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Abstract. Explicit inversion formulas are obtained for the hemispherical transform
(Fu)(z) = p{y € S™: x-y > 0}, where S™ is the n-dimensional unit sphere in R**!, n > 2,
i is a finite Borel measure on S™. If y is absolutely continuous with respect to the Lebesgue
measure dz on S", i.e. du(z) = f(z)dz, we write (Ff)(z) = [

the following cases: (a) f € C*°(S™), (b) f € LP(S™), 1 <p< oo, and (¢) f € C(S™). In

y>0J ()dy and consider

the case (a) our inversion formulas involve a certain polynomial of the Beltrami-Laplace
operator. In the rest of the cases the relevant wavelet transforms are employed. The range
of I is characterized and the action in the scale of Sobolev spaces L} (S™) is studied. For
zonal f € L'(S?), the hemispherical transform Ff was inverted explicitly by P. Funk

(1916). We reproduce his argument in higher dimensions.
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1. Introduction

The present article is a continuation of the series of papers [BR], [BrR], [Ru2-Ru8]
devoted to applications of fractional integrals and wavelet transforms in integral geometry.
In our treatment of the operator F' we discriminate between the following problems:

(1) uniqueness of the solution of the homogeneous equation Fy = 0;

(2) explicit determination of p, if (Fu)(x) is known for all (or almost all) z € S™;

(3) characterization of the range of F'.

Let us describe these problems shortly. After Funk [F], the problem (1) and similar
problems for spherical caps of arbitrary radius were studied by Nakajima [N], Ungar [U],
Schneider [Sch1, Sch2], Berenstein and Zalcman [BZ]; see also [Ga, p. 260], [Grl, p. 1283],
[Gr3] and references therein. Since the operators under consideration are SO(n)-invariant,
the problem can be reduced (using the Funk-Hecke formula and table integrals) to in-
vestigation of zeros of the corresponding Gegenbauer polynomials. For the hemispherical
transform F' a final result then follows easily. If the radius r of the spherical cap differs from
7 /2, the situation becomes much more complicated. Here we only note that the kernel of
the spherical cap transform is finite-dimensional if r /7w (# 1/2) is a rational number. This
statement dramatically differs from the similar one for the hemispherical transform (the
case r/m = 1/2), the kernel of which is infinitely dimensional and has a simple structure
(see Lemma 2.3 below). The work on this problem, leading to diophantine approximations
and small denominators, is now in progress, and further details will be published elsewhere.

The problem (2) arises in reconstructing a star-shaped body from its “half-volumes”.
Funk obtained an explicit inversion formula for F'f in the case of f zonal and n = 2, by
reducing the problem to the Abel integral equation (for us it is an indication that certain
multidimensional fractional integrals will arise in the general situation). In the nonzonal
case, Funk suggested an averaging procedure, which enables one to reconstruct f, but
cannot be regarded as an explicit inversion formula. The case of arbitrary f € L?(S?)
was studied by Campi [C]. He has shown that each function ¢, belonging to the Sobolev
space H3/2(S?) and such that ¢(z) + ¢(—z) = ¢ = const, can be represented in the form
¢ = F[f + k] with k& = ¢/4n. In the last formula f (€ L?(S?)) is an odd function, for

which a decomposition in spherical harmonics has been obtained. The function f is unique
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modulo even functions with the mean value 0. It is surprising, that after Funk (1916), as
far as I know, no explict inversion formulas for the hemispherical transform were obtained
in the closed form (even for smooth f). We complete this gap.

The problem (3), which is fairly elementary in the L2-setting, becomes highly non-
trivial if we want to characterize the range F(LP(S™)) for p # 2. It turns out that such
a characterization is impossible in terms of Sobolev spaces because of oscillation of the
corresponding Fourier-Laplace multiplier (see Theorem C below). In this situation the
relevant wavelet transforms are helpful.

A bibliography at the end of the paper is not complete. References, related to the
spherical Radon transform, which is an even counterpart of F', can be found in [Gal, [Gr3],
[H1], [H2], [Ru2]. See also [BS], [BZ], [Z] about the Pompeiu problem, which is close to
our topic.

NOTATION. In the following we use a standard notation for function spaces (e.g.,
L?P = LP(S™), C = C(S™), C*° = (C>(S™)). Similar spaces of odd functions are denoted
by L 14> Codd, CS5q; M = M(S™) is the space of finite Borel measures p on S”; (1, w) =
Jgn w(z)dp(z), w € C. The abbreviation “<” indicates “<” if the latter holds up to a
constant multiple; Ry = [0,00). We denote by {Y; x(«)} an orthonormal basis of spherical
harmonics on S™. Here j € Z, = {0,1,2,...}; k = 1,2,...,d,(j) where d,(j) is the

dimension of the subspace of spherical harmonics of degree j. It is known ([M], p. 4) that

: . (n+j—2)!
() = 2j — 1)L T2
dn(j) = (n+2j—1) T n=1)
The Fourier-Laplace decomposition of f € C* is written as f =) f; xYjx; A designates

Jk
the Beltrami-Laplace operator on S™. We denote by &’ = §'(S™) the dual of C*°(S™) (i.e.,

the space of distributions on S™). For more information about analysis on S™ see, e.g.,
[BBP], [M], [Rul], [S1], [S2] and references therein.

MAIN RESULTS. We first note that it suffices to handle odd functions f when dealing
with F'f (see Section 2.2).
Theorem A. Let p = F'f, f € C5qq- If n is odd, then

(nt1)/2
f=P(A)Fp, PA)=27""7t" J[ [-A+ 2k —2)(n+1 - 2k)). (1.1)
k=1
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If n is even then

n/2
F=Q(A)W%, Q(A)=2"r"M2T][-A + (2k — 1)(n — 2k)], (1.2)
k=1
(V°0) () = WP.V. / %dy. (1.3)
S’n

The above formulas are reminiscent of those for the spherical Radon transform (see
[H1] for n odd, and [Ru4] for all n > 2). In fact, they are representatives of a family of

formulas of such a type. For example, apart from (1.2), for n even one can get

f:mmlvwwywmMzﬂwﬁ“+mﬁﬁ$+%ml¢@mmmm (1.4)
14n/2
QA)=2"""tr" J] [FA+(2k-3)(n+2-2k)], @=FF
k=1

Now we pass to the "nonsmooth case”. Let Myqq = {pp € M: (p,w) = —(p,w™), Yw €
C}, where w™(z) = w(—z). In order to invert Fyu for u € Myqq, we introduce a wavelet

transform

z -y

w0 =1 [ ot (

Sn

) sgn(z - y)dy, zeS", t>0. (1.5)

Here w : Ry — C is an integrable function such that

o0
/sjw(s)ds =0 forall 7=1,3,..., { n .lf nows odd, (1.6)

n—1 if n is even,

/sﬂ\w(s)\ds < oo for some [ > n. (1.7)
0

Denote

if n is even,

([ 2nn/20 (1-n)/2) [,
T(1+n/2) /3 w(s)ds s
1.8

(o]

/s w(s)logsds if n is odd.
0

47rn/2( (n+1)/2
L(1+n/2)T((n+1)/2)
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Theorem B. (i) If o = Fpu, p € Mgyqgq, then

(

(i) fo=Ff, felLlyy 1<p<oo(wekeep the convention L3, = Coqq), then

oo

(W) (z, t)tfi’fn w) = lim ( / (W) (z, t)tldfn W) =cu(pw), VweC (19)

€

0\8

[ (W) (z,1) [ (W) (a,t
/ :ir: di = gl—rf(l)/ (:i)#dt = cyf(x) in the LP-norm and a.e.  (1.10)
0 €

At the first glance the wavelet transform (1.5) looks exotic. It becomes clearer if we

introduce the more general wavelet transform

W)@ =7 [owe(5)dy.  g:R-C (1.11)
4

For g odd, (1.11) can be written in the form (1.5). Without going into details we note that
for sufficently nice g and ¢ (cf. Theorem 1.2 from [Ru2]),

[ W) @.0F = 0 ()@ + a- (V) 0) (112

where (Ry)(x) is the spherical Radon transform (see (2.1) below) and (V%yp)(z) is the
singular integral (1.3). The coefficients a4 depend on g and enjoy the following property:
if g is even (odd), then a— = 0 (ay = 0). The equality (1.12) can be regarded as a

”spherical integral-geometrical” analogue of the generalized Calderén reproducing formula
dt
Wyp)(z, 1)~ = ayp(z) + a-(Hp) (@),
0

in which (Wyp)(z,t) = ¢t~ [Z2_o(y)g((x — y)/t)dy is a "usual” wavelet transforms on
the real line, and (H¢)(x) stands for the Hilbert transform (see Theorem 12.1 and the
formula (12.13) in [Rul]). For more explanations, related to (1.5), the reader is addressed
to Section 5.

Our next result concerns the action of F' in Sobolev spaces.
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Definition 1.1. Given y€R and p€ (1, 00), the Sobolev space L} =L7(S™) is defined by

Ly={fe€8: 3 G+ fiaYie ~ FO €L7% (1 flleg = 1FDllp-
gk
Theorem C. Let vy =(n+1)/2—|1/p—1/2|(n—1), v =(n+1)/2+|1/p—1/2|(n—1).
Then
L rodd C F(Lgaa) € L) oaq- (1.14)

These embeddings are sharp in the sense that v cannot be reduced and -y cannot be in-
creased.

Denote H) 4 = L2 odg- By (1.14),

F(L244) = HAD2, (1.15)

This equality represents an n-dimensional generalization of the Campi’s result [C].

The following statement characterizes the ranges F'(L?,,), F(Modq)-
Theorem D. Assume that 1 < p < 0o, and p satisfies (1.6), (1.7) with ¢y, # 0 (see (1.8)).
(i) For ¢ € L? 4 (the space LY, is identified with Coqq), the following statements are
equivalent: (a) ¢ € F(L? ); (b) the integrals (Jep)(z) = [2°(We)(z,t)dt/t*T con-
verge in the LP-norm as ¢ — 0. If 1 < p < oo, then (a) and (b) are equivalent to
(0 sup [lJegllp < co.

0<e<

(ii) For go € Ll 44, the following statements are equivalent: (a') ¢ € F(Moyqq); (V) the
integrals [, (Jep)(@)w(z)dz converge as e—0 for anyweC; (<) sup ||Jeell1 <oo.
0<e<1

In view of (1.15), Theorem D gives the following characterization of the space H(gzgl)/ %,

n+1)/2
Hcgdd+ ) {goEL : sup H/W(p t1+n <c>o}. (1.16)

0<e<1

The paper is organized as follows. In Section 2 we introduce an analytic family A% f of
spherical fractional integrals (see (2.2) below), associated with the hemispherical transform
F. These integrals are borrowed from the Fourier analysis on R™ ([GS], [Strl], [Es], [P],
[S1], [S2]). Their application to studying the hemispherical transform seems to be new.

Section 3 contains a proof of Theorem A and a justification of (1.4). Section 4 is devoted
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to the mapping properties of the spherical fractional integrals in Sobolev spaces. These
properties provide the validity of Theorem C. Theorems B and D are established in Section
5. In Section 6 we reproduce the original argument of Funk [F] in the n-dimensional setting
and reduce the equation F'f = ¢ for zonal f to the Abel integral equation.
Acknowledgements. I express my gratitude to H. Furstenberg, J. Lindenstrauss,
L. Zalecman, and M. Agranovsky for useful discussions. I am also grateful to R.S. Strichartz
for numerous pleasant conversations and hospitality during my staying in Cornell Univer-

sity in summer 1997.



2. Preliminaries
2.1. Analytic families A*,U*, V*. Apart from the hemispherical transform
(Ff)(z) = fﬁ_y>0 f(y)dy, the following two operators play an important role in integral
geometry [Gr2]:

BN = [ty (Baha@) = [ f@l-y . (21)
Rea > 0; a # 1,3,5,.... The first one is the spherical Radon transform, in which inte-

gration is performed over the planar section {y € S™: z -y = 0}. The second integral is
known as the Blaschke-Levy representation [K], [Ru3]. For a = 2, B,f is also known as
the cosine transform [Ga]. The key observation is that F, R, and B, are members of the
same operator family {A%} and can be treated in the framework of a unified approach.

For 0 < Rea < 1, this family is defined by

(A%f)(z) = % /(—zx ) f(y)dy, (2.2)
S'n.
where
(i )"~ = expl(a—1)loglz -yl + T sgu(z )] =
= |z - y|* sin %—i—isin (1_2a)7rsgn(a: -y)]. (2.3)

The operator (2.2) arises in evaluation of the Fourier transform of homogeneous functions

(see, e.g., [Es], [GS], [P], [S1], [S2]). Namely, if ¢(§) = [{[7*"f(£/I€]) € C=(R™\{0}),
and 0 < Rea < 1, then

/ P(€)e“MdE = caln|*HAY))(n/In)), ca =20 n D/, (2.4)

Rn-}-l
The equality (2.4) and the definition (2.2) can be extended to all & € C in a suitable way.
We recall that “LP-L?”-estimates for the spherical convolutions (2.2) were studied in [Str1]
and [MP]. More general estimates in the scale of Sobolev spaces can be found in [Kr] (see

also [Str3]).



Lemma 2.1. If f € C%® and 0 < Rea < 1, then

I'G/2+(1-0a)/2)

(A%f)(z) = jzk’ijaj,afj,kyj,k(ﬂﬂ), Aj,a = TG/2+ (nta)/2)’ (2.5)
Furthermore,
Af =U%f +1Vf, (2.6)
' ((
U*f)(x) = m/f )z - y|*tdy, (2.7)
2)
(Vef)(z) = 71'"/2(I‘ ((161{@ )/2) /f Yz -y|* tsgn(z - y)dy, (2.8)
and the following relations hold:
LR S T AT

7,k

0 if 7 s even,
"B) = Zvj,afj,kyj,k(x): Vj,a = { (_1)(j_1)/2aja if § is odd. (2'10)
J:k ’

Proof. By (2.3),

(—iz-y)*~

2|z yle=1 | T((1 - @)/2) L 'l -a/2)
2°T(1 — ) ['(a/2) F((1+a)/2

This implies (2.6). The decompositions (2.5), (2.9) and (2.10) can be obtained with the
aid of the Funk-Hecke formula [M], which reads

) sgn(z - y)

/a(x Y)Y k(y)dy = XY k(x), A=o0n_1 / a(t)(1 = 72)"/2= H; (7)dr, (2.11)

Sn

2m/2
I(n/2)’
C;"_l)/Q(T) being the Gegenbauer polynomials. By (2.11), (U%Yx)(x) = uj,aYjk(2),

PG+ T —1) ((n-1)2

Lj+n—-1) 7 (1), op1 =571 =

Hj(r) =

(2.12)

where u; o can be evaluated using the formula 2.21.2(5) from [PBM)]. As a result we obtain
(2.9). The proof of (2.10) is similar, and (2.5) then follows due to (2.6). O

If Rea > 0 and f is an integrable function, then the integrals (2.7) and (2.8) are
absolutely convergent for a@ # 1,3,5,... and o # 2,4,6, ... respectively. If f € C°° and
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Rea <0, then U%f and V*f can be defined as the multiplier operators (2.9) and (2.10),
or by analytic continuation of the corresponding integrals (2.7), (2.8).
The operator U*(V%) represents an even (odd) part of A* and annihilates odd (even)

functions f. One can readily see that

20"/ 21 (a/2)
Rf = 2x=D/2y0p, B f= %) ey (2.13)
O w2
for each f € L', and
Ff=nn=D/2y1f for each f € Ll (2.14)

Some remarks are in order. We first note that for the singular values o = 1,3, 5, ... (for

U®*) and a = 2,4,6,... (for V) the corresponding operators can be defined by continuity.

Namely,
m _ (_1 m
U™ N6 = e T T 1) / )y log (215)
_0,1,2,...,
m (_1)m—1 m— 1
V1)@ = =i | TO @ 0 sy, (210
Sn
m=1,2,3....

If f;x are the Fourier-Laplace coefficients of f € L', then

1i2m+1 U“f=U?"*t'f provided that f;r=0Vj=0,1,...2m, (2.17)
a—rzm

lim VOf =V?"f oprovided that f;;=0Vj=0,1,...2m — 1. (2.17")

a—2m

The relations (2.15), (2.17) play an important role in [Ru4]. In order to check (2.17') we

put a = 2m + ¢ and write down V< f in the form

I(1-m—¢/2)
27r”/2f‘(m +(1+¢)/2)

(Vef)(z) = /f(y z-y)*"(|zy| -1 dy+/f y)(z-y)*™ dy|.

If fjr=0Vj=0,1,...,2m — 1, the second term = 0, and (2.17") follows by the Lebesgue

theorem on dominated convergence (for almost all z € S™).
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The operator V0 = V®|,_¢ is of special interest, because it does not exist as the
absolutely convergent integral of the form (2.8) and should be understood in the “principal
value” sense:

1
V) =t [ 14y (2.18)

|z-y|>e

Lemma 2.2. Letf € C®, a€C; a¢A={1,2,3,..}U{-n,—n—1,—n—2,...}. Then
(AT A f)(2) = f(-). (2.19)

Proof. For 0 < Rea < 1, the statement holds due to (2.5), because (i/a; 4 )(ia;1-n-a) =
(—=1)7. For other values of a the result follows by analytic continuation. 4

We note that if a € 2, then (2.19) is still valid for all C*°-functions f having a certain
number (depending on « and n) of vanishing Fourier-Laplace coefficients. Furthermore,

(2.19) gives rise to the following inversion formulas
(Ua)—lf — Ul—n—af’ (Va)—lf — Vl—n—af, (220)

which hold for f € C&,, and f € C59, respectively, and play an important heuristic
role. For Re (1 —n — «) < 0, the right-hand sides in (2.20) are understood as analytic
continuations of the corresponding integrals. These analytic continuations can be realized
in different forms: (1) in the form of the Fourier-Laplace series (see (2.9), (2.10)); (2) as
the finite parts of divergent integrals [S1]; (3) in the sense of the Schwartz-Gelfand-Shilov
regularization. The last interpretation was employed by V.I. Semyanistyi [Se2, Section 4]
for Ul="=2f who arrived at the first formula in (2.20) by using the more complicated way
(via the Fourier transform on R™). We suggest the following realizations of the mentioned
analytic continuations: (4) as integro-differential constructions involving a polynomial of
the Beltrami-Laplace operator (here we follow the idea of Helgason [H1]); (5) as wavelet
type representations. In accordance with (4), explicit expressions for U'~"~% f have been
given in [Ru4] for all @ € C and all n > 2. Similar expressions for V1="~%f can be
obtained by using the argument from Section 3. The method (5) was applied in [Ru2] and
[Ru3] to the operator family {U®}. A general scheme of this method is described in [Ru8],

and examples of its implementation can be found in [BR, BrR, Rul-Ru7] . In the present
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paper we apply (5) for inversion and characterization of the hemispherical transform. In
contrast to (1)-(4), the last method is applicable in the nonsmooth situation.

2.2. Passage to odd measures. We recall some definitions. A finite Borel measure
p € M is even if (p,w) = (p,w™) Yw € C, w () = w(—z). Similarly, p € M
is odd if (p,w) = —(p,w™). The set of all even (odd) measures p € M is denoted by
Meven (Mogq)- For p € M, we define gy € Meyen and p— € Mygq by (p+,w) =
(H,wy), wi(zr) =[w(x)=*w(—2)]/2, w e C. Clearly, Meyen = {pp € M : p = p;} and
Modd ={p €M :p=p_}.

The following properties of the operator F: M — L> seem to be known (cf. [F], [C]
for n = 2). For the sake of completeness we present them in the most general form.
Lemma 2.3. KerF = /\o/leven = {p € Meyen: u(S™) = 0}.

Proof. Let p € /\iieven. Given an arbitrary function w € C, by putting ¢, = [, w(z)dxr,
we have (Fu,w) = (p, Fw) = (g, (Fw)4) = 27 (g, Fw) + (4, (Fw)7)] = 27 (p, c) = 0,
i.e., p € KerF. Conversely, let ;1 € KerF'. Then all Fourier-Laplace coefficients (Fp);, =

mjik are zero. Since mo = [S™[/2, m; =0 for j =2,4,6,..., and m; = 7r("_1)/2vj,1
#0 forj=1,3,5,... (cf. (2.14), (2.10)), then p;r, =0 for j =0,1,3,5,.... It follows
that u € Meven. O

The next statement shows that inversion and characterization of F' on the space M
can be reduced to the similar problems on the space Mgqq-

Lemma 2.4. Let p e M, ¢ € L*®. Denote

cu=n(S"), cp=[gp(z)dz, @(z)=9(x)-07"c,, on=|"].

If o = Fu, then
p=f+20,%,+v (2.21)
where i = p_ € Moqq, V= pt — 0y, ¢y € Mevyen, and Fii = ¢. Conversely, if Fji = ¢
[e]
for some i € Myqq, then o = Fu with p = ji + 20, %c, (mod Mevyen).
Proof. Let ¢ = Fu. Then o,'c, = 27 '¢c,, and (2.21) can be checked as follows: p =

p— + py — oy e, + 20, %c, = i+ 20, %¢, + v. Furthermore, for each w € C,
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(Fu—,w) = (p—, Fw) = (4, (Fw)-) = 27 (1, Fw) — (s, (Fw)7)] =

= 27Y[(p,w) — (s € — Fw)] = (0 = Jon w(z)dz)

1

= (¢ — 2_1cu,w) =(p—0, cpw) = (p,w), ie., Fi=¢.

Conversely, if Fji = ¢ for some i € Myqq, and p = ji + 20;,%c, (mod A(;leven), then, by
Lemma 2.3, Fu= Fj+ 0, c, = o. 0

Lemma 2.4 shows that F(M) = F(M,qq) + C (instead of M, one can put any space
X C M). Moreover, by (2.14) (written for finite measures), it enables us to treat the
operator V! on Mqq rather than F on M.

3. Inversion of V*f for f € C39,(S™).
The following statement is an “odd copy” of Lemma 2.2 from [Ru4].

Lemma 3.1. Giwen o € C and a nonnegative integer r, let

the identity operator for r=0,

P)(A :{ 3.1
P (8) 47 ey [ A+ (a—2r+2k+n—2)(2r—2k+1—a)] for r>1. (3:1)

Then for a spherical harmonic Y; of odd degree j,
Pyga) (A)V2T‘+1—a—nva§/j — )/] (32)

provided j ¢ {a—1, =3, a—=5,.. }U{2r—a—n, 2r—a—-n—-2, 2r—a—n-—4,...}.
The validity of (3.2) can be checked by direct computation, using (2.10), (2.5) and

the equality
LAY = (G +n— 1)}, (33)

As in [Ru4], the equality (3.2) can be extended to all f € C2,. We omit these technicalities
and confine ourselves to the case a = 1, corresponding to the hemispherical transform.

Proof of Theorem A. Let fe€CSq,. If n is odd, we may write (3.2) with « =1, r =
(n 4+ 1)/2, and replace Y; by f. This gives P((;ll)m(A)VlVlf:f. By (2.14) and (3.1),
the last equality coincides with (1.1). If n is even, we proceed as before, with r=n/2. O
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Since the integer 7 in (3.2) can be picked up in an infinite number of ways, a variety
of inversion formulas is possible. For example, if n is even and r = 1 + n/2, then (3.2)

yields Py (A)V2VY; =Y; Vj=3,5,..., where

14n/2
1+n/2
P (A =272 [ A+ 2 = 3)(n+2—21)].
=1

By (3.3), P (A)Y; 4 =272V, [1127/2[n + (20 — 3)(n + 2 — 21)] = 0, and therefore

14+n/2
da (1)

P LAV == 3" fiaVig, VFECH:  da()=n+1  (3.4)
k=1

(cf. dn(j) in Notation). If ¢p = V1f, then, by (2.10), 1 = a1,1f1k, where a;; =
7'/2JT'(1 + n/2). Hence (3.4) yields

n+1
f= Pfi)n/g( W2 + a7 Z%kYm, ¢1k—/¢ Y)Y,k (y)dy.

Using the addition theorem for spherical harmonics
n+1

1
Zm Yik(y) = “=Hi(w-y), on=]8" = 2x/2/D((n+ 1)/2),
g

n

(see, e.g., [E], [M]), and taking into account that Hi(7) = 7 (cf. (2.12)), we get

f= P(l)n/2(A) F(1+n/72r)1+n(/(f+3 /2 /w(y z-y)dy, ¢=V'f.

By (2.14) and (2.16), the last formula coincides with (1.4).

4. Mapping properties of V¢ in Sobolev spaces
Theorem 4.1. Let 1 <p< oo, a € C. (i) If

n—1 ‘1 1

9 + ]—) -3 (n - 1); (4'1)

Rea > ~v—f— 5

then the operator V¢, initially defined on f € C® by the integral (2.8) or by the series

(2.10), can be extended as a linear bounded operator acting from Lg into L.
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(ii) If (4.1) fails, then there exists f € Lg such that Ve f ¢ L.

Proof. Let f = fi + f-, fe(z) = (f(z) £ f(—x))/2. Then VOf = VOf_ = A“f_|
and ||f_||L§ < ||f||L§ (see Definition 1.1). By the Strichartz’ multiplier theorem [Str2,
Corollary from Theorem 1 on p. 115], the estimate [|[A%f_[|y < || f-|| L8 1s equivalent to
||A1f_||Lg Sf=llps 6 =7 — B —Re a+ 1. Since (4.1) implies the mentioned estimate of
AL [Kr, GLG3, then Vol = 14— llz3 S /- ll5s < IF]Lo-

In order to prove (ii) we proceed as follows. Let A = (n —1)/2,
Ful@) ~ ) G+ N C (wns),  0<p<n,
j=1

joAe (1 +j(G+n— 1))(/@—7)/2 J
aj,o .

Ful@) ~ Y )G+ Ni ™ CH@nt),  s(G) = 3 TN

i=1

where a; o is defined in (2.5), o = Re a. By Theorem 1 from [AW-I, p. 202], f, € L?
provided g > n —n/p. By the Strichartz’ multiplier theorem, s(j) is an LP-multiplier (the
relevant computations can be performed using the properties of gamma functions exhibited

in [Rul, Appendix 2]; see also [Kr]). Hence, for
n—n/p<p<n, (4.2)

we have f, € LP, and f, 3= (I — A)=P/2f, € L5, Let F = (I — A)1/2A*f, 5. The above
definitions, together with (2.5) and (3.3), yield
F(z) ~ Zijj‘s_)‘_”()’;‘(acnﬂ), d=y—-pB-d +1.
i=1
Denote x,4+1 = coso. An examination of the proof of Theorem 1 from [AW-II| shows that

(p—90)

F(z) ~ T(6—p)|o—m/2P° [cos T 5 +isgn(o—m/2) sin W(MT_(S)], o—mw/2. (4.3)

This relation is more precise than the similar one in [AW-II] (cf. (1.1) on p. 223). In
order to derive (4.3), one should proceed as in [AW-II], but borrow more details from the
Zygmund’s book when stating Lemma 1 (see p. 224) .

Owing to (2.6) and (4.3), we have

(I = A)Y2Vef, 5~ T(6 — p)|o — 7/2|* sgn(o — 7/2) sin w, oc— /2. (4.4)
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Assume that (4.1) fails. Let 1 < p < 2 (the required result for 2 < p < co can be obtained
by duality), and put u=90—1/p, Y =0+ +n—14+1/p. If v < o, then § < n+1/p,
(4.2) is satisfied, f = f. 3 € L2, and (4.4) yields Vf ¢ LY. If v > 7o, we fix € € (0,n/p)
and put 0o =y —e—f—-a'+1=n—e+1/p, pw=0.—1/p=n—e. Then (4.2) is
satisfied, and the above argument (with v replaced by o — ¢€) yields V© f ¢ LJe~¢ with
f= fup € Lg. In our case L) C LJ°~¢, and therefore vef ¢ Ly O

Theorem 4.1 implies Theorem C. Indeed, the right embedding in (1.14) is clear due
to (2.14). The left embedding follows from the observation that if f € LZ:O dqq> then
f = constV'V="f where V-"f € L? . (use Theorem 4.1 with 3 = 4" and v = 0).
The sharpness of (1.14) is a consequence of Theorem 4.1(ii) (since V® annihilates even

harmonics, one might handle the odd function f_(z) = (f(z) — f(—z))/2) rather than f).

5. Proof of Theorems B and D
We first explain why the wavelet transform in these theorems has been chosen in the

form (1.5). For sufficiently good f:S™ — C and w: Ry — C,

(Vef)(z) = const/(Wf)(x,t)tltha, Rea > 0. (5.1)

0
In order to check this equality one should plug (1.5) in the right-hand side and change the

order of integration. Due to (2.20) and (5.1), the following inversion formula is expected

for p = V1f:

(@) = (V") (&) = const / (Wo)(a, t)ﬂ%. (5.2)

0
Theorem B gives this formula precise meaning. In order to prove Theorem B some prepa-

rations are needed. For 7 € (—1,1), let

2 a-m)/2
(M) = T2 [ty oa=ism 63)

O

T-Y=T

be the mean value of f on the planar section {y € S™: x -y = 7}. The following equality

holds:
1

[ @ w1y =ous [ a0 1) (@)1 - 7 ar (5.4
sn ~1
(see, e.g., [S1], p. 183). Furthermore [BBP],
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IMzfllp < || fllp for felLP, 1<p<oo, (5-5)
(M,Y;)(x) = Hj(7)Yj(x) for each spherical harmonic Y;(z) of degree j. (5.6)
Here H;(r) is defined by (2.12). If j is odd, then

T (G + D/2T0/2) posas ooy
D(Grn-nf) o-op G

with the Jacobi polynomial in the right-hand side. The equality (5.7) is a consequence of
the relevant formulas from [E] (see 3.15.1(6) and the first formula from 10.8(16)).

We will deal with the Riemann-Liouville fractional integrals

(I F(la /(td}(T CfTa, (I29)(t) = & / v t)dT Rea>0. (5.8)

t

Lemma 5.1. If p € Myqq, 0 < 7 <1, then for almost all z € S™,

(1 — 722" M, Vip)(z) = 7I7 D2y (, 2))(2), (5.9)
Uls,) = s /(1= )2 / dp(y). (5.10)
" zy>vV1—s

Proof. Since both sides of (5.9) represent spherical convolutions, belonging to L%, it
suffices to check (5.9) for du(x) = Y;(x)dx with a spherical harmonic Y;(z) of odd degree.
Due to (2.10) and (5.7), the Fourier-Laplace multiplier of the left-hand side of (5.9) reads

(1 — P22 (1) =172 I'((j+1)/2) T(n/2)T(j/2) p(n/2-1,1/2)

F(G+n -2 T(Gant )z onr =D

The same multiplier can be obtained for the right-hand side by using 2.22.2(2) from [PBM]
and noting that the multiplier m;(s), corresponding to (s, z), has the form

o) — (1 -1 2T ((J+1)/2) T(n/2) J(ny2,-1/2)
my(S) = (1 ) / TG tnt1)/2) P(J 1)/2

(1—2s). (5.11)

The latter can be checked with the aid of the Funk-Hecke formula (2.11), the equality
(5.7), and the formula 2.22.2(7) [PBM]. O
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Proof of Theorem B. Put wy(s) = w(y/s), h = Ii"_l)mwl. We remark that h € L'(R, )
(see Lemma 4.12 from [Rul]). If p(z) = (Fu)(x) = p{y € S™ : -y > 0}, and (s, x) is
the function (5.10), then

1
(W) (z,t) = op_ymr™=D/2n=2 / ¥ (s, z)h(s/t?)ds (5.12)
0

Indeed, owing to (5.4) and (5.9), we have

1

W)t = 2= [0 (g (T) dr =

1
(n—1)/2
= tP ;W—l 73 /w TdT/ )(" 3)/2¢(s x)ds =

0 2

1/t2

/ (€ — )9/ 2(2¢, 2)dE =

tn 17r(n 1)/2
((n—1)/2)

[ oo
= "o 1>/2/ (2, z)h(E)dE
0

This gives (5.12). Denote A(s)=s~ (L™ D %w)(s),  (Jep)(2) = [ (W) (x,t)dt/t+m,

(A (@) = / du(y) (=2 on stp(1 - 2, 2)). (5.13)

(1—2)n2

zy>t
Up to abuse of notation, for du(x) = f(x)dz we shall write A;f instead of A;u. According
to (5.12),

1/&>
n A(s
(Jo) (@) = r(n=1/2 \/% (A r—ras) (w)ds. (5.14)
Indeed,
17T(" /2 Ve r (5.10)
(Jep) (@) = [ v / h(r)dr O
0
1/e? ( )
A(s)ds
— (n—1)/2 d .
" / (e25)"/2y/1 — €25 / wy)
0 zy>v1—e2s
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Our next goal is to pass to the limit in (5.14) as € — 0. In order to justify this passage,

the following observations will be needed. By Lemma 2.4 from [Ru2],

O(s(n=3)/2) if 0<s<1,
A(s) = 1 . (5.15)
O(s71) for some <0, if s>1,
{ o
- 2I' ((1 — n)/2) /s"w(s) ds if n is even,
/ A(s)ds = ¢ o (5.16)
A(—1) (D)2
0 W/s"w(s) logsds if n is odd
\

0
(more general relations are established in [Rul, Chapter 3]). For any f € LP and t > 0,

by (5.4) and (5.5) we have a uniform estimate

1
On— n/9—
1Acfl, < Zn=illdle / (1— )" ldr <c|flp 1<p<oo, c=c(n). (5.17)

(1—¢2)n/2
t
Moreover,
1
sup [(Af)@)| < sup [ F Wy < ef*(2) (5.18)
t€[0,1) tefo,1) (1 —1)

z-y>t

where f*(z) is the Hardy-Littlewood maximal function on S™, defined by

* ]‘ n
f) = sup [ twldy, o) ={yesmioy >,
te(-1,1) lot(z)]
ot(x)
Similarly, for any p € M,
sup |[A¢pllr < clpll (5.19)
te[0,1)

where ||p|| designates the total variation of |u| (this estimate will be needed later). For

each spherical harmonic Y; of odd degree j, by (5.13) and (5.11) we have

w20 ((41)/2) (n/2,-1/2)

TG/ e GED (020

Op—1t
AYj=p;(t)Y; Mj(t)=nTlmj(1—t2)
and therefore (use 10.8(3) from [E])
pi(1) = 72T (1 +n/2). (5.21)

Now we can resume our argument. Let f € Lg ag 1<p< oo (we recall that L9, is
identified with Cyqq). Owing to (5.17), (5.18), (5.20), and (5.21), a standard machinery

of approximation to the identity yields
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7.‘.n/2

: ™t p.
%gri Acf T +n/2) f in the LP-norm and a.e. (5.22)
By (5.14), (5.15), and (5.17),
1/2¢2 1/e2 1
ettty S ([ s+ [ Eds) <l (I + 2 [ )
0 1/2¢2 1/2
Hence
S 1 Ffllp SN fllps 1< p < oo (5.23)

Similarly, by (5.18), sup |(JeFf)(z)| < f*(x). This relation, together with (5.22), (5.23)
0<e<1

and (5.16), enables us to pass to the limit in (5.14) (with p replaced by f) and to obtain

the statement (ii) of Theorem B. Let us prove (i). Owing to (ii), for any w € C' we have

(JeFp,w) = (p, JeFw) — ¢y (p,w) as € — 0. This imples (1.9). O

Proof of Theorem D. (i) The implication (a) = (b) follows from Theorem B. The
validity of “(a) = (c¢)” follows from (5.23). In order to prove “(b) = (a)” we denote
f=cyt ihL_I;(l)) J.p. Clearly, f is odd. Then Ff = ¢, élL_I;l)) Fl.p=cyt ilf_lr;l)) JeFo = ¢ (here
the LP-boundedness of F' and Theorem B have been used). Let us prove “(c) = (a)”.
Since the ball in LP is compact in the weak™ topology, there exist a sequence €, — 0 and
a function fy € LP such that lim., ,o(Je, @, %) = (fo, %) for each ¢ € L?". Clearly, fo
is odd, because the functions J;, ¢ are odd. Put f = ¢ 'fo. Then (Ff,v) = (f, F1) =
Eaimo eyt (Je, 0, F1p) = limoc_l(JekFgo,z/)) = (¢,7), i.e. p = Ff.

(ii) The implication (a') = (b') follows from Theorem B. The validity of “(a’) = (¢’)”
follows from the estimate sup ||JeFull1 < ||p||, the proof of which is similar to (5.23)
and based on (5.19). Let uos<prove “(b") = (a')”. Since the space of finite Borel measures
on S™ is weakly complete, then there is a finite Borel measure g such that hm(JEgo, w) =
(4,w) Vw € C. Obviously, u is odd. Furthermore, for an arbitrary infinitely differentiable
function 1, by Theorem B we have (Fu, ) = (u, F) = lim(JEgo, Fy) = Eli_r)r(l)(JEFgo, Y) =
cw (¢, ). This implies ¢ “= ¢, Fu. The proof of the implication “(c/) = (a’)” is similar
to that of “(c) = (a)” in (i). O
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6. The Funk equation for zonal functions in higher dimensions

Q

Assume that f is a zonal function, belonging to L(l) aq> e f(y) = fo(ynyr) for
certain odd function fy on [—1,1]. Then (Ff)(z) = fw.y>0 f(y)dy is also zonal and odd.
Let us transform (F f)(z) by passing to “polar coordinates” on S™. Put

= (sinr)e, + (cosr)epr1, Yy = (sinp)w + (cos p)eny1.

Here r and p lie in (0,7), w € S"1, e, and e, designate the coordinate unit vectors.

We define x(s) by setting x(s) =0 for s < 0 and x(s) =1 for s > 0. Then

(Ff)(z /f() cos p)(sin p)"~dp / X ((wey,) sinrsin p + cosrcos p) dw =

Sn—l
1

=0y, 2/f0 1 —-7 )”/2 1d7'/( t2)("_3)/2x(t 1—72sinr + Tcosr)dt =

-1

V1—72sinr
Slin’l"‘ Z 2 / fO / ((1 — 7'2) SiIl2 r— 7,’2)("—3)/2 X(’]’, 1 rcos T)dn
—V1—-72sinr

Put

B o(sinr)  if 0 <7 < m/2,
(Ff)(z) = { —<p<p0(sin7‘) if m/2<r<m.

Assuming 0 < r < 7/2, i.e. cosr > 0, and taking into account that fq is odd, we obtain

def
po(s) =
1 svV1—72
Tn— n—3)/2
:Sn—S/fO(T)dT / ((1—7-2)32_772)( )/ [x(n-l—T@)—X(n_T@)]dn:
0 —sV1-72
s V152 1 svV1— ‘r2
’ —7VI=s sm

s TV1—82/sv/1—72 1

:20n_2( / / / / fo(m) (1 — 72)M21(1 — ¢2)(n=3)/2qr gy,

0 0
Differentiation of the last expression yields

dpo(s) _  205-28'" / (n—3)/2
= T fo()(s* = 7%) TdT.

The following theorem resumes our argument.
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Theorem 6.1. Let n > 2, ¢ = Ff, where f(€ L(l)dd) is a zonal function. If f(z) =
fo(znt1) and p(x) = ¢ (\ /1— $121+1> for zp 1 > 0, then fy satisfies the integral equation

s"1V1 — 52 dyg(s)

20,_9 ds

/fo(T)(s2 — )= g = — (6.1)
0
of the Abel type.

The equation (6.1) can be solved in a standard way ([Rul], [SKM]).
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