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ABSTRACT. A singular Helmholtz equation in the half-space R:‘_H =
{(z,t) 1z = (21,...,2,) € R*, t >0}, n > 1, has the form
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where A, = 0?/0x3 + ...+ 0?/0x2% + 92 /0t?. For k > 0 and certain v > 0,
we obtain sharp LP-estimates of oscillatory integrals of the Poisson type,
satisfying this equation with the Dirichlet boundary condition 7}1_1;% u(z,t) =
f(x) € LP(R™). An almost everywhere convergence of these integrals to f
is established in the maximal range of p. The argument is based on known

results for Bochner-Riesz means.
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1 INTRODUCTION

The equation mentioned above is also known as the generalized axially
symmetric reduced wave equation. Equations of this type were studied from
different points of view in the pioneering papers by A. Weinstein, and later
by D. Colton, A. Erdélyi, R.P. Gilbert, A.E. Heins, P. Henrici, J.S. Lowndes,
R.F. Millar, P. Ramankutty and many other authors (see, e.g., [2, 12, 15, 16,
20, 27] and references therein). The case v = 1/2 corresponds to the usual

Helmholtz equation, for which the Dirichlet problem
Agiu+k*u=0 in R wu(z,0) = f(2) (1.1)

has a unique solution satisfying the Sommerfeld outgoing radiation condition.

This condition reads as follows: if & = (z,t), |%| = (Jz|? + t?)/%2 — 0o, then

Y iku = o(|7|7"?) (1.1')

u(z,t) = O(|Z|7™/?) and il

uniformly in all directions § = #/|Z| € R}. The solution of (1.1)-(1.1") is

represented as a convolution

u(z,t) = (Pef)(x) = (pe * () (1.2)

with the kernel

(n+1)/2
k 1
pl) = et (m) s W/EFTE) (13

where Cp = 7:77(1_”)/22—(“/4'1)/27 H((l

first kind (cf. [6], Section 10.8, for n=1). The convolution (1.2) is called

)-|-1) /2(z) is the Hankel function of the

a metaharmonic continuation of f into Rﬁ‘fl. Properties of metaharmonic
functions were studied by I.N. Vekua [25] (see also [4, 5]). In the limit case
k = 0 the convolution (1.2) turns into the usual Poisson integral [24]. The

Fourier transform of p;(z) has the form
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exp(—ty/|€[*? — k> if [§| >k,
ﬁt(ﬁ) = (1-4)
exp (it\/k2 — |€]2) if |¢] < k.

More detailed information about convolutions (1.2) with the arbitrary com-
plex wave number k£ can be found in [21], Section 22.1.

We shall consider a natural generalization of (1.2) given by

u(z,t) = (B f)(z) = (pf * f) (@), (1.5)

v+n/2
k 1)
V(1) = it | ———— H (k12 + |z|? 1.6
where ¢ = inr?~"/2277="/2/T'(v). The function (1.6) coincides with (1.3)

for v =1/2 and has the following asymptotics

it (BN @i 1
- JE— -t Tr|—(4VTn s 1 ~— —
W@ = o () \EE e (1+0(™)

=0(1z[7 D), g = (|2 + 7)Y = oo (1.7)

(cf. formula 7.13.1(1) from [9]). If Re v > —1, then the Fourier transform of

pf (z) can be evaluated as follows:

v def .. v iT-
@)™€) = A}I_I)noo pt (z)e Sdr =
|z|<N
- QuF(V)‘£|n/2—1/ n/2— 1(s |f‘) ( 152 2 )vin/2 s s =
0

/2 (tw)? {i(ﬂ/2)1/2H’gl)(tw) if [¢| < k, k2 ‘£|2|1/2 (1.8)
( )

2120 (v) | (2/7) V2K, (tw) if €] > k,

where K, is the modified Bessel function of the third kind (use, e.g., Theorem
3.3 from [24, Chapter 4] and the formula 7.14.2(48) from [9]). The behaviour
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of (py)™ (&) for t — 0 and [£] — k becomes clear from the following general
proposition.

Proposition 1.1 Let

C(]‘) — 2”F(l/) . 6(2) — e_iVW2_VF(—V)
v w v i

(v#0,-1,-2,...).
For r — 0, the following asymptotic reations hold:
() 4+ o(1), Rev >0,

e 4 Py 4 o(l), Rev=0, v#0,

, 2 1
rHM(r) =4 Zlog= (1+0(1)), v=0, (1.9)
e T

7“2”(0,(,2) +0(1)), Rev<0, v#-1,-2,...,

(DM (L4 o(1), v=1,-2,.. 5

() +0(1), Rev>0,
C](jl) + c’(jz)eilnr,rﬂl/ + 0(1)’ Rev = O, 14 7é 0,

v 2.1
Ky (r) = 5 9 —log— (1+0(1)), v»=0, (1.10)

rveirm(¢? 4 0(1)), Rev<0, v#-1,-2,..

9

{ (_1)|V|C(1)eiu7r7.2u(1 + 0(1))’ v=—1

v

=2,

The validity of Proposition 1.1 can be easily checked using the standard
properties of Bessel functions [9].
For fixed &, [£| # k, the function ¢ : t — (p¥)" (&) satisfies the differential

equation

2 2wv-1d , 9
(- 2t g +K =) e =0, 150,
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of the Bessel type. Moreover, if Rev > 0, then, by (1.9) and (1.10), ¢(0) =1,
and therefore the function (1.5) is a solution of the Dirichlet problem

21/t— 1 % + k2)u($,t) =0 in R, wu(z,0)=f(z) (1.11)

(A0 -
(at least for sufficiently good f). Note that for Re v < 0, v # 0, the limit
}i_I)I(l) ©(t) does not exist.

Up to my knowledge, the Dirichlet problems (1.1) and (1.11) with & > 0
has not been studied in the LP-setting. The present article brings some light
to this topic. Here one should mention the papers [8, 14, 19] related to the
case k = 0. The case k > 0 seems to be more difficult and misterious than
k=0 or Imk > 0. In the last two cases the kernel (1.6) is integrable for
v> 0.

Theorem 1.2 For each t > 0, the operator P, defined by (1.2), is
bounded on LP(R™), n > 2, if and only if |1/p—1/2| < 1/n.

This statement was obtained by the author jointly with W. Trebels in
1993 but was unpublished. It was announced in [21, p. 300] in connection
with studying an inversion problem for the generalized oscillatory potentials

in the half-space

D@ =G [ (- RO e (12
n,a z—y| (n—a)/2 Yy y)ay, .
)

+

T €RL, (yo =200+ 271-7/2 /T (0/2). In the case n = 2, a = 1, which is

especially important in applications (e.g., in diffraction theory), we have

1 etklr—yl

(JVEf)(z) = f(y)dy. (1.13)

dr | |z —y]
RZ

Potentials (1.12) admit the Wiener-Hopf factorization in terms of oscillatory

fractional integrals involving the kernel (1.3). More precisely,
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Jokf = JOIBR gk g (1.14)

(at least for 0 < a < 1 and sufficiently goof f), where

(I35 1) (@) = r(;/z) [@ s Pia s a9
R}

(J2/2F f) () = r(;/z) / (W = 2a)Y " Pz —9)f(W) dy. (115
R}

Here Px(x — y) = pt(2’ — y') denotes the Poisson-like kernel (1.6) with ¢t =
1Ty, — Ynl, ' = (X1,.. ,ZTn-1), ¥ = (Y1, --,Yn—1), and with n replaced by
n — 1. The equality (1.14) is a consequence of the following relation between

the corresponding symbols

([€17 =k =i0) /2 = (\/|&']2 = k2 —i&,) "2 (VI€']2 — k2 +i€n) /% (1.16)

(all expressions in this equality have a suitable interpretation). Further de-
tails concerning (1.12)-(1.16) can be found in [21], Section 22.

Let us state main results of the paper. We assume

n>1, v>0, 6, =v/n+1/2n; LP=LP(R"), Ap,=|1/2-1/p|

The letter ¢ (sometimes with subscripts) designates a constant independent
of t and f, which is not necessarily the same at each occurrence.

Theorem A
(i) Ifv > (n—1)/2, then the operator P} defined by (1.5) is bounded on LP
for all p € [1,00], and

P/ lepsrr <c(1+1t), g=2v+n—1)A,+ (1—-24A,) max(rv —1/2,0).
(1.17)



(ii) Let0<v<(n—1)/2, 1 <p<oo. If A, > 6,, then P} is not bounded
on LP for anyt > 0. If A, <, then in the cases

(a) n=2,
n—1

> 0
b) n>3, v> S t1)

the operator P is bounded on LP and

A A
P ||r e < ¢(141)° Vs > "5 P4 (1 - 5—1’) max(v — 1/2,0). (1.18)

Theorem A implies Theorem 1.2 for v = 1/2.
Theorem B Let f € LP, 1 <p < 0.
(i) Ifp and v satisfy the conditions of Theorem A, under which P} is bounded

on LP, then
lim 17 — fll, = 0.
(ii) If1/2—1/p < 0., then
(a) 7}1_1;{(1) |PY f—fllLe(x) =0 for each bounded domain K C R*;  (1.19)
(b) (PYf)(x) converges to f(x) ast — 0 almost everywhere on R™.

Theorems A and B will be proved in Sections 2 and 3 respectively.
Some comments are in order. The proof of Theorem A is based on known

results for Bochner-Riesz means [7, 11, 22, 23] defined by

(Skf) (@) = F7H(1 — [€7 /RS F fl(2) = (f * b}) (@), (1.20)

b (z) = k" (kz),  b¥(x) = 277" 20 2T (v + 1) 2|72, ().

In spite of the fact that the operators P/ and S; have different geneses
(the Dirichlet problem for the singular Helmholtz equation and summation
of multiple Fourier series), their properties are close. Note also, that for

sufficiently nice real-valued f,



(SE1)() = lim (%) DY) prp@) 2y

() + g (2)). The relation (1.21) en-

11
because J,1p/2(2) = 2 HHSY vin/2

vin/2
ables us to interprete the wave number £ as a dilation parameter in the cor-
responding Bochner-Riesz mean. Moreover, (1.21) partly explains why the
proof of the a.e. convergence in Theorem B is simple and covers all reason-
able p and v, whereas the proof of the a.e. convergence of the Bochner-Riesz
means is rather subtle (cf. [22, Section 2.4] and [23, Chapter IX, Section
6.8]).

Our next remark concerns the well-known gap in the celebrated Stein’s
conjecture that for all 0 < v < (n —1)/2 and 1 < p < oo the operator S is
bounded on L? whenever A, < d, (see [23, p. 390] ). This gap is inherited by
PY. The restriction v > (n—1)/2(n+1) in Theorem A(ii) can be seemingly
reduced a bit due to the results by J. Bourgain [1] (see also [28]).

We conclude this introduction by sketching some open problems which
might be of certain interest.

1. Let us write P} f and p}, (z) for the expressions (1.5) and (1.6) re-
spectively, and replace k by k+ie, € > 0. Since p{; ,, () has an exponential
decay as |z| — oo, then P/, is a bounded operator on L? for all p € [1, o]

and all v > 0. Moreover, due to (1.8) for ¢ fixed and f € L? we have

lim (| By f = P flla =0 (1.22)

(the generalized limiting absorption principle). Let now f € LP. What
can one say about (a) the LP-analogue of (1.22), (b) the almost everywhere
convergence of (Py; ,, f)(z) as e — 0, and (c) the properties of the maximal
operator f — sup.so| P e f17

2. What is the exact behaviour of the norm ||P}||rr—rr ast — oo ?
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3. How to prove the factorization formula (1.14) (e.g., for f € LP(R?} )
with a suitable p) in the case a > 17 Note that the standard use of the Fubini
theorem fails because of oscillation, and the limiting absorption principle also
does not work because we know almost nothing about mapping properties of
the fractional integrals (1.15) and (1.15"). An answer to this question would
enable us to invert the potential (1.12) (in particular, (1.13)) for a«>1. The

corresponding theory for p=2 and 0<a <1 was developed in [21].

2. PROOF oF THEOREM A.

Without loss of generality one can assume k = 1.

Step 1 We start with p = 2. By using the estimate
’r‘”\H,Sl)(r)| <c(l+ r)”_1/2, (2.1)

which follows from (1.9) and the asymptotics of H,gl)(r), and taking into

account a boundedness of the function 7 K, (r), from (1.8) we obtain
A2 i g <1, w12,

PHME) <eg 1 if € <1, v<1/2,

L1 if ‘€‘>1.

By the Parseval equality it follows that
P |22 < (1 + t)max(v=1/2.0), (2.2)

Step 2 Consider the case v > (n — 1)/2. Denote Z = (z,t), |Z| =
(|22 + t2)/2 (this notation will be used throughout the paper). By (2.1)
(with v replaced by v + n/2) we have

(1+ &) +-0/2

|(Pty)(37)| < ct? |Z[2v+n

< c1ag(x) + be(2)]; (2.3)
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tZV 1
at(.’L') = W €L for v > O,

t21/

bi(z) eL' for v>(n—1)/2.

= ‘j|u+(n+1)/2

A simple calculation yields
1 * aslly < cllflly and |[f *bellp < ct” D2 £,

Hence

|PY||zr—rr < c(1+t)VTD/2 yp e 1, 00]. (2.4)

Now (1.17) follows from (2.2) and (2.4) by interpolation.

Step 3 Let us prove (ii). An unboundedness of the operator P} for
v < (n—-1)/2, A, > 6,, can be proved directly by applying P} to the
characteristic function of a small ball (cf. [10, p. 10] and [7, p. 93]). In order
to prove the rest of the statements we proceed as follows. Denote by ()
the characteristic function of the interval [0, ], and let p} (z) = us(x) + ve ()

where
up(z) = Pe(|2)) o (), we(@) = (1 - ¢e(Ja])) pi (&) € L. (2.5)
By (2.3), as above we get
1F * wllp < el Fllp(L+ ) D72, (2.6)

In order to estimate f * v; we decompose vi(x) by using the asymptotic

expansion

P () = ¢ (t)/2/m et FvEnt /4 g —v—(nt1)/2il3] o

n S~y —m ~—M—-v—(n
T (v ) (<2003 + e, (0 O M),

M-—1
m=0
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¢, (t) = in'~n/242v2=v="/2 I (v) (cf. [9], formula 7.13.1(1)). This gives

M—

ve(@) = Y emkim(z) + Rare (). (2.7)

m=0

—

Here ¢, are some coefficients, ¢y # 0,

t2uei|ﬁ|
ki (z) = (1 = s(|z)) P csye 0<m<M-1; (2.8)

&7 if |7 <1, M <v+(n+1)/2,

R (w) <ct®(1-(|2])) (2.9)
|Z|~M-v=(nt)/2 §f |3 > 1

(the estimate for |Z| < 1 is derived from
M-1
Ry = v — Z Cmkit,m, (2.10)
m=0

using the inequality r**7/2|H ") (r)| < ¢ for 0 < r < 1, and comparing

v+n/2
the terms in the right-hand side of (2.10)). Choose M € N so that

—v+(n-1)/2<M<v+(n+1)/2 (2.11)

(for v > 0 such a choice is possible). Then the first estimate in (2.9) holds,

Ryt € LY, and we get || f * Rarell, < cAt)| f|l,- Here for ¢ <1,

t21/ dy t2l/ dy 9y

t<|yl<1 ly|>1
and for ¢ > 1,
_ t* dy _ v+ (n—1)/2—-M 2v
At) = / (2 + |y[2) wF D2 M)/2 — ct = ct
ly[>t
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by (2.11). Thus we have
IS * Rarelly < c(L+6)*[|fll, Vp € [1,00]. (2.12)
The function (2.8) can be transformed as follows. Denote
A=t*/z|* (< 1), B=v+m+(n+1)/2.

Then kym (2) = (1—e(|z])) 12|z ~Pa(X),  a(X)=(1+X) 7P 2exp(ilz|vV1+N),
and by the Taylor formula,

L-1 1
. )\L
_ ilz| L.k < (L)
a(Ad) =e ZE_O kE_O e |z)® + R, IRL| 7T )‘Iél[%)i]‘a )],

with some coefficients ¢, co.0 7 0. After simple calculations we obtain

L—1 1
ktn (2 qu ja ket (@) + RY () (2.13)
1=0 j=0
where

y $2v+2l gil| L o

kym(m) = (1 —(|z])) TP RT (z)] <c ZRL’,t (z), (2.14)
k=0
REM () = 22 (1 — oy (|2)) 2P — (7))
L,t - |x|,8+L+k o ‘x|u-|-m-|-(n+1)/2-|-L-|-k'

Fix L € Nso that (n—1)/2—v <L < (n+1)/2—v. Then ’R’ET € L! for
all m < M —1 and k < L. Furthermore, || f * ’R’ETHP < B(t)|fl|p, where

tu+(n+1)/2—M if t < 1’

t2V+2L dy
_ TR Ay L k—mt(n—1)/2
B(t) = / R = et TR <

ly|>t trrl+n=1/2 5 ¢ > 1.
Owing to the choice of M and L, this yields
k,m n
xRy <A +0)"fllp, 1<p< oo, (2.15)
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forallk=0,1,...,Land m=0,1,...
At the last stage we write ki’zn(ac) (see (2.14)) in the form

M —1.

Y

ki (@) = 7P (2) + wi(@), (2.16)

where

Li L t2u+2lei|zlz|
k1 (2) = ki (@) =1, we(z) = [1(|2])] — Ye(|])] o

If t <1, then || f xwl|p < C@)| fllp,
1/t

t2u+2l dy 2wl n—f—j - Bij
_ _ v n—B—j n—1—B—1—j _
C(t) = / T =ct /r dr =0(1)

t<]y|<1 1

by (2.11). If t > 1, then || f * w|lp, < D(@)||f]lps

t21/+2l dy it 5 L 1Bl

— — pp2vHHn—p—j n—1-f—1—j

D(t) = / PIEEs =ct /r dr <
1/t

1<|yl<t

due to the choice of L. Thus we get

If *well, < c(L+0)" M fllp Vp €L, 00]. (2.17)

It remains to estimate convolutions with the kernel

) i|z|
l, _ €
klfm(m) - (1 —7/)1(‘$|)) ‘x|”+m+(n+1)/2+l+j'

Convolutions of this type were investigated by different authors in connection
with the Bochner-Riesz operator (1.20). In the principal case m =1 =35 =0
the inequality

1F * kg llp < eIl flps (2.18)
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holds for A, = |1/p —1/2| < v/n + 1/2n in the cases (a) n = 2 and (b)
n>3 v>(mn-—1)/2(n+1) (see, eg., [7, 11, 22, 23 (Chapter IX, Section
2.2)]. Combining (2.18) with the similar estimates for || f * kll’f;an, in view of

(2.16) we get
1f * kemllp < e[(L+ 0"+ L+ F2E2Y £l < c (L8| f Il

forallm < M —1and j <! < L—1 (werecall that L < (n+1)/2—v). The
last inequality together with (2.6), (2.12) and (2.15), yields

1P lposze <c+0)",  v<(n—1)/2, (2.19)

for A, < 6, = v/n+1/2n in the cases (a) n = 2 and (b) n > 3, v >
(n—1)/2(n+ 1). The estimate (2.19) implies (1.18) by interpolating with
(2.2). ]

3. PrRoOoOF oF THEOREM B.

Let for simplicity ¥ = 1. The basic idea is to represent P} as a sum
Py = AY 4+ By where AY is a usual approximate identity with an integrable
kernel, and B} tends to 0 in the required sense. We write p}(z) (see (1.6))

in the form

; 1—n/2t2u

174 4 ot vrn 1
V@) = gy MED b)Y =)0,

where |Z| = (t2 + |z|?)Y/2. By taking into account that h(0) = lim h(r) =
r—r
2v+1/21 (v + n/2)/mi and

T

h(r) = h(0) + / W(p)dp, W (p)=p"*"2H() . (p),
0

we have pY(z) = af (z) + b} (), where af (z) =t "a”(x/t),
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72T (v +n/2)
L'(v)

a’(z) =

(14 |z|?)~v—/2, /a”(x)da:: 1, (3.1)

Rn

. iml— n/2t2u 2] ,
bt (33) 21/—|—n/21" ‘$|2u+n h (32)
0

Denote Ay f = f*aY, B{f=fxbl.If fe€ LP, then by (3.1),
174 < s v — .
|A¢ fllp < [Ifllp and }I_I)%Atf f (3:3)
in the LP-norm and a.e. for all p € [1,00). In order to manage By f we write
b} (x) = x ()b (z) + (1 — x())b} () = b1 () + bf »(x) (3.4)

where x(z) = 1 for |z| < 1 and x(z) = 0 for |z| > 1. It suffices to assume
that ¢ < 1. Then by (3.2),

|Z|

ctz”x vtn
biala)| < ol [ B, s (0
0

Since the integrand is locally bounded for p > 0, then

ct?x(x) _ ct*x(x)

|bt, ( )| = | |21/+'n, 1 = |.Z"n Tte € Ll, 0 < e < min (21/, ]_),
and therefore for f € LP, 1 <p < o0,
(f*b{1)(x) >0 as t— 0 in the LP-norm and a.e. (3.5)

The second term in (3.4) can be represented in the form by, = ble + b;’22 by
splitting the integral fom in (3.2) into fol and flm We have
|bt”’21($)| < ct?(1—x(z))/|z|?*t™ € L1, and therefore for f € LP, 1 < p < oo,

(f * b;’;)(a:) —0 as t— 0 in the LP-norm and a.e. (3.6)
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For bt”ﬁ, by putting flm h'(p)dp = h(|Z|) — h(1) we obtain

ct? (1= x(z)) _ ct™(1 - x(=))

v,2
|bt,2 (.’E)| S 7 v+(n+1)/2 — €T v+(n+1)/2 °
7] ||

If v > (n — 1)/2, the last expression is integrable on R” and we get
(f = b;’zz)(a:) —0 as t—0 in the LP-norm and a.e. (3.7
If v < (n—1)/2 (this case is the most important !), then for any « such that
(n=-1)/2—-v<a<(n-1)/2+v, (3.8)

we have

ct?(1—x(x) _ ct’(1 = x())
‘j}|n—a‘j}|a+u—(n—1)/2 — |x‘n—a

b3 ()] < = ctTha(a)

where y=v—a+(n—1)/2>0, ko(z) = |2]* (1 — x(x)). If fe LP, 1<
p < n/a, then (f x ky)(x) is well-defined for almost all x € R™ and, by the
Young inequality, ||f * kallq < c||fllp, ¢ = np/(n — ap). In order to satisfy

the condition p < n/a, by (3.8) we have to assume
(n—1)/2—v<a<min{n/p; (n—1)/2+ v}. (3.9)

The latter is possible provided (n—1)/2—v <n/p,ie. §, =v/n+1/2n >
1/2 — 1/p . The last condition coincides with that in Theorem B(ii). Thus
in the case v < (n—1)/2 for 6, >1/2—1/p we obtain

[(f #by3) ()] < ct(|f| xka)(z) > 0 ae. as t— 0,

and 151_)1{)1 || f * bZ’22||q = 0 for ¢ = np/(n — ap) and any « satisfying (3.9). This
assertion together with (3.3), (3.5), (3.6) and (3.7) implies the statements
(ii)(a) and (ii)(b) and also the statement (i) for v > (n — 1)/2.

16



The validity of (i) for v < (n — 1)/2 follows by interpolation. Indeed,
since by the Theorem A the estimate || P} f||, < ¢||f||p is uniform in ¢ € (0, ¢o]
for all ¢, it suffices to prove the equality ||P/f — f||, = 0 for f belonging to
the Schwartz class S which is dense in LP. Given an arbitrarily small € > 0,
let p1 = (1/2+4+6, —¢)"tifp < 2,and p, = (1/2 -6, + ) L if p > 2.
Assuming t < ¢y and f € S, for a suitable 6 € (0,1) we get

1P f = Fllp < WBYF = FISIPY f = Flig® < o)l Fllp: 1P = Fll5-
By the Parseval equality (use (1.8)) this expression tends to 0 as t — 0.
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