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ABSTRACT. This paper investigates a new type of distinguished
Kahler metric, generalizing the K&hler-Einstein type. It is defined
using a function we term the central curvature, which is a ratio
of the determinants of the Ricci and Kéahler forms. This notion is
treated, as far as possible, in analogy with the scalar curvature,
and the metrics are compared with extremal metrics. An analog
of the Futaki invariant [FMol] is employed for this purpose. It is
shown that such metrics realize the minimum of an L? functional
defined on the space of Kahler metrics in a given Kéahler class.
For the special case of constant central curvature, various results
are obtained regarding existence, uniqueness and a classification
in complex dimension two. Some of these rely on the observation
that existence of such metrics constrains the asymptotic growth of
the dimensions of sheaf cohomology groups with values in sections
of (multiples of) the anticanonical line bundle.
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1. INTRODUCTION

Of the many curvature notions in higher dimensional Riemannian
geometry, scalar curvature holds one claim to simplicity by virtue of
being, like the Gauss curvature, merely a function on the given space.
This work investigates another geometric function that we term the
central curvature. Although this notion belongs in the general Rie-
mannian arena, we confine ourselves to Kahler geometry, in the context
of the search for distinguished metrics on compact manifolds.

In this realm, Kahler-Einstein metrics serve as a basic prototype.
The associated closed 2-forms of such metrics, unless Ricci-flat, can
live only in specific cohomology classes, namely multiples of the first
Chern class. The existence question for these metrics is thus limited to
complex manifolds for which the first Chern class, if it is not the zero
class, admits forms of strict definiteness. There are thus restrictions
both on the types of manifolds, as well as on the range of (Ké&hler)
cohomology classes on a given manifold, in which such metrics can
exist.

A distinguished metric notion for which these limitations are par-
tially relaxed was developed by Calabi in his work on extremal Kahler
metrics [C1, C2]. Although generalizing Kihler-Einstein metrics, such
metrics still do not exist on all K&hler manifolds [Lv, BdB|. Further-
more, it is not known whether their existence in one Kahler class implies
their existence throughout the cohomology cone of Kahler classes. Ex-
amples are known for which this either does not hold, or else uniqueness
within a particular Kéhler class fails [Tf].

Using the central curvature we define central metrics, a new candi-
date for the notion of a distinguished Kahler metric, which we regard
as a close cousin of the extremal one. It serves as a more uniform
generalization of the concept of a Kahler-Einstein metric. In particu-
lar we describe cases where the Kahler cone is completely filled with
class-unique central representatives.

To better describe how these metrics are related with extremal met-
rics, we recall some themes in the development of the latter. Origi-
nally extremal metrics were defined using a variational principle, whose
Euler-Lagrange equations lead to a holomorphicity requirement on a
distinguished vector field, defined via the scalar curvature. When this
extremal vector field is just the zero vector field, the metric has con-
stant scalar curvature, an important special case. In this context came
the introduction of the Futaki invariant [Ft1, Ft3]. This is a linear
functional on holomorphic vector fields, attached to a given Kaihler
class, which provides a criteria for distinguishing those Kahler classes
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in which extremal metrics must have constant scalar curvature. Even-
tually a duality relation was understood [C2, FMa, H2], pairing the
Futaki invariant with the extremal vector field [C2, FMa, H2]. This
pairing is achieved using a non-degenerate bilinear form on (a subal-
gebra of) the holomorphic vector fields, also attached to the Kéhler
class.

Thus one can approach extremal Kahler metrics by starting with the
Futaki invariant, passing to the corresponding vector field via duality,
and ending with the scalar curvature as the potential from which this
vector field is constructed. Analogous concepts of distinguished metrics
can be found using a similar procedure, but starting with different
invariant linear functionals. This is one way to arrive at the concept
of a central metric. However, one can consider two different bilinear
forms that achieve a pairing as above, and thus we actually get two
separate types of central metrics originating from a single invariant
linear functional. Metrics of constant central curvature belong to both
types.

A more direct way to understand the analogy with scalar curvature is
to recall that in Kahler geometry, the scalar curvature s is a ratio of two
top-dimensional forms, each built out of the Ricci form and the Kahler
form: sw"™ = 2np A w1, where w is the Kihler form, p the Ricci
form and n the complex dimension. Likewise, the central curvature C' is
defined using a similar, perhaps simpler equation: p"" = Cw”". Then
one can consider metrics for which C' is constant, or, more generally,
ones for which C' gives rise to a holomorphic vector field. This is the
type II central metric in the previous paragraph. In the case of type I,
C is replaced by its Laplacian.! Most of our consideration is given to
examining this type.

We now describe the content of the various sections. In Section 2
we review the definition and basic properties of the Futaki invariant,
and in Section 3 we give a summary of Holomorphic Equivariant Co-
homology in the sense of [Lu]. This is used in Section 4 to reinterpret
the Futaki invariant as an integral of a (holomorphic) equivariantly
closed form. One arrives at a simple formula for it, which involves the
equivariant extensions of the Kédhler and Ricci forms. A by-product of
this formula is a simple derivation of the localization formula for the
Futaki invariant, already found in [T]. However, the formula is also of
use in the current context since different combinations of the above two
equivariant extensions give rise to n + 1 different invariant linear func-
tionals. Of the resulting n+1 dual vector fields, only two can be derived

L After completing a draft of this paper I learned that the function C' was consid-
ered in a distinct context related to volume decreasing holomorphic maps in [Kb3].
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from simple yet non-trivial potential functions: the scalar and central
curvatures. Section 4 also gives a description of the above-mentioned
bilinear pairings.

The definitions of extremal and central metrics are given in Section 5.
This section

and the next one deal mainly with central metrics of type I. Analogs
are developed for standard results about extremal metrics. Examples
are not given here, but a lower bound is derived, for metrics in a given
Kahler class, of an L? quantity related to the central curvature. This
bound is achieved exactly by central metrics of type I. Section 6 em-
ploys a result of Futaki and Morita [FMol, FMo2] that relate the two
invariant linear functionals in a special case. This is used to deduce
connections between the resulting dual vector fields.

Section 7 gives results valid for metrics of constant central curvature.
The first striking fact is that Yau’s solution to the Calabi conjecture
implies such metrics exist in any Kahler class, provided they exist in
one such class. Also, unlike the situation for extremal metrics, the
various central curvatures of central metrics on a given Kahler man-
ifold are either all, or all not, constants. Next, because such metrics
have Ricci forms of constant rank and signature, vanishing theorems
of Demailly [Dm]| and others allow us to deduce, from their existence,
prescribed asymptotic growth rates for the dimensions of cohomology
groups with values in multiples of the anticanonical line bundle. This
leads to a class-uniqueness theorem for such metrics on manifolds ad-
mitting Kahler-Einstein metrics, and also to a partial classification in
complex dimension two, featuring examples in all Kodaira dimensions.
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2. THE FUTAKI INVARIANT

Let (M, g) be a compact Kiahler manifold, with Kéhler form w and
Ricci form p. Let py denote the harmonic part of p. Since p and
pu belong to the same cohomology class, there exists (cf. [GH, Chap-
ter 1, Section 2|) a smooth real valued function F, called the Ricci
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potential, such that
(1) p — puy = i00F.

Unless otherwise stated, we normalize F' to be perpendicular to the
constants. Taking traces above, with respect to w, we get (via the hard
Lefschetz theorem)

1
(2) AFZ—E(S—S()),

where A := Aj denotes the 0-Laplacian: A := §*0 + 09*, s is the
scalar curvature of g and sq its average value over M,
w/\n
S—
S0 = 7fM w/@!b :
M nl
We recall the definition of the Futaki invariant.

Definition. Let (M,,w) be a compact Kéhler manifold with Ricci
potential F. The Futaki character is the map F, : h(M) — C,
where h(M) denotes the Lie algebra of holomorphic vector fields on
M, given by

(3 = | sr¥_.
(3) Fu)(2) /M o

Remark 2.1. The values of this character do not depend on the choice
of metric in the Kdhler class [w] (see [B, C2, Ft3]), i.e., it is a Kdhler
class invariant. One way to see this involves moment maps and holo-
morphic equivariant cohomology, which will be reviewed in the next
section.

wAn

Remark 2.2. This invariance implies that F, really is a Lie algebra
character (cf. [C2]).

Remark 2.3. F,; is completely determined by its values on a subal-
gebra of h(M): by the Hodge decomposition, the (0,1)-form « which
1s metrically dual to a given holomorphic vector field = decomposes as
a = ay + 0f, with ag harmonic and f a complex valued function (the
term involving 0* vanishes by the holomorphicity of = and the local
implications of g being Kdhler). Then
An An An
Fa@ = [ 220 = [ @nonios [ @ronr,
M M n! M n!

n!

where (-, -) denotes the pointwise inner product induced on (0, 1)-forms
by the Kdhler metric. But the first term on the right hand side vanishes
since after integrating by parts we see that it equals fM 8*04HF“’HL,n and

am, being harmonic, is co-closed. It follows that it suffice to consider
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holomorphic vector fields = = =5 whose dual (0,1)-form is of the form
o0f. We call Er a gradient vector field, and f = fz a holomorphy poten-
tial. On compact Kdhler manifolds the gradient vector fields form a Lie
subalgebra. Another way to characterize them is as those holomorphic
vector fields having a non-empty zero set (cf. [Kb, Part II, Corollary
4.6]). The holomorphy potential satisfies a system of partial differential
equations given in a complex coordinates system {z*} by f’(’% = 0. Here

3= %_ , Y= go‘”_’%_ , using the summation convention.

3. MOMENT MAPS AND HOLOMORPHIC EQUIVARIANT
COHOMOLOGY

We first recall some important notions from symplectic geometry.
Let (M?",w) be a symplectic manifold with a Hamiltonian T-action,
where T' is a torus with Lie algebra ¢ whose dual is t*. Denote by X,
the vector field corresponding to a Lie algebra element & € t.

Definition. In this setting, a moment map is a smooth map
® : M — t* satisfying

Layw=d<®,¢>forall ¢ et,

2. bog=godPoglforallgeT.

An interesting case occurs when 7' = S*. Then ® reduces to a single
smooth function f : M — R = t*, condition i) becomes the equation

(4) ix,w = df,

and the flow ¢, of X, := X, is periodic: ¢; = id. In the corresponding
equivariant cohomology one has a Zs-graded complex of even/odd in-
variant forms, with operator dx, = d —1x, with respect to which w+ f
is equivariantly closed. We are interested in a generalization of this sit-
uation, where M is Kahler, X gives rise to a holomorphic vector field
==X +14JX, and f may be complex valued. We thus give a concise
summary of this notion, called holomorphic equivariant cohomology,
following [Lu]. This approach has its origins in [W], and in early works
of Bott.
For a compact complex manifold (M,, J), let

QM) = @ (),

q—p=r

where QP9(M) denotes the smooth (p, ¢)-forms. Given a holomorphic
vector field = on M, define the differential operator

d—1

0=

m
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Since now

5% = —(515 + 255) = 0,
we see that (Q2*)(M), d=) constitutes a differential complex, where *)
denotes the range of r = —n, —n+1,..n—1,n. We denote the resulting
cohomology by Hg)(M ), if r is non-zero, and Hz(M) otherwise. The
relevant localization formulas are valid for the latter. To state these, we
first carefully describe the degeneracy behavior of = at its zero locus.

Assume M is a (disconnected) complex submanifold of zeros of =
(In the case of a circle action on a symplectic manifold, the zero set is a
symplectic submanifold. In our context the above is an explicit assump-
tion, not necessarily the weakest possible). Let N = 70 pr/7(:0) Mg,
be its holomorphic normal bundle, with locally constant complex rank
denoted by rk(N).

Let Lz € T'(End(N)) be the induced (complex Lie derivative) action
of Z on N. Another major difference from the symplectic case is that
Lz is now explicitly assumed to be an invertible complex automorphism
of N. In this case we call = a non-degenerate vector field.

As before, integration over M is well-defined as a map

/M . Ho(M) — H(point).

We have:

Theorem 3.1 (Holomorphic Localization [Lu]). Let M, My and N be
as above, with = non-degenerate. Given « with [o] € H=(M),

(5) /M o = (=2 /Mom.

where ) is the (complex endomorphism valued) curvature 2-form of an
Lz-invariant connection on N, induced from any Hermitian metric on
M, and the determinant is complez, taken with respect to the complex
structure on N.

Generalizations abound [Lu]. For example, when the zero set of
the vector field does not form a complex manifold, or for degenerate
holomorphic vector fields with the formula involving the Grothendieck
residue. Even more strikingly, a corresponding formula holds for mero-
morphic vector fields. This extends the utility of such results to a much
larger class of complex manifolds.

As before, for a holomorphy potential f as above, w + f, for f as
above, is a holomorphically equivariantly closed form. It is closed ex-
actly because the variant of equation (4)),

(6) =W = gf:
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holds between a gradient vector field and its holomorphy potential.
Note that for this to hold, the non-degeneracy of the symplectic form
is immaterial. This allows us to consider equivariantly closed extensions
of the Ricci form.

Proposition 3.2. Let M be a complex manifold of Kdhler type and =
a gradient holomorphic vector field on it. Suppose g is a Kdihler metric
on M with Kahler form w and Ricci form p. Then if f is a smooth
complex valued function on M satisfying

(7) =W = gf:
we have
(8) 1zp = O(Af).

Moreover, if M is compact, the second equation implies the first.

Remark 3.3. Equivalently, using the 0-Laplacian on 1-forms, one can
write:

12p = A(1zw).

Proof of Proposition 3.2 This proposition is well known and goes back to
Bochner [Be2] and Yano [Yn]. For a convenient proof of a more general
statement involving any holomorphic vector field, see [Kb, Theorem
4.2]. a

4. THE FUuTAKI CHARACTER AS A LINEAR HOLOMORPHIC
EQUIVARIANT INVARIANT

In the previous section we have seen that given a gradient holomor-
phic vector field = with holomorphy potential f, any K&ahler metric g
gives rise to two distinguished holomorphic equivariantly closed forms:
w+ f and p+ Af. Using them alone, we can recover the Futaki In-
variant.

Proposition 4.1. Let (M,,g) be a compact Kihler manifold, and Z;
a gradient holomorphic vector field with holomorphy potential f.
Then:

1

= An 1 An
Fu® = gy [ @ D" = [ oranate ™
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where sy denotes the average of the scalar curvature s of g.

Proof. For such a vector field, we have

n!
An AN
[ oron=e= [ aorsis -
M M n.
wAn 1 wAn
(10) MfAFW:_i Mf(S—So) !

The last equality in equation (10) follows from relation (2). Recall
that by the Hard Lefschetz theorem (or Hodge theory),

(11) sw" = 2np Aw"!,

so the Futaki invariant equals

L An An—1
(12) ﬁso /M fw .
The right hand side of expression (9), on the other hand, evaluates to
srrso(n +1) [y fo™ = o5 [ p A Ciso () f™Fwh)—

i Jar AT iz () 7 Fwk) =
2%!80 fow” — %nfop/\w"_l _ %fMAfw/\n _
2150 Jur @ = Gz S fo N

where we have used the Divergence Theorem in the last step. Compar-
ing with (12), we are done. O

Combining this proposition with the Holomorphic Localization The-
orem allows one to arrive at a simple derivation of the localization
formula for the Futaki invariant, already given in [T]:

Theorem 4.2 (Tian). Let (M,,J) be a Kdihler manifold, = a non-
degenerate gradient holomorphic vector field and w a Kdhler form of
an arbitrary Kdhler metric g on M. Denote by p the Ricci form of g,
and f the holomorphy potential of = with respect to the metric. If My,
the zero set of =, forms a complexr submanifold, then

=) — r 1 (wt)rmHt TALANwH)N
f'[W](H) = (—2m) k(N){Q(m-l)!SO fMo det(Lg+Q) fMo = det(Lg+9) b

where rk, det, L=, Q) are as in Theorem 3.1.
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An explicit 4-dimensional formula derived from the above can be found
in [Ms].

Our main interest lies, however, in formula (9) itself. Since the holo-
morphy potential f is only determined up to an additive constant,
normalizing f by setting

(13) [ = [ =0
gives the simplified formula

- 1 n
(14) FuE =5 [ b+ana@+p™

Its suggestiveness allows one to devise other similar invariants lznear in
=. Consider the family of n + 1 expressions

(15)  AR(Zy) = —%/ (p+AHMA(w+ HMHF =00+ 1.
cJM

They all constitute Kahler class invariants: a change of Kahler repre-
sentative w — w-+i00¢ results in a change w+f — w+ f+0=, (—i(d¢)+
K, where K is some constant which can be ignored by condition (13).
Similarly, if the Ricci form transforms as p — p + 93, for a (1, 0)-form
B, then p+ Af — p+ Def + 55fﬂ (here there is no extra constant
since the value of the Laplacian at the maximum of f has an invariant
meaning, see [T]). Thus both form changed only by an equivariantly
exact form, giving the invariance.

Of these, besides the Futaki invariant F,; = A; we will also be
interested in A, 1, which we denote by B, or B,,:

(16) BED = [ (p+ary,

B is manifestly independent of the normalization for f, and in fact
it does not even depend on the choice of Kahler class, but only on
the complex structure of M, and can even be computed via Hermitian
metrics [FMol, FMo2]. Like the Futaki invariant, B can be defined for
any holomorphic vector field by

An

SN Ny G
BE) = /M aiv(z)”

n!

where div denotes the complex divergence, but, again, it is completely
determined by its values on gradient holomorphic vector fields.

We will also be using two bilinear forms on gradient holomorphic
vector fields. These will be:

7 w/\n
Kg(E1, E2) Z/ faifer—+
M n!
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and
KIS, /fulAfuz .

where the holomorphy potentials fz, are normalized to be orthogonal
to the constants, as in (13) (This is only important for K]). Note that

at least ICg can be understood via equivariant cohomology, as it can be
written as an integral of equivariantly closed forms:

IC;(EI: E?) =
{[ulw+ fz) Alw+ f2,)"H = ("3)/("7%) Sy (w + f=)" 2}
1)
It follows that it is a also a Kahler class invariant, which we will
denote by K. This was shown via different methods in [FMa].

5. F.], B AND DISTINGUISHED KAHLER METRICS
In [C1] Calabi defined a new notion of a distinguished Kéhler metric.

Definition. A Kéhler metric g with Kahler form w on a complex
manifold M will be called an extremal Kahler metric if it is critical
point of the functional

(17) g—>/ So T

among Kahler metrics in the class [w]. Here s, denotes the scalar
curvature of g.
Specializing to compact manifolds, one has:

Proposition 5.1 (Calabi [C1]). For M compact a Kdhler metric is
extremal if and only if its scalar curvature is a holomorphy potential,
i.e. 8% =0.

B

In particular, if g is a Kahler-Einstein metric, or, more generally, any
Kahler metric of constant scalar curvature, it is extremal.

The basic relation between extremal Kahler metrics and the Futaki
invariant is that the latter is ICﬁu]-dual to the extremal vector field

—_

Es = Es_s,, Where sy denotes as usual the average scalar curvature:

- 1 wh" - =
(18) ~Fw(Er) = =5 | fals = s0)— 1 = Kl (Er, Esms)),
M -

by relation (10).
In [FMa] further information was drawn concerning other Kéahler
metrics in the class. For (M, g) Kéhler, denote:
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CP(M,C,g) : the space of all smooth functions on M g-
perpendicular to the constants,

[y :=Ty, : the subspace of all g-holomorphy potentials also per-
pendicular to the constants, and

7y : C3°(M,C, g) = I'y : the orthogonal projection with respect to
the inner product

A1
<f,h>:/ fhw—‘.
M n.

Theorem 5.2 (Futaki-Mabuchi [FMal). Let M be a compact Kdihler
manifold. For any Kdihler metric g in a Kdhler class [w], the number
Flu)(Br,(s—s0)) depends only on the Kihler class.

Erg(s—so) 15 called the extremal vector field of g.
This was used in [H2] to give:

Theorem 5.3 (Hwang [H1, H2], see also [Sm]). Let M be a compact
Kahler manifold, g a Kdhler metric on it with Kahler form w. Then:

2w/\n _
(19) /];/[(S - 50) nl > _f[w](‘:ﬂg(sfso))v

where the notations are as in Theorem 5.2. The right hand side of
inequality (19) is real and non-negative, and equality occurs exactly
when g is extremal.

Remark 5.4. Since by Theorem 5.2 the real number on the right hand
side of inequality (19) depends only on the Kdhler class [w], it gives, by
the above, a lower bound for the left hand side over all Kdhler metrics
in the class.

The following two corollaries have been found earlier and indepen-
dently:

Corollary 5.5 (Calabi [C2]). Under the conditions of Theorem 5.3, if
the right hand side of inequality (19) vanishes (in particular if F, is
identically zero), an extremal Kdhler metric in the class [w] has con-
stant Ricci potential (equivalently, constant scalar curvature).

Corollary 5.6 (Futaki [Ft3]). Under the conditions of Theorem 5.3,
if there exists a Kdhler metric of constant Ricci potential (or constant
scalar curvature) in the class [w], then F,(-) = 0.

We introduce now a new definition of a distinguished Kéahler metric,
which broadens the notion of a Kahler-Einstein metric in a manner
similar to, but more uniform, than that of an extremal Kahler metric.
We actually employ two variants for this notion, and for one of these
we give parallels of the results above.
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Definition. Let (M, g) a compact Kéhler manifold, with K&hler form
w and Ricci form p. Calling

det p
C =

det w
the central curvature of g, g will be called central of type I (II)
if and only if AC (C) is a holomorphy potential, i.e. (AC)’“B =0
( ’ag =0).

Remark 5.7. Note that det refers to the complex determinant, and
that C is well defined because w is non-degenerate. Also note that if
C' is constant, it is central of both types, and corresponds to the zero
vector field.

(20)

Remark 5.8. For a Fano manifold (see Section 6), one can regard ¢,
as a central element in the Kdhler cone of HY"(M). The terminology
in the definition is thus meant to suggest that such a metric (of either
type) is determined to a large degree by corresponding Kdhler metrics
in c1. Or, for more general spaces, by the behaviour of the Ricci forms
n cy.

Remark 5.9. Of all the linear invariants Ay, A1 and A, 1 are dis-
tinguished, since in the duality schemes we employ they are the only
ones that determine simple potential functions, i.e. one that are given
not by a sum of two functions (actually, neither does Ay, but it is too
simple, as it determines a constant function).

The following are parallels of the above results for type I central met-
rics.

Theorem 5.10. Let M be a compact Kahler manifold. Maintaining
the notations of Theorem 5.2, for any Kahler metric g having Kahler
class [w], the number B, (Ex,(ac)) depends only on the Kdihler class.

We will call Z; (acy the (type I) central vector field of g.

Theorem 5.11. Let M be a compact Kahler manifold with o Kdhler
metric g having Kdhler form w and central curvature C. Then
An

w -
@1 [ (A0P2E 2 =B, (Ers0),
M n!

where my : C3°(M,C,g) — Ty is as in Theorem 5.3. The right hand
side of inequality (21) is real non-negative, and equality occurs exactly
when g s central of type L.

Note that although Calabi has shown in [C1] that many functionals
on the space of Kdhler metrics in a given cohomology class, are either
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uninteresting, or else provide equivalent information to that deduced
from the L? norm of the scalar curvature, this is not the case for the
functional on the left hand side of inequality (21).

The following corollaries of Theorem 5.11 are the analogs of Corol-
laries 5.5 and 5.6.

Corollary 5.12. Under the conditions of Theorem 5.11, if the right
hand side of inequality (21) vanishes (in particular if B., is identically
zero), a central Kdhler metric of type I on M has constant central

curvature.

Remark 5.13. A wvariant of this corollary holds also for central met-
rics of type 11, since for such a metric B, (E¢) = 0 means

AT An An
0= [ acti— [ et~ [ jacir,
M n! M n! M n!

and so C' is holomorphic, and therefore constant.

Corollary 5.14. Under the conditions of Theorem 5.11, if there exists
on M a Kdhler metric with constant central curvature, then B, (-) = 0.

The proofs of the above results are very similar to those of the first
set of statements. We review the most important steps. The pertinent
Lie theoretic background here is that the Lie algebra of gradient vector
fields on a compact Kéahler manifold is the Lie algebra of an algebraic
group, and as such splits into a sum of a reductive subalgebra and a
nilpotent radical [Fj]. Both the former’s embedding and, consequently,
the splitting, are non-canonical. See the relevant papers quoted below
for further information.

Proof of Theorem 5.10. Let fz,, f=, € I'g 4. Following Hwang [H2] we
extend the invariant C-bilinear form on

Kl (51,52)=/ et
(w] u E1/E

from gradient vector fields to all holomorphic vector fields by fixing an
arbitrary (non-degenerate) bilinear form on nowhere vanishing vector
fields, and declaring the latter orthogonal to the former. We denote the
resulting bilinear form K. Let p be the Ricci form of g, note that C
is real valued and satisfies p"\" = Cw”". We now have, for any gradient
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vector field =y:

—%Gﬂ=t/@UAf

[ et = [k

An

(22) | =m0 s = Ku(EnEneo)

where we have used integration by parts, and then in the penultimate
step, the orthogonality of the projection 7,. (By the construction of
K], and because (as we will see) B., vanishes on nowhere vanishing
vector fields, both sides of the above equation are zero for such vector
fields, and so these can be safely ignored).

Therefore, because for any g belonging to the Kéhler class, =, (ac)
is K-dual to the fixed functional —B,,, as g varies in [w] this vector
field can only vary in the subspace of A(M) on which K, degenerates,
i.e. it is fixed up to an additive element of the nilpotent radical of
h(M): in [FMa] it is shown that Ky, has this degeneracy subspace for
metrics having a maximal compact group of isometries, and since this
subspace, as well as K,), are metric independent, this follows for any
metric in the class. But —B,, vanishes on such elements — as in [Mb1],
or, alternatively, since the invariance of this character implies that it
is invariant under the adjoint action of the identity component of the
group of biholomorphisms (as in, e.g., [C2]). Its codimension one kernel
is therefore also invariant under the adjoint action, and so induces the
zero functional after dividing by the kernel of this action, i.e. the
center of the reductive part of the Lie algebra. The quotient includes
the nilpotent radical (and also the nowhere vanishing vector fields).
Thus although Z; (a¢) may vary with the metric, —B., (Z,,(ac)) does
not, and we are done. O

Remark 5.15. By (22), for type I central metrics, B is K[{d]—dual to
Eac, like Fi) s with Z,_,, for extremal metrics. For type II central
metrics, B is K ;I dual to Z¢. The latter are analogs of extremal metrics
also because in both the distinguished holomorphy potential is ratio of
(n,n)-forms built out of the Kdhler form and the Ricci form (sw™ =
2np AWt Cw™ = p).

In what follows we will ignore the ambiguity in the definitions of the
extremal and type I central vector fields, as we have just shown these
do not cause an ambiguity in the value of the above lower bounds.
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Proof of Theorem 5.11. We write the Lg—orthogonal decomposition of
AC as

(23) AC =7y (AC) +T.
Then,
0 << g (AC), 1 (AC) > = < my(AC),AC -T >=
< (AC),AC > = < A(wg(AAC)),C >=
= Jar diVoEr,a0) O = = [y AV Erya0) G = =Ba (Enya0));
where first we have used the orthogonality of the relation (23), then the
fact that AC' was real-valued meant that conjugation was unnecessary

in the integral, and finally integration by parts. Combining this again
with the orthogonality of condition (23), we have

IAC|l; = [lm(AC)|[; +||TII; =
_BCI(EWg(AC))+||TH§ > _Bcl(Eﬂg(AC))’

as required. Equality here exactly means 7' = 0, or AC = 7,(AC), so
g is central. a

Remark 5.16. In the next section we will show that there are indeed
cases where the bound on ||[AC||2 given in Theorem 5.11 is strictly
positive.

6. EXTREMAL AND TYPE [ CENTRAL VECTOR FIELDS

In this section we employ known results about extremal metrics to
show that non trivial type I central vector fields do exist, and to re-
late them to extremal vector fields. To this end, we first recall the
relationship between the Futaki invariant and B.

Recall that a complex manifold (M, J) is called a Fano manifold,
when the class ¢; contains positive definite (1,1)-forms.

Proposition 6.1 (Futaki-Morita [FMo2]). Let (M,J) be a compact
Fano manifold. Let g be a Kdhler metric with Kdhler form w hav-
ing Kahler class ¢1. If F' denotes the Ricci potential of g, then for any
holomorphic vector field =,

w/\n p/\n
(24) Fo. (B) = / E(F)— = / div,25— = B,, (2).
M M

n! n!

From the point of view of holomorphic equivariant cohomology, the
proposition follows since both sides of equation (24) equal the integral
of another equivariantly closed form, namely (py + Apf)""*!, where
Apf=Af— (0F,0f) (see [Ft2]) . Unlike the original argument, this
does not make any use of the Calabi-Yau theorem.
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To obtain more symmetric expressions in what follows, it is con-
venient to define the extremal potential £ to be twice the Ricci
potential F'. Since for type I central metrics AC is the analog of s — s
for extremal metrics, we consider the central curvature C' to be the
analog of E in this section.

Lemma 6.2. The following relation holds between the extremal and
the type I central vector fields, of any Kdahler metric:

(25) Flu)(Engacy) = Be, (Br,am))-

Proof. We use orthogonality, reality, and integration by parts, as be-
fore.

Ful(Eryac)) =

w/\n /\n
- /M T(AC)AE= - = /M o (AC) T, (AE)2—
w/\n w/\n
— AFE)AC = A(my,(AE)) =
/]\Jﬂ-g( ) n' /];4 ’ﬂ'g n'
[ a@aE)Ls = B.(=
(71'9( )) n! - c1 ‘—‘7rg(AE))
M -

Combining this with Proposition 6.1, we get:

Corollary 6.3. For any Kdhler metric in a class [w] on a Fano man-
ifold M,

(26) Fl)(Engac)) = Fey (Eny(am))-

Proposition 6.4. There exrist manifolds with Kdhler metrics satisfy-
mng

—Bcl (Ewg(AC)) > 0.
Proof. Let M be a Fano manifold having an extremal Kahler metric
of non-constant scalar curvature in the class ¢;. An example of such

a manifold would be the one point blow-up of CP? (cf. [C1]). Taking
[w] = ¢1, Corollary 6.3 gives

=B, (Er,ac)) = —Fe, Erya0) = —Fu)(Enyacy)) = —Fe (Bag) >0,
by Corollary 5.5. O

Corollary 6.3 also implies:



18 GIDEON MASCHLER

Theorem 6.5. Let g be a Kahler metric with Kahler form in c,. Then,
iof g 1s type I central and extremal, its type I central and extremal vector
fields coincide.

Proof. Let E and C' be the extremal potential and central curvature of
g, respectively. By (26),

(27) Fe(Eac — Ear) = Fo (Eac—ar) = 0.

Suppose Zag and Za¢ span a real 2-dimensional subspace in the space
of gradient (holomorphic) Killing vector fields. The restriction of the
bilinear form /X, (-, -) to this subspace is a positive definite inner prod-
uct. Now Eac_ag is also a nonzero vector in this subspace, and (minus)
the relation (27) can be rewritten in two ways:

I /— —_ I/~ —
(28) Ke,(Eac-ag, Eac) = K, (Eac-ag, Zar) = 0.
Since a nonzero vector cannot be orthogonal to all vectors of a basis,

Eac and Eap coincide up to constant multiple. But then relations (28)
force them to coincide exactly (even if one of them was zero). a

Remark 6.6. In [Ms] it is shown that even if the metric is just type I
central, its extremal vector field =, (ap) equals its type I central vector
field. Also such results, hold not only for metrics in ci, but also in
other Kdhler classes [w] for which Fi,(-) = B(:), since together with
Lemma 6.2 one has:

‘7:[‘*’] (EAC) = B, (EAE) = f[w](EAE)a

and so the proof above holds with Fy,), IC[Iw] replacing F.,, K. , respec-

tively.

7. (CLAss) EXISTENCE AND UNIQUENESS - CONSTANT CENTRAL
CURVATURE

Consideration of extremal Kahler metrics can be divided into two
main cases: constant and non-constant scalar curvature. Existence
questions in both are challenging, and not completely solved. In par-
ticular, the behaviour throughout the Kéhler cone is not fully under-
stood. In contrast, for central Kahler metrics having constant central
curvature, this question has been implicitly understood for some time.
For this recall the Calabi-Yau Theorem.

Theorem 7.1 (Calabi-Yau [Yu]). Let M be a compact Kihler mani-
fold. If p is a real closed (1,1)-form representing c1(M) (if ¥ is a real
non-degenerate (n,n)-form), then in every Kdihler class there exists a
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unique Kdhler form w, whose Ricci form equals p (whose volume form
equals a multiple of V).

This leads to the following consequence.

Theorem 7.2. Let M be a complex manifold admitting a central
Kahler metric of constant central curvature. Then M admits such met-
rics in every Kahler class.

Proof. Let g be a central metric with Kahler form w, Ricci form p and
constant central curvature C'. Given a fixed Kahler class, let g be the
unique Calabi-Yau metric in it having Ricci form p equal to p. Then
in particular det p = det p, and, again by the Calabi-Yau Theorem,
detw = Adetw for some positive constant A. Therefore, the central
curvature C' of g satisfies C' = %C’ , and so is constant. |

Note also that the sign of C' (if non-zero) is the same as that of C.

Thus, for example, the Kahler cone of a manifold admitting a Kahler-
Einstein metric (or having B = 0 and admitting one central metric)
is completely filled with central Kahler representatives, but none have
non-constant central curvature, by Corollary 5.12. B not identically
zero, on the other hand, implies that every central metric must have
non-constant central curvature, by Corollary 5.14. This should be con-
trasted with the behavior of extremal Kahler metrics.

Note that there are manifolds that do not admit K&hler-Einstein
metrics but still admit metrics of constant central curvature. For ex-
ample, generalized Kéhler-Einstein metrics in the sense of [Mt] (i.e.
metrics with eigenvalues of the Ricci tensor constant with respect to
the metric) have constant central curvature.

To give another characterization, every Kahler metric of constant
non-zero central curvature has a symplectic Ricci form. Actually, a
little more can be said.

Proposition 7.3. A central Kdahler metric g having constant non-zero
central curvature C' has an Einstein-symplectic Ricci form p (for this
terminology see [Mbl], or the proof).

Proof. For such g, its Ricci form p is symplectic, so logdet(p) is well
defined. We have:
0 = 900 1og C = 00 log det(p) — 190 log det(w) = 190 log det(p) + p.

The above equation precisely says that p is Einstein-symplectic. O
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There are cases where central metrics are also extremal. For this,
and for issues relating to uniqueness of central metrics, we need the
following asymptotic estimates.

Theorem 7.4 (Demailly [Dm]). Let M,, be a compact complex mani-
fold, and L a holomorphic line bundle with a smooth hermitian metric

having curvature pr. Denote
L has ¢ negative eigenvalues
M,, (q): = {meM | (PL)m and n — q positive eigenvalues |’
hi(L): = dimcHY(M,O(L)).
The cohomology groups with values in L* satisfy, for large enough k,

) < [ ) o), ana
(30) () =5 [ o)+ o)

Corollary 7.5. Given the above, if c1(L) admits a positive definite
(1,1)-form, it does not admit a non-degenerate (1,1)-form of any other
stgnature.

Proof of Corollary 7.5 Using the positive definite form pr,, for any ¢ > 1,
hi(L¥) has an asymptotic growth rate strictly smaller than k", by (29)
(since M,, (q¢) = 0). On the other hand, using the equality (30), The
Euler characteristic x (L*) has asymptotic growth equal to n¥. It follows
that h°(L*) has asymptotic growth rate equal to n* (for this part one
can also use the proof of the Kodaira Embedding Theorem). Now if
there had also existed a non-degenerate form pr, in ¢;(L), having go
negative eigenvalues, with gy > 0, then by using inequality (29) again
with g, one would get that h°(L¥) has asymptotic growth strictly less
than n* (since Mj, (0) = (). This is a contradiction. O

This corollary can be considerably strengthened, at least for pro-
jective manifolds, where one can show that if a (1,1)-class admits a
curvature form of constant rank (and, therefore, constant signature),
then any other such form in this class will have the same rank and sig-
nature [Br]. Using another vanishing theorem we will prove a relevant
special case.

Theorem 7.6. If a hermitian line bundle L over a compact complex
manifold has a curvature form which is negative in one direction at
each point, than L admits no nonzero holomorphic sections.
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For the proof see [Kb2|, Chapter II1, before Corollary 1.16.

Corollary 7.7. If L is a line bundle over a compact Kahler manifold
M has ¢1(L) = 0 then it does not admit a hermitian metric with non-
zero curvature of constant rank.

Proof. Assuming the contrary, either ¢;(L) or ¢;(L*) admit a curva-
ture 2-form with at least one negative-direction at each point, and by
assumption they both admit a flat connection. Since one can sum the
curvatures of the first connection with that of a flat one, producing no
change, ¢;(L ® L*) also admits a curvature 2-form with one negative
eigen-direction, and so has no nontrivial holomorphic sections, by The-
orem 7.6. But the trivial bundle L ® L* does admit such sections, and
a contradiction is thus reached. O

Proposition 7.8. Let M be a Fano manifold. If an extremal Kdhler
metric on M, having Kdahler class ci, has constant scalar curvature,
then it is central. If a central Kdahler metric, having Kdhler class ci,
has constant central curvature, then it is extremal. Both metrics above
are actually Kdahler-Einstein.

Proof. It is well known that a Kahler metric of constant scalar curvature
having Kéahler class in ¢; is Kéahler-Einstein (see [Ft2, Lemma 2.2.3],
or [Ft4]), and this is the first claim. For the second one, let g have
constant central curvature C' with Kahler form and Ricci form w, pecy,
respectively. Then p" = Cw”, with C' a positive constant (since ¢} > 0,
which also implies C' = 1). So p cannot have degeneracies, or else p",
and therefore w", would have zeros. But then by Corollary 7.5, p has
to be positive definite, and by the uniqueness part of the Calabi-Yau
theorem, it actually equals w. O

Remark 7.9. When ¢; < 0, a similar proof using —p instead of p,
shows that every Kdhler metric of constant central curvature in —cq
(or any negative multiple of ¢, ) is Kihler-FEinstein. In the third case,
c1 = 0, we use corollary 7.7 to deduce at least that any metric of
constant (necessarily zero) central curvature, for which p has constant
rank, has to be Ricci flat.

This has important consequences regarding the uniqueness question.

Theorem 7.10. Let (M, J) compact complex manifold of Kéhler type,
for which either ¢; > 0 or ¢y < 0. If M admits Kdhler metrics of con-
stant central curvature, then every Kdhler class admits exactly one G-
orbit of such metrics, where Gy is the identity component of Aut(M).
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This holds also for the case c1=0 at least if every central metric has a
Ricci form of constant rank.

Note that for ¢; < 0 existence is guaranteed since the Kahler-Einstein
existence problem is solved in that case [Yu, An].

Proof. By the end of the above remark, the case ¢; = 0 is really
the Ricci flat case, which is known by Theorem 7.1. For the other
cases, by Theorem 7.2 ¢; (-¢;) admits such metrics, and they are all
Kéhler-Einstein by (the remark after) Proposition 7.8. The theorem
is then proved for this class by the uniqueness result of Bando and
Mabuci [BM]. Given another Kahler class, by the proof of Theorem 7.2,
the uniqueness part of the Calabi conjecture (Theorem 7.1) and Propo-
sition 7.8 once more, any such metric has the Ricci form of a unique
Kahler-Einstein metric, and so the number of Gy-orbits in this class
has to be the same as the number in ¢; (—c¢;). O

Note that when ¢; < 0, since there are no automorphisms, it follows
that there is a unique metric of constant central curvature in every
Kéhler class.

It appears that for Kihler manifolds admitting metrics of constant
central curvature, a (very rough) relation exists between the degeneracy
behaviour of the Ricci form of such a metric and the Kodaira dimension
of the space. It seems that examples exist in every Kodaira dimension.
The following partial classification for Kahler surfaces, which was sug-
gested by Claude LeBrun, serves as an illustration.

For a Kahler surface, the hermitian matrix locally representing the
Ricci form p has two eigenvalues at each point. When the central curva-
ture is constant, the sign of det p is constant throughout the manifold.
If it is positive, either both eigenvalues are positive, so ¢; > 0, or both
are negative and c¢; < 0. If ¢; > 0 and such a metric exists, there
exists another such metric with Kahler form in ¢;, by Theorem 7.2.
The latter is Kahler-Einstein by Proposition 7.8. The Del-Pezzo sur-
faces which admit such metrics are known. The Kodaira dimension is
—00. If ¢; < 0, the same argument, or Yau’s existence theorem for the
complex Monge-Ampere equation imply again that the space admits a
Kéhler-Einstein metric and is of general type. The Kodaira dimension
is 2.

The remaining non-degenerate case occurs when det p < 0, i.e. the
eigenvalues of p differ in sign. Such a surface must have Kodaira di-
mension —oo, by Theorem 7.6. the eigenvalue structure of p shows
the surface admits a semi-definite Kahler metric, and, in the context
of a classification of semi-definite Kdhler-Einstein metrics, examples
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are given in [Pt] which are minimal ruled surfaces over a base of genus
greater than one. These ruled surfaces are all projectivizations of quasi-
stable bundles.

Finally the determinant could be zero, which implies that ¢? = 0,
and so the surface is not Fano, nor of general type. As examples having
Kodaira dimension —oo one can take ruled surfaces over a base of genus
1. For such an example the non-zero eigenvalue is positive, so for —p
it is negative, and this Kodaira dimension can again be deduced from
Theorem 7.6. If, on the other hand, the Kodaira dimension is 0 or 1,
the above implies it is necessarily minimal. By Corollary 7.7, if the
rank of p remains constant, Kodaira dimension zero corresponds to
both eigenvalues being zero, i.e the Ricci-flat case including tori, K3
surfaces and their quotients, while Kodaira dimension one corresponds
to exactly one eigenvalue being zero, and the surface being elliptic.
Here the non-zero eigenvalue is negative.

Note that only in Kodaira dimension —oo there exist central metrics
with differing eigenvalue behaviours of p (again, at least if the rank of
p remains constant).

The following is a related conclusion from Demailly’s theorem:

Theorem 7.11. Let M, be a compact compler manifold with anti-
canonical line bundle K* = A"TY°. If M admits a Kdihler metric
of constant central curvature, having a non-degenerate Ricci form with
q negative eigenvalues, then h4((K*)®*) has asymptotic growth n*, and
all other cohomology groups of K* have slower growth rates.

The proof is similar to that of Corollary 7.5. The proof of another
vanishing theorem [AG, BU] shows that the other cohomology groups
actually vanish asymptotically.
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