&) = go(&) -+ - 9% _1(§) are different then such families v*° and

7 are unique P—a.s. and for any proper m € P(P4~1),

(7.12) w- lim L¥m = w- lim L<%"% = dwe
and
(7.13) w- lim (L2 " oo™ ")*m = w- lim (LY "“ oo ™)* 0" " = 4.,

n—oo n—od oo
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where the random directions W2 = W& (€) and W& = W< (£) are the ranges of
limit points of the sequences |[L|| 7 *LY and ||(L2 " o o=™)*|| 71 (LE " o0 07 ™)¥,

respectively.

Proof. The existence of families v* and ¥ satisfying (7.9) follows from Kakutani’s
fixed point theorem (see Lemma 3.5 in [Bol] and Lemma 4.1 in [Bo2]). Under the
corresponding strong irreducibility condition I derive in the same way as in the
proof of Theorem 5.4 that such measures v* and 7“ are proper P—a.s.

Next, assume that A\g > A;. Consider a polar decomposition Mg_n“’(a_"ﬁ) =
K2 (A2 (UL (€) where K@(€) and UZ(§) are orthogonal matrices and
Ay (§) =diag(ag,,(§), ..., ag_1 ,(§)) is a diagonal matrix with ag,, > af, > --- >
ag_y - The measure II such that dll(w,§) = dII*(§)dP(w) is € x o—invariant
and ergodic (by a trivial partial case of Proposition 2.2). It follows from the
Oseledec "multiplicative ergodic theorem” (see, for instance, [Ar], Ch.4.) that
lim,, .~ %log af, = A lI—a.s. where A; is the i—th Lyapunov exponent and, in

particular, I conclude that II—a.s.,

(7.14) nh_)rg(j a5 (©)
It follows that IT—a.s. all limit points as n — oo of the sequence ||M? "¢ o
oY (M ¥ o 67™) are rank one matrices and for any proper measure m €
P(P4—1), I—a.s. all weak limit points of (M? " o 6=")m are Dirac measures (see
[BL], Ch.III and [GR]).

Call a family N of measures v € P(P?~!) equi proper if for any & > 0 there is

7(e) > 0 such that for any proper subspace V' one has sup, ¢ v(V-

(=) < €, where

VV denotes the y—neghborhood of the projective subspace corresponding to V. By a
compactness argument the family containing a single proper measure is, of course,
equi proper. If M, € GL(d,R) is a sequence of matrices such that || M, |~ M,
converges to a rank one matrix M and v, € P(P?"1), n =1,2,... is an equi proper
sequence then an easy compactness argument yields that w — lim, .o M,v, = 65
where zZ € P41 is the direction of the range of M.

Now, consider a measurable family v* € P(P4~1) satisfying (7.9). It is easy to

check directly that (M? "“oo=™)v% " n =1,2,... is a martingale with respect to



46 Y. KIFER
the o—algebras F* generated by 93’,9871“ oot ...,ggf(nfl)“’ oo~ (=1 (cf. [Bo2],
Lemma 3.6). Thus II—a.s. the limit

w— lim (M2 "9 oo W0 "W =yt e PP

n—oo

exists. Furthermore, set I',, ; = {w: v* (V1) < % for any proper subspace V C R?},
N(l) =min{n : P(T'n;) > 1-3""}, () = Tnyy, and I' = Nj2, I(1). Since Ty T T
asn 1 oo and P(I'y) = 1 then N(I) < oo for any [ and I conclude that P(T) > 1.

Clearly, {v*,w € T'} is an equi proper family. Define Pr and the arrival times

n(Fi) = n(ri)(w) to I' as in the beginning of Section 5, but for ~! in place of § so that

() e .
9—"r (“)y € T'. Then for Pr—a.a.w and II¥—a.a.€ all weak limit points as i — co of
(i) ; ()

—ny 7’ (w) () —ny 7 (w)
the sequence (M% T ¢ ognr (@),0 T Tw
np’ (w) B B
other hand, the sequence (M? "% o 07")1% "¢ converges II-a.s., I conclude from

are Dirac measures. Since, on the

above that II—a.s. all limit points of the sequence ||M? "« (c="¢)|| 7' M? "< (e "€)
have the same one dimensional range with a random direction V¥ € P4~! and (7.10)
holds true. Since [(Mf "“ o o™")v? "“dIl* = v* the distribution of the random

—n

point V¥, which depends only on the sequence M? "“ o =", is v and it follows

(o op)

that v* satisfying (7.9) is unique. Other assertions of Proposition 7.2 hold true, as

well, in view of relations explained above. [

7.3. Remark. Observe that Proposition 7.2 remains true in the more general case
of independent random bundle maps considered in previous sections. Indeed, if
p¥ € P(X) is a p~—stationary ergodic family, Ag(p) > A1(p), and v*, say, satisfies
(5.5) then I can consider the stationary ergodic process (6w, X¥) with X§ having
the distribution p* and then the same proof as above yield that T*(n, w, X§ )ug(":w
weakly converges I[I—a.s. as n — 0o to dy» where V¥ is a random point in P(P4~!)
(cf. the proof of Proposition 3.3 in [Bo2]). This implies also that for P—a.a.w,
I“—-a.a., and p“—a.a.x the sequence T*(n,w, x, g)yg)(’;w, X§ = x weakly converges
to dyw (¢,) Where V2 (£, z) is the direction of the range of any limit point of the
sequence ||T*(n,w,z,&)||7'T*(n,w,z,£). It follows that the family v% satisfying
(5.5) is unique p“—a.s., P—a.s.

Modifying arguments of Theorem VI.2.1 from [BL] in the spirit of the first half

of Section 6 above one can show proceeding similarly to Section VI.4 in [BL] that
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under Assumption 6.1 the Hausdorff dimension of measures v* is a positive constant
P-a.s. Next, I consider a specific example of random continued fractions where this
dimension can be computed explicitly. In the case when €2 is a point this example
was considered in [KP] and its connection to products of random i.i.d. matrices
was discussed in Section VI.5 of [BL].

Let Ay, Ay, A%, ... be independent positive integer valued variables with distri-
butions p®, u?, @ ... € P(Z4) and set p¥ = p”({i}), pi = [ pydP(w). Assume
that

(7.15) 0< Zﬁi logi < o0.

i=1
Suppose that p“ is not a Dirac measure with positive probability. Denote by
B = Z_ZJ the sequence space and set II¥ = H ©?'e € P(2). Now I can write AY =
A¥(&) = &, where & = (£,&1,...) € E. C0n31der independent random matrices
9¥ (&) = <(1) A“’l(g) ), n =0,1,... and denote, again, by u* the distribution of g§
in GL(2,7) so trlblat g¥ is distributed according to p?"“. For any vector (a,b) € R?

1
represent the corresponding point of the projective space P* by the number 7

- . . 0 1
which is the cotangent of the appropriate angle. Since ( 1 a> ( 1) = (a + x>

is represented by ﬁ then g = acts on z € P! by the formula g-x =

1 a—l—w ?

and so L¥(n) = L¥(n, &) = g5(§)97 (§) - - 951 (&) acts by

1

(7.16) L¥(n) -z =

AY +
0 7 A¢+- +m

It follows that L“(n)-0 converges II“-a.s. to a real random variable V¥ with values
in [0,1] and a distribution ¥ € P(P!) satisfying (7.6).

Let o be the left shift on 2, 7(w, &) = (Aw, 0€), £ € Z and define I € P(Q2 x E)
by dll(w, &) = dII¥(§)dP(w). It follows trivially from Lemma 2.1 and Proposition
2.2 (with the space V there being a point) that II is 7-invariant and ergodic.

Observe that

n—1

(7.17) [L¥(n) - x = L¥(n) - y| < Iw—yl(H A9
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By (7.15), ergodicity of IT and the ergodic theorem for P-a.a.w, II¥-a.s.,

n—1 [eS)
1
(7.18) Jim D log Ay = pilogi > 0.
j=0 i=1

Thus II-a.s. the right hand side of (7.17) tends to zero exponentially fast.

The contraction property above yields also that the family u“ is reverse strongly
irreducible. Indeed, if Vugi), i = 1,...,k are one dimensional subspaces of R?
satisfying g('LkJ1 %(:;)) = 'Lle V) for p¥—a.a.g and P—a.a.w then

(7.19) L) J V) = Vs I -as.

=1 i=1
Let Vw(i) denotes the representation in P' of the line VJ” as a point in R and set
g ={w: |f/¢§i)| < KVi=1,...,k}. Choose K large enough so that P(I'c) > 0.
If 0"w € T'k then by (7.17),

n—1
max | L(n) - V2, = 12(n) - Vil | < 2K(]] 49)72.
1#] =0
Taking a subsequence n;, = ny(w) — oo such that 6™w € 'k T conclude from here
and (7.18) that (7.19) is only possible if £ = 1. But since * is not a Dirac measure

with positive probability and <(1) i) V£ <(1) ;) V for any line V if a % b then

(7.19) cannot hold true also for k£ = 1.

It follows by Proposition 7.2 that v is proper, i.e. it has no atoms P-a.s. Recall,

that any real number ¢ € (0,1) can be expanded in a continued fraction

t= lim (E(0):E(0):-. . 16a(0)

where (£0;&15... ,&n-1) = ﬁ When ¢ is irrational this expansion is
R T

unique and since v* has no atoms P-a.s. then this expansion is v*-a.s. unique, i.e.

the map 7 : E — (0, 1) given by

1
m(&) = (oiéis. ) = —7—
So+ g3
has the unique inverse 7—1(¢) for v*-a.a. t. It follows that the law of A%, AY, ..., A%

under I1% is the same as of (t), &1(t), ... ,&{n(t) under v* and #I1¥ = v*. Consider

the map T : (0,1) — (0,1) given by T(t) = 1 — [}]. Then T'w = 7o, and so

(7.20) TvY =% P-as.
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If 7(w,t) = (Aw,T(t)) then the measure v defined by dv(w,t) = dv*(t)dP(w) is
7-invariant and I conclude from ergodicity of II that v is ergodic, as well.

Next, I claim that v* is singular with respect to the Lebesgue measure on (0, 1)
for P—a.a.w. Indeed, let v be the Gauss measure, i.e. y(U) = log2 fU 147 for
any Borel U C (0,1). It is known that v is T—invariant and mixing (see [CFS],
p.174) and since P is #—invariant and ergodic it follows that the product measure
v x P is ergodic with respect to the product transformation 7" x 6 (see [CFS],
p. 229). Since v is ergodic with respect to 7' x 6 and have the same marginal
P on 2 as v x P then either v* coincide with v for P—a.a.w or v* is singular
with ~ for P—a.a.w. The first case is impossible since by elementary computation
vt : &o(t) = 1,&(t) = 1} # v{t : &(t) = 1}y{t : £&1(t) = 1}, and so the claim is
proved.

Since the family u“ is reverse strongly irreducible then by Theorem 3.1 the

largest Lyapunov exponent g satisfies
.1 w 0
(7.21) Ao = lim —log||L¥(n) (1) | I-a.s.
n—oo n

It is easy to check that

(7.22) Lw(n)((1)>:ﬁ(14;u - L )<L‘”(§L).O>

- (ﬁ(L“’w(n ~iyeatyopt (FO0).

1=0

This together with (7.21) and ergodicity of II yield by the left hand side of (7.15)
that

(7.23)

Ao = — lim —Z// log((L?“(n — i) 0 o) - 0))dII*dP(w) =

n—oo n

= — lim — Z// log(L*(n — i) - 0)dII*dP(w) = //logVo";dH“’dP(w)
n—oo N
:—//logtdl/ (t)dP(w >Zpllogz>0

=1
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On the other hand, by the right hand side of (7.15),

n—1

(7.24) Ao < hm — Z log||g7|| = /log(l + AQ)dII¥dP(w)

= Zﬁi log(1+1) < co.

Since detg” = 1 then the other Lyapunov exponent A\; must be negative. Observe
that ¢g¢’s are self adjoint, and so u“ = 1. Since p* is reverse strongly irreducible
I conclude from Proposition 7.2 that v* satisfying (7.6) is unique and it must be
the distribution of V.

Observe that by Jensen’s inequality

(7.25) — i pi log i < log(i i7?) = log(w—2 -1)
il ¢ 1=pi i=2 6
Set h = =32, [ p¥logpydP(w) which is the relativized entropy of T with respect

to the measure v (see [Kil]). Integrating in (7.25) in w and applying Jensen’s

inequality to the function —xlogx I obtain

0 2
. _ 71' _ _ _ _
(7.26) h<2> pilogi+ (1-p1) 10g(g —1) = p1logpy — (1 — p1) log(1 — p1).
=1

This together with (7.15) imply, in particular, that h < oco.

7.4. Proposition. P-a.s.,

where dimpy denotes the Hausdorff dimension of a measure, i.e. the infimum of

Hausdorff dimensions of sets of full measure.

Proof. Set J¥ (&) = L¥(n,&) - [0,1]. Then in the same way as in Section VI.5 from
[BL] I derive that for P—a.a.w and II—a.a.t,

1
(7.28) lim —log|JZ (&) = —2Xo

n—oo n
where |I| denotes the length of an interval 7. On the other hand,

(7.29)
v (J2(€)) = yw{t € (0,1): &(t) = A°(€) Yi=0,1,... ,n—1}

—Hu {A7 (O}
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This together with ergodicitiy of II imply that for P-a.a.w and II—a.a.§,

(7.30) lim E log v (J7(§)) = h.

n—oo

Thus lim W equals the right hand side of (7.27) for P-a.s.w and II-a.a.§
and Proposition 7.4 follows by an easy “random” modification of Lemma 3.1 in

[KP] (ct. [Ki3]). O

Since 2)g is the Lyapunov exponent of the map T corresponding to the measure

v then (7.27) has the usual in the one dimensional situation form: dimension=

entropy

exponent” Several arguments were suggested which should lead to the proof that

dimgv® < 1 for P—a.a.w but they are outside of the scope of this paper. This
should follow also from the explicit formula (7.27) but, as far as I know, even in the
case of [KP] when Q is just one point, no good estimates of the right hand side in
(7.27) for the general case appeared in the literature though it is easy to show that
this expression is strictly less than one for some partial cases, for example, when p;
is close to 0 (which follows from (7.23) and (7.26)) and when p; is close to 1 since
then h is close to 0 and —\ is close to the logarithm of the golden mean 1 (v/5—1).

7.5. Remark. The example above can be generalized in the spirit of [KP] con-
sidering random f—expansions, namely, representing a number z € (0,1) in the

form

= nli—{{;lo fw(ABJ + wa(A(f +eet f0"—1w<Az—1)'“))

where f,, is a random decreasing (or increasing) function satisfying some properties
which ensure convergence of such expansions and AY = A¥(z) are positive integer
coefficients of the expansion so that A% (x) = [f;(x)] and A%(x) = A% (T, ),
n = 1,2, ... with the random transformation T,z = f;!(x) — [f;}(x)]. Recall, that
continued fraction expansions correspond to the particular (nonrandom) decreasing
function f(t) = 1. The case of the increasing function f,,(t) = ¢(w)t (mod 1) with
a positive integer valued random variable ¢ leads to random base expansions con-
sidered in [Ki3]. If one chooses the coefficients AY independently with distributions

changing stationarily as above or having Markov dependence (with stationarily

changing transition probabilities) then modifying arguments from [KP] it is pos-
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sible to estimate the Hausdorff dimension of the distribution of the corresponding

random point on (0,1) similarly to Proposition 7.4.
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