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ABSTRACT. The Futaki character gives an obstruction to the existence of Kahler met-
rics of constant scalar curvature in a fixed K&hler class [F2, C2]. We show that in
combination with the resolution of the Calabi conjecture [Yu], one has an analogous
obstruction on pairs of metrics in different Kéhler classes. If the difference of the Fu-
taki characters on two classes of fixed total volume does not vanish identically, there
cannot exist a pair of metrics in these classes which have the same Ricci form and the
same harmonic Ricci form. When the obstruction vanishes, results in [H] are used to
construct non-trivial examples of such pairs which are also extremal [C1].
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1. INTRODUCTION

In [F1, F2, C2], Futaki defined a character on the Lie algebra of holomorphic vector
fields on a compact Kéahler manifold, attached to a fixed Kahler class, whose non-
vanishing provides an obstruction to the existence of Kéhler metrics of constant scalar
curvature in the given class. The purpose of this note is to show that if ones combines
the invariant with Yau’s solution to the Calabi conjecture, Futaki’s character also gives
information about pairs of metrics in different Kahler classes. We call a pair of Kahler
metrics a harmonic (Calabi-Yau) pair, if the two metrics share the same Ricci form and
the same harmonic Ricci form. Such a condition is, of course, overdetermined. It is
of interest, however, that there exists a topological obstruction to its fullfilment. Our
result is a slight generalization of the following.

Theorem 1.1. Let M be a compact Kahler manifold, and 2, Q a pair of Kahler classes
of fixed total volume. If the difference of the Futaki characters of the two classes does
not vanish identically, then there does not exist a harmonic pair of Kdhler metrics with
Kahler forms (w,w) € Q X Q. When this obstruction vanishes, there are examples of
harmonic pairs which are also extremal.

Here an extremal K#hler metric is one which minimizes the L?-norm of the scalar
curvature in its K&hler class [C1]. Note that one can easily find examples of harmonic
pairs, each of which is a product of metrics of constant scalar curvature, or indeed a
product of extremal metrics. The merit of the examples we give is that they are not
product metrics. To construct them we rely heavily on results of Hwang [H].

After gathering the necessary preliminaries in Section 2, we show the existence of the
obstruction in Section 3, relate it to Mabuchi’s K-energy map [Mb] and to extremal
metrics. Section 4 is devoted to giving extremal harmonic examples.
Acknowledgements
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2. PRELIMINARIES

2.1. The Futaki Invariant. Let M := M,, be a compact Kéahler manifold of complex
dimension n. Given a Kahler metric g on M, with Kahler form w and Ricci form p,
denote by py the harmonic part of p. Since p and py belong to the same cohomology
class, there exists (cf. [GH, Chapter 1, Section 2]) a smooth real valued function F,
called the Ricci potential, such that

(1) p — puy = i00F.

Unless otherwise stated, we normalize F' to be L?-perpendicular to the constants.
We recall the definition of the Futaki invariant.

Definition. Let (M,,w) be a compact Kahler manifold with Ricci potential F'. The
Futaki character is the map Fy,; : h(M) — C, where h(M) denotes the Lie algebra of
holomorphic vector fields on M, given by

w/\n

(2) Fu(E) = /MEF T
Remark. The values of this character do not depend on the choice of metric in the
Kéhler class [w] (see [Ba, C2, F2]), i.e., it is a K&hler class invariant.
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Remark. This invariance is what in fact implies that F,) is a Lie algebra character

(cf. [C2)).

Remark. Fj, is completely determined by its values on a subalgebra of A(M): by the
Hodge decomposition, the (0, 1)-form « which is metrically dual to a given holomorphic
vector field Z decomposes as & = ay + Of, with ay harmonic and f a complex val-
ued function (the term involving 9* vanishes by the holomorphicity of = and the local
implications of g being Kéhler). Then

Fru(E) :/ =F
M

where (-, -) denotes the pointwise inner product induced on (0, 1)-forms by the Kahler
metric. But the first term on the right hand side vanishes since after integrating by
parts we see that it equals f o O*anF “’nL,n and ayg, being harmonic, is co-closed.
Therefore, it suffices to consider holomorphic vector fields = = Z; whose dual (0, 1)-
form is of the form 0f. We call Z; a gradient vector field, and f = fz a holomorphy
potential. On compact Kéahler manifolds the gradient vector fields form a Lie subal-
gebra. Another way to characterize them is as those holomorphic vector fields having a

non-empty zero set (cf. [Kb, Part II, Corollary 4.6]).

An An

An _ w _ _ w
= [ tamor)=e+ [ @oromer,

n!

W

2.2. Holomorphy Potentials and the Ricci Form. A holomorphy potential also
satisfies

(3) 2w = gf:
and satisfies the following analogous relation with the Ricci form:

Proposition 2.1. Let M be a complex manifold of Kdhler type and = a gradient holo-
morphic vector field on it. Suppose g is a Kdihler metric on M with Kdhler form w and
Ricci form p. Then if f is a smooth complexr valued function on M satisfying

(4) =W = gf:
we have
(5) 12p = I(AS).

Moreover, if M is compact, the second equation implies the first.

Remark. Equivalently, using the 0-Laplacian on 1-forms, one can write:

12p = A(1zw).

Proof of Proposition 2.1 This proposition is well known and goes back to Bochner [Bo]
and Yano [Yn|. For a convenient proof of a more general statement involving any
holomorphic vector field, see [Kb, Theorem 4.2]. O

For an interpretation of these relations in the terms of holomorphic equivariant coho-
mology [L], see [Msl, Ms2].
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2.3. Scalar Curvature, Extremal Kahler metrics. The relation between the scalar
curvature s, and the Ricci potential F', is gotten by taking traces with respect to w in
equation (1), and using the Hard Lefschetz Theorem. One has *:

(6) AF = s — s,

where A := Aj denotes the 0-Laplacian: A := §*0+ 00*, and s, is average value of the
scalar curvature over M,

w/\n
S 1
Sp = fM nt

ﬂ
M n!
This quantity depends only on the Kéahler class.
Note in particular that a Kahler metric has constant scalar curvature if and only if its
Ricci potential is harmonic.
The L? norm of the scalar curvature figures in Calabi’s notion of an extremal Kéhler

metric [C1].

Definition. A Kahler metric g with Kahler form w on a complex manifold M,, will be
called an extremal Kéahler metric if it is critical point of the functional

(7) g—>/Mszwi

among Kéhler metrics in the class [w]. Here s, denotes the scalar curvature of g.
Specializing to compact manifolds, one has:

Proposition 2.2 (Calabi [C1]). For M compact a Kihler metric is extremal if and only
if its scalar curvature is a holomorphy potential, i.e. s = 0.

In particular, if g is a Kdhler-Einstein metric, or, more generally, any Kahler metric
of constant scalar curvature, it is extremal.

2.4. The K-Energy Map. Given a Kahler class €2, fix a Kahler form wy € Q. Let
¢; be a one-parameter family of smooth real valued functions such that ¢q = 0, and
Wy := wo + i00¢, is a Kihler form. Denoting w = w;, Mabuchi’s K-energy map [Mb] is
the functional on Kahler forms in €2, given by

) = b () = M) = = [ ([ il = s0) L)

Here qﬁt deontes differentiation with respect to ¢, and s4, is the scalar curvature of w;.
i is independent of the path ¢, between wy and w;, and changes by a constant upon
changing the basepoint wy. M(.,.) satisifies a cocycle condition. The K-energy map has
Kahler forms of metrics of constant scalar curvature as critical points. Moreover, given
the real part of a holomorphic vector field, and exponentiating it to get a one-parameter
group of diffeomorphisms acting by pull-back on w, the derivative of u(w) along this
orbit is exactly the real part of the Futaki invariant, evaluated on the original vector
field.

1For convenience, we have absorbed into s a factor of —1/2, as compared with the standard Rie-
mannian definition.
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2.5. The Calabi Conjecture. Recall that on a compact Kahler manifold M, the Ricci
form of any Kahler metric is closed, and its corresponding second cohomology class in
H?(M,C) is the first Chern class ¢;(M). Also, the Ricci form is completely determined
by the complex structure and the volume form, via the formula

(8) p = —id0 logdet g.

Given this, one has two equivalent formulations of the Calabi Conjecture, which was
resolved by Yau [Yu].

Theorem 2.3 (Calabi-Yau [Yu]). Let M,, be a compact Kéhler manifold. If p is a real
closed (1,1)-form representing c1(M) (if ¥ is a real non-degenerate (n,n)-form), then
in every Kdahler class there exists a unique Kdhler form w, whose Ricci form equals p
(whose volume form equals a positive multiple of ¥ ).

_ Let g be a Kéhler metric with Kahler form w and Ricci form p. Given a Kéhler class
Q, we will call the unique Kéhler form @ € (2, the Calabi-Yau Representative of w
in Q.

3. THE REFLECTION CHARACTER

3.1. Definition, Invariance. We define a new character attached to pairs of Kahler
classes, and proceed to relate it to the Futaki character.

Definition. Let M, be a Kihler manifold, Q and Q two Kihler classes. Let w be
a Kihler form in Q with Calabi-Yau representative @ in Q. Define the reflection
potential ® := @ of the pair (w, Q) to be the smooth real valued function given up
to an additive constant by
where py, py are the w-harmonic and @-harmonic representatives, respectively, in
the class ¢;. The reflection character is defined to be the Lie algebra character
RY © h(M) — C, given by

- w/\n
) RAE) = [ 2@)%

M

n!

We call (w, @) a Calabi-Yau (metric) pair, and say they form a harmonic Calabi-
Yau pair, or simply a harmonic pair, if pg = pg.
We at once to show that this invariant is well defined, and indeed is a character.

Proposition 3.1. Keeping notations as in the definition, Rg does not depend on the
choice of w in Q. Furthermore, we have RY = —ARY o, Where A := Ag = 32: (the
volume ratio of the classes).

Proof. Since w, w are Calabi-Yau related, one has A‘:’M = “’M (A > 0). Also, if F

and F are the Ricci potentials of w and @, respectlvely, we have i00P = PH — Pu =
PH—P+P— Py =pu—pP+p—pPu = —188F+138F Choosing ® = —F + F, and using
the volume form proportlonahty of the pair, we get

fM T:_IM !n+fME(F)wnL!n:

An

_fME( “nl +AfM “’71—!:_}'[](5)4_,4_7-' 2,
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which is an expression depending only on Kahler classes. The last statement follows
again from the relation between the volume forms, together with the relation ®, 4 =
-5 0. O

3.2. Relation To The K-Energy Map. Note that on Kihler classes of metrics of
fixed total volume, the reflection character satisfies cocycle condition:

RE = —RY
RO+ R = RO
Working for simplicity with such classes in what follows, the reflection character can be

related to the K-energy map. Fixing wg € 2, if Wy € Q) is the Calabi-Yau representative
of wg in (2, define

Vo (@) = Horo (W) = 16,5, (@)-

Then on orbits of the one parameter group constructed from a holomorphic vector field
as in subsection 2.4, the functional v has derivative equal to the real part of the reflection
character of the two classes, evaluated on the vector field.

3.3. Relation To Extremal Metrics.

Proposition 3.2. Let M be a compact Kdahler manifold and €2, Q two Kihler classes
(having the same total volume). Suppose w €  is the Kéhler form of a Kéhler metric
g, @ € Q its Calabi- Yau representative with corresponding metric §, p = p their shared
Ricci form, F, F the corresponding Ricci potentials and ® the reflection potential of
(w, Q) We will assume as usual that these potentials are normalized to be L?-orthogonal
to the constants. Denote also by A, A the respective 8-Laplacians of the two metrics.
Then we have the following:
A: If (w,@) form a harmonic pair then R = 0.
B: If A® is a holomorphy potential and RE(Eae) = 0 then (w, @) form a harmonic
pair.
C: If (w,@) form a harmonic pair then g has constant scalar curvature if and only if
g has constant scalar curvature.
D: If (w,@) form a harmonic pair, and g is extremal, then g is extremal with respect
to the same holomorphic vector field, if and only if A2F = A2F.
E: If both g and g are extremal with respect to the same holomorphic vector field,
then (w, ) form a harmonic pair if and only if A°F = A?F.

Proof. A and B are proved as for the Futaki character, with the reflection potential
taking the place of the Ricci potential. C follows since the assumptions imply pg =
pu = p = p. For D, the pair being harmonic means ® = 0, which implies F = F.
Since AF' differs by a constant from the scalar curvature of the extremal metric g, by
Proposition 2.1,

(10) N’ F = 1875 P = 1Epp P

Now if g is extremal (with respect to the same vector field Ear), then 1z, ,p = ON2F =
OA%F | so combining with (10), A2F and A2F = A%F differ by a constant. But now
the volume forms of the two metrics are equal, so integration of either of these double
Laplacians together with the divergence theorem eliminates the constant. Assuming
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now A?F = AF, and again combining with equation (10), results in 1=,, 5 = OA%F,
which, via a second use of Proposition 2.1, implies that ¢ is extremal with respect to
Zar. Finally, to show E, we note in one direction again that ® = 0 implies F' = F.
The assumption in the other direction means that A(AF — AF) = 0, so the difference
inside the brackets must be a constant. Integrating with respect to w" and using the
Divergence Theorem eliminates the constant. Repeating this argument eliminates the
remaining Laplacian, and so we see that F' = F, ® =0, and the pair is harmonic. [

In the next section we give examples of harmonic Calabi-Yau pairs of extremal metrics.

4. EXTREMAL HARMONIC PAIRS

In [H], families of extremal Kéahler metrics are constructed in a manner analogous
to the one given in [S, KS1, KS2] for the Ké&hler-Einstein case. We demonstrate the
existence of non-trivial harmonic pairs of extremal metrics using only special cases of
these constructions. Recall that we are looking for examples which are not product
metrics. Instead, the metrics live on projectivized vector bundles over products.

4.1. The Construction. We begin with a summarized description of the construction.
We refer the reader to the papers above, as well as to [HS], for further details. Let
M x M be a product of two copies of a Kahler-Einstein manifold M of positive Ricci
curvature, second Betti number equal to one and dimension /. Let w be an indivisible
integral Kahler-Einstein form on M with Ricci form ¢;(M,w) = kw, k > 0. Let p :
(L,h) = N = M x M be a holomorphic Hermitian line bundle having first Chern form
c1(L, h) = nw, + nwe, with A the Hermitian metric, n a positive integer, and w; = mfw
with m; the corresponding projections on the factors of N. Also, take B to be the
symmetric two-tensor associated with 27¢; (L, h) via the complex structure on N. Fix
positive real numbers a1, ay and b with a; +bn > 0,a; # as. Let gy be the Kahler metric
on N with Kahler form a;w; + asws. The Ricci tensor 7y of gy has constant eigenvalues
f—l, %, each of multiplicity [ with respect to gy, and B has eigenvalues f—l, %, also of
multiplicity [.

Define two functions

Q(z) = det(I — zg3'B) = (1 — —2)/(1 — a)},
ai )

kl kl
4, —NT Ay —NT
@ and T-Q are everywhere defined and positive on (—b, b). To emphasize the dependence
on the Kahler class (of the base), we will sometimes write Qa, a5; 141 ,0-

Now use @ and T to define ¢ : [—b,b] — R by

T(z) :=trgy—2B) "N =

T

mew=2@+wgew—2/X%+wy—T@»u—wanm

—b
where the constants oy and A can be written in terms of b, a;, and n, by solving the

equations
b

owﬁ%m=Q@+QF®+/ﬁWW@M%

ooa1 + dag = b(Q(b) + Q(-D)) +/ 2T (2)Q(x) dx.

—b
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Here o; = f_bb 2'Q(x) dx,i = 0,1,2. ¢ is smooth on [-b,b], non-negative, zero exactly at
the endpoints, and satisfies ¢'(4b) = F2.
The above data determine a metric

g=dt* + (dt-J)*> +p*gy —up*B

on the complement Ly of the zero section in L, which extends to an extremal Kéahler

metric on the compactification P(L & C) of Ly. Here J is the complex structure on Ly,

and the two functions w : Ly — [—b,b] and ¢ : Ly — (0, f_bb \/%) are obtained from

¢ by precomposing the hermitian norm on Ly with a respective function (denoted by
the same letter) having the same range, but with domain is (0, 00), determined by the

relations
u(r) ( ) ulr)  dr
logr = / —, t(r) = / .
p B(x) —b o(x)

Here t is thought of as determined by u. Viewing u as a function of ¢, the metric can
be written dt* + (dt - J)? + g;, with g, a metric on the base N. With this perspective, ¢
measures the distance from a fixed section of P(L & C) (the one that corresponds to zero
hermitian norm in L), u is the moment map for the S'-part of the natural C*-action
on Ly, and if H is the real gradient vector field generating the R*-part of this action,
é(u) = g(H,H). The map (Lo, g) — (Lo/S' =~ N x (0,00),dt* + g;) is a Riemannian
submersion.

The explicitness of the description of g allows one to give local coordinate expressions
for the various quantities of interest. If z; is a fiber coordinate such that a%] is the
%enerator of the C*-action, and zi, ..., z9; are coordinates on N, then on a fiber where

B = 0, 1:=1,..2], we get

For the Ricci tensor one has
!

rog = —¢(¢' + 50) (), o5 =0, Tz =(rn)ap+ 1(¢(log(¢Q))’)(U)Bas,

Q 2
where the prime denotes differentiation with respect to u. The scalar curvature is now
1
11 s(u) =T(u) — oQ)" (u).
(11) (u) = T'(u) 2Q(u)( )" (u)

Finally we record the following expressions that hold for any smooth function
f:[-b,0] >R :

/ £(u) dvol(g) = 27Vol(N, g) / f(#)Q() d,
P(L&C) —b

(12) rad ) = @A, 8100 = C2 )

The condition for such a function to be a holomorphy potential is simply that it be
affine in u, a condition that can be verified directly for s from the expression (11).
Thus one obtains extremal Kahler metrics in every Kahler class of the Kahler cone of
P(L @ C). These will not in general be of constant scalar curvature, since the required
extra condition A = 0 is only obtained in (at most) a real-algebraic hypersurface of the
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Kahler cone. The metrics all share the same extremal vector field up to a constant
multiple, which can be fixed upon normalizing the metrics in their homothety classes.

4.2. Harmonic Pairs. The Kahler cone is parametrized by ai,as,b. We normalize
by regarding b as fixed, and consider different values of ay,as. To obtain extremal
Calabi-Yau pairs from this family, we make the simple observation that

Qal @2 = QUQ,alj TalyuQ = Td?;al °

Going through the above expressions in succession we see that oy, A\, then ¢, u,t and
finally the Ricci tensor, s and As all remain invariant under this permutation of the
a;’s. SO Gay 0, a0d Gg, q,, for every allowable value of the a;’s, form an extremal Calabi-
Yau pair, usually of non-constant scalar curvature (so usually, the individual Futaki
invariants are non-zero). To show that this pair is harmonic, we note that s,, 4,(v) =
Sas,ar (v) iImplies Ay, 4, Foy 0, (0) = Ag, 4y Fay 0, (1). Now since by expression (12) and the
above observations, the Laplacians of the two metrics coincide, as operators on functions
of u, the right hand side of the last equality equals Ay, 4, Fu, 6, (v). Combining these
equalities, and operating on the result again via A,, 4,, one gets

A% o Faras (0) = A% 4 Fup o (1)

a1,a2 ai,a2

Thus condition E in Proposition 3.2 holds, the pair (W, q,,Wa,,e;) is harmonic, and by
condition A of the same proposition,

[wag,a4]
[wag,as]

0.
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