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ABsTRACT. We consider the analogue of the A(p)—problem for subsets of the Le-
gendre polynomials or more general ultraspherical polynomials. We obtain the “best
possible” result that if 2 < p < 4 then a random subset of N Legendre polynomials
of size N4/P=1 spans an Hilbertian subspace. We also answer a question of Konig
concerning the structure of the space of polynomials of degree n in various weighted
L,-spaces.

1. INTRODUCTION

Let (P,) denote the Legendre polynomials on [—1, 1] and let ¢,, = ¢, P, be the
corresponding polynomials normalized in Ly[—1,1]. Then (¢,,)5%, is an orthonor-
mal basis of Ly[—1, 1]. If we consider the same polynomials in L,[—1,1] where p > 2
then (¢,)22 is a basis if and only if sup ||¢,||, < oo if and only if p < 4 ([8], [9]).

In this note our main result concerns the analogue of the A(p)-problem for the
Legendre polynomials. In [2] Bourgain (answering a question of Rudin [12]) showed
that for the trigonometric system (¢™?),,c7 in L,(T) where p > 2 there is a constant
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C so that for any N there is a subset A of {1,2,..., N} with |A| > N?/P and such
that for any (gn)neAa

1D &ne™ll, < CY_ €)M,

neA neA

Actually Bourgain’s result is much stronger than this. He shows that if (g,)22, is a
uniformly bounded orthonormal system in some Lo(p) where p is a finite measure,
then there is a constant C' so that if F is finite subset of N then there is a further
subset A of F with |A| > |F|?/? so that we have an estimate

(1.1) 1D ngnlly < CY_ 1)

neA neA

In fact this estimate holds for a random subset of F. For an alternative approach
to Bourgain’s results, see Talagrand [15].

It is natural to ask for a corresponding result for the Legendre polynomials. Since
(pr)92; is not bounded in Lo, [—1, 1] one cannot apply Bourgain’s result. However,
Bourgain [2] states without proof the corresponding result for orthonormal systems
which are bounded in some L, for r > 2. Suppose that (g,) is an orthonormal
system which is uniformly bounded in L, (u) for some 2 < r < co. Then he remarks
that if 2 < p < r there is a constant C so that for any subset F of N there is
a further subset A of F with |A| > |1F|(%_%)/(%_%) so that we have the estimate
(1.1). Again this result holds for random subsets. It follows from this result that if
2<p<4ande>0{1,2,..., N} contains a subset A of size N*/P~1~¢ 50 that we
have the estimate

(1.2) 1D &nenlls < CY_ L)

neA neA

As shown below in Proposition 3.1, there is an easy upper estimate |A| < CN 4/p—1
for subsets obeying (1.2). The sharp estimate N*/P~! cannot be obtained from
Bourgain’s results since (¢,)52; is unbounded in L4[—1,1].

In this note we show that, nevertheless, if F is a finite subset of N then there is
a subset of A of F with |A| > [F|*/?~1 so that (1.2) holds, and again this holds for
random subsets.

In fact we show the corresponding result for more general ultraspherical polyno-
mials. Suppose 0 < A < oco. Let (<p${\))$l°:0 be the orthonormal basis of Ly ([—1, 1], (1—'
22)*~7) obtained from {1, 7,22, ...} by the Gram-Schmidt process. Then (gogf\))
is a basis in Ly([—1,1], (1 — 22)*~2) if 2 < p < r = 2+ A~L. We show in Theorem
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3.6 that there is a constant C' so that if F is a finite subset of N, there is a further
subset A of F with |A| > |[F**(37Y so that we have the estimate

1Y &Pl < leal®)V2.

neA neA

Here of course norms are computed with respect to the measure (1 — 22)*~2dz.
Again this result is best possible as with the Legendre polynomials (the case A = %)
and holds for random subsets. Notice that if we set A = 0 we obtain the (normalized)
Tchebicheff polynomials which after a change of variable reduce to the trigometric
system on the circle. Thus Bourgain’s A(p)—theorem corresponds to the limiting
case A = 0.

As will be seen we obtain our main result by using Bourgain’s theorem and an
interpolation technique.

In Section 4 we answer a question of H. Konig by showing that the space P,, of
polynomials is uniformly isomorphic to £; in every space Ly([—1,1], (1 — z2)A2)
for)\>%and1<p<oo.

2. PRELIMINARIES

In this section, we collect together some preliminaries. A good general reference
for most of the material we need is the book of Szego [14].

For —% < A < oo with A # 0 we define the ultraspherical polynomials Pé/\) as in
[14] by the generating function relation

(1—2zw +w?)™> = Z PN (z)w".
n=0

For A = 0 we define P\” (z) = 2T, (x) where T,, are the Tchebicheff polynomials

defined by T, (cos ) = cosnf for 0 < § < m. Then we have that if A # 0 ([14] p.81,
(4.7.16)),

I'(n+2X)
(m+AT(n+1)

+1 L
/ 1PY () 2(1 — 22> 2dz = 21" P 2D (N) 72
-1

It follows that we have

1 AL(n+1)\"?
N — 9A—3 =3T(\ (n + P,

We now recall Theorem 8.21.11 of [14] p. 197.
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Proposition 2.1. Suppose 0 < A < 1. Then for 0 < 6 < 7 we have

I'(n+2))
AMI(n+A+1)
A(L = AT (n + 2))
TN+ A+ D0(n+ A+ 1)

cos((n + X8 — Ar/2)(2sinf) 7| <

(\) —
| Py (cos 0) 2I‘

(2sin @)=L,

Remark. Note we have used that I'(A)I'(1 — ) = 7/ sin(An).

The next Proposition is a combination of results on p. 80 (4.7.14) and p. 168
(7.32.1) of [14]

Proposition 2.2. If 0 < X < oo then we have

220 —1
[P = PO = (")
—1<z<1 n

(Z) " T(u —I;(i ;r)ll“)(u 1)

For our purposes it will be useful to simplify the Gamma function replacing it

Here we write

by asymptotic estimates. For this purpose we note that

F(n + 0) =n na—l

Proposition 2.3. Suppose 0 < A < oo. Then there exists a positive constant
C = C(X) such that

1o (cos 0)—(2/m) Y2 cos((n+X)0—Ar/2)(sin 0) ™| < C(sin#) ™ (min((nsin )", 1).J]

Proof. Using the remark preceding the Proposition, we can deduce from Proposition
2.1 that

(2.1)

PN (cos 0) — 22 A0 (A) "L eos((n + )0 — Ar/2)(sin0) | < Cn 2 (sin ) 1>

where C = C(\). This estimate also holds when A =1 trivially (with C' = 0).
We now prove the same estimate provided nsinf > 1 for all A > 0 by using the
recurrence relation

(22) 200-1)(1-2%)PV(z) = (n+ 22 = 2)PAV(z) — (n+ 1)aPA " (2)

for which we refer to [14] p. 83 (4.7.27).
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Indeed assume the estimate (2.1) is known for A — 1. Then with z = cos#,
(PO (z) — 2PV () — 2720220 (A — 1)L eos((n + A — 1)0 — Ar/2)(sin 0) | <
< Cn*3(sinfh) ™. |
We also have
P ()| < Cn*3(sin6) ™ < Cn*~2(sin )1~

provided nsinf > 1. Now using the recurrence relation (2) we obtain an estimate
of the form (2.1) provided nsinf > 1.
Next we observe that for all A > 0 we have by Proposition 2.2,

[PMV(2)] < PV (1) < Ot
where C' depends only on A. Hence if nsin < 1 we have an estimate
(2.3) |PM (cos ) —2n *"IT(A) 7L cos((n+A)0—Ar/2)(sinf) ™A < Cn* L (sin ) .
Combining (2.2) and (2.3) gives us an estimate

|PY (cos 0) — 21 AnA T (A) L cos((n + A)0 — Arr/2)(sin ) 7| <
(2.4)
< Cmin(n*?(sin0) 17, n* 1 (sin h) ™)

Recalling the relationship between gog‘) and P,SA) we obtain the result. [

Proposition 2.4. Suppose —1/2 < A\ pu < oo. Then the orthonormal system
(goﬁ,,*))oo is a basis of L, ([—1,1], (1 — 22)»~2) if and only if

n=0

2u+1 2A+1 1 22 +1
- < min(-, ).
2r 4 4 4

In particular, if X > 0 and r > 2 then (M) is a basis of L.([—1,1], (1 —
22)2~2) if and only if r < 2+ AL,

Proof. This theorem is a special case of a very general result of Badkov [1], Theorem
5.1. The second part is much older: see Pollard [9],[10] and [11], Newman-Rudin
[8] and Muckenhaupt [7].

We will also need some results on Gauss-Jacobi mechanical quadrature. To this
end let (7'752) = cos 953,‘3)221 be the zeros of the polynomial gog‘) ordered so that

0< 97({}% < 92?2 << B9 < (We remark that the zeros are necessarily distinct

and are all located in (—1,1); see Szego [14] p. 44.)
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Proposition 2.5. Suppose —% < XA < 00. Then there exists a constant C' depending
only on A so that

A km

05 — -1 <

n

3[Q

Furthermore, there exists ¢ > 0 so that

|9(A)|:> Ck
n

if k < n/2.

Proof. The following result is contained in Theorem 8.9.1 of Szego[14] p.238. The
second part follows easily from the first and the fact that lim,,_, 6,1 exists and is
the first positive zero of the Bessel function Jy 1 (t) (see Szego [14] Theorem 8.1.2
pp. 192-193. O

We will denote by P,, the space of polynomials of degree at most n — 1 so that
dim P,, =

Proposition 2.6. Suppose that —% < A < oo. Then there exist positive constants
(aff,‘c))lngn<oo such that if f € Pa, then

/f(a: )1 — z?) “3dy = Zao‘) ()‘)

Furthermore there is a constant C depending only on A such that

0‘7(;1\:) < C(sinOpg)Pn!

Proof. This is known as Gauss-Jacobi mechanical quadrature. See Szego [14] pp.
47-50. The estimate on the size of (a,(;,‘c) may be found on p. 354. However this
estimate is perhaps most easily seen by combining the Tchebicheff-Markov-Stieltjes
separation theorem (Szego, p. 50) with the estimate on the zeros (Proposition 2.5).
More precisely there exist (yx)i_, such that 1 =y > 7, ( 1) >y > 7',92) > >

Tr(m) >y, = —1 so that

Yk 1
o) — / (1— ) ¥da.

Yr—1
The estimate follows from Proposition 2.5. [
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3. THE A(p) PROBLEM

We first note that by Proposition 2.4, in order that (¢ ()‘))n 1 be a basis in
L,([-1,1], (1 — 2®)*~ 7), it is necessary and sufficient that 2 < p < 2+ A~L. Let us
denote this critical index by r = r(\) =2+ A~L.
Let A be a subset of N, and 2 < p < r. We will say that A is a A(p, A)-set if
there is a constant C so that for any finite-sequence (£, : n € A) we have

(I e @ - 222t < o3 el
- neA necA
This means that the operator T : £5(A) — L,([-1,1], (1 — 22)*~2) defined by
TE=) en £n<p$l)‘) is bounded, and indeed since there is an automatic lower bound,
an isomorphic embedding. We denote the least constant C or equivalently ||T|| by
Ap A(A). Note that if A = 0 then o )(cos ) = cosnf and this definition reduces to
the standard definition of a A(p)—set introduced by Rudin [12].

Proposition 3.1. For each A > 0 there is a constant C = C()\) depending on A
so that if A is a Ay x-set then

IAN[1,N]| < CApA(A)2NP/P=1),

Proof. Observe first that

(M) = > en?
_{gwglhp ()] = (1) > cn

for some constant ¢ > 0 depending only on A by Proposition 2.2 and the remark
thereafter. It follows from Bernstein’s inequality that if 0 < 6 < (2n)~! then
( )((3050) > cn?/2.
In particular let J = AN [N/2, N]. Then for 0 < 0 < (2N)~! we have
Z(pff‘)(cosﬁ) > cNA|J|
neJ

where ¢ > 0 depends only on \. Since dz = (sin §)?*df we therefore have
eNAMJ|IN=MHD/P < CA(A)] ]2

where 0 < ¢,C < oo are again constants depending only on A. We thus have an
estimate |J| < CA(A)2N@A+2)/p=20) — CA(A)2N2Mr/P=1) This clearly implies
the result. [

Our next Proposition uses the approximation of Proposition 2.3 to transfer the

problem to a weighted problem on the circle T which we here identify with [—m, 7].
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Proposition 3.2. Suppose A > 0 and 2 < p < r(A). Then A is a A(p, \)—set if
and only if the operator S : £o(A) — L,(T,|sin0|*?=P)) is bounded where Se, =
e where (ey) is the canonical basis of £3(A). Furthermore there is a constant

C = C(p,A) so that C7H|S|| < ApA(A) < C||S].

Proof. Let us start by proving a similar estimate to Proposition 3.1 for the system
{ei"?)}. Suppose S is bounded. If N € N then we note that for 1 < k < N we have
coskf > 1/2if |§| < n/3N. Hence if |§] < 7/3N we have >, ; cos k# > 3|J| where
J =An][l,N]. It follows that

|J‘N()\(P—2)_1)/P < C||S|HJ|1/2
where C' depends only on A. This yields an estimate
[J| < C|S|PNAC/P=D

where C' depends only on A.

Now consider the map Sy : £a(A) — L,([0, 7], |sin6|?*) defined by Spe, =
cos((n + A)f — A /2))(sinf)~*. We will observe that S, is bounded if and only
if S is bounded and indeed ||Sy|| < 2||S]|| < C||So|| where C depends only on p. In
fact if (£,)nea are finitely non-zero and real then

o€l < [ |3 g

neA
which leads easily to the first estimate ||Sp|| < 2||S]|. For the converse direction, we

p
|sin [} P)dh < ||Sal|P

note that w(f) = |sin@|*?~P) is an A,-weight in the sense of Muckenhaupt (see
(3], [4] or [7]) i.e. there is a constant C so that for every interval I on the circle we
have

( / w(6) do)V/7( / w(6) /7' do)? < 1]

I I

where |I| denote the length of I. It follows that the Hilbert-transform is bounded
on the space L, (T, w) so that there is a constant C' = C(p, A) such that if (£,)nea
is finitely non-zero and real then

T 1”’
(/ |Z&sin((n—i—)\)@—)\7r/2)|p|sin9|’\(2_p)d9> <

T neA

- 1/p
<C (/ 1) &ncos((n+ A0 — A /2)[P] sin0|*<2—1’>da> .

—T neA
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This quickly implies an estimate of the form ||S¢|| < C||So€]|-
Now consider the map T : £2(A) — L, ([0, 7], | sin@|?*) defined by Te,, = gog‘) (cos 0)'
Then for some constant C = C'(\) we have (using Proposition 2.3),

[Yn(0)] < C(sin @)~ min((nsinf) =1, 1)

where

Yn(0) = @) (cos ) — cos((n + A)0 — A /2)(sin§) ™.

Now suppose A satisfies an estimate [AN[1, N]| < K N2A("/P=1) for some constant
K.

We will let J, = AN 281 2F) and E;, = {0 : 27% < sinf < 2'7%}. Then on Ej
we have an estimate |1(0)| < C2*F if n < 2% and |1, (0)| < Cn~120+NF if 5 > 2k,
Here C' depends a constant depending only on p and A.

Let (én)nea be any finitely non-zero sequence and set ug = (3, [€n[%)"/2
Note that Y, c 7 [€nl < [ |/ 2ug.

It follows that if 1 <[ < k we have

1/p
(/ 'an%\p(siw)z%) < Ok~ (LH2NK/p| 7 11/2,

Ep nEJl

whileif £ +1 <1 < o0

1/p
(/ | Z &nn|P (sin 0)2’\d9> < C2Ak+(k—l)2—(1+2>\)k/p|(]l|1/2ul-
E

k neJ;

Note that A — (1 +2X)/p = A(1 — r/p). We also have | .J;| < K222{/P=1) Hence

we obtain an estimate

k 00
X2, Z Enthn || < CKl/Z(Z oA(r/p—1)(I=k) g, 4 Z 2(>‘(”'/P_1)_1)(l_k)ul)'
neA =1 I=k+1

Let § = min(A(r/p—1),1—A(r/p—1)). Then the right-hand side may estimated
by o
CEVA(Y 2701 Hy) = Y2 S 270l
=1 JEL

where u; = 0 for j < 0. Since p > 2 we have

1Y entonll < O llxm D Gathnl®)2.
k=1

neA neA
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Hence by Minkowski’s inequality in £ we have

1) ntpnll < CKY2Y 2—6|j|(i u2)M/2,

neA JETL 1=1

We conclude that ||Soé — T¢|| < CK'2. Now if T is bounded then K < C||T||?
while if S is bounded then K < C||S||2. This yields the estimates promised. [

As remarked above, using Proposition 3.2 we can transfer the problem of iden-
tifying A(p, A)-sets to a similar problem concerning the standard characters {e™}
in a weighted L,—space. We will now solve a corresponding problem in the case
when p = 2 and then use the solution to obtain our main result in the case p > 2.
To this end we will first proof a result concerning weighted norm inequalities for
an operator on the sequence space £2(Z) which is the discrete analogue of a Riesz
potential.

Suppose 0 < a < 1/2. For m,n € Z we define K (m,n) = |m—n|*~! whenm # n
and K(m,n) =1 if m = n. Let ¢go(Z) be the space of finitely non-zero sequences.
Then we can define a map K : coo(Z) — £2(Z) by K§(m) =), cp K(m,n)é(n).

Now suppose v € £ (Z). We define L(v) to be the norm in ¢5(Z) of the operator
¢ — vK¢ which we take to be oo if this operator is unbounded. Thus L(v) =
sup{ K] : ]l < 1}.

The following result can be derived from similar results in potential theory (for
example, [13]). For more general results we refer to [5]. However we will give a
self-contained exposition.

Theorem 3.3. Let 0 < M(v) < oo be the least constant so that for every finite
interval I C Z, we have

Z v2 v min(1, |m — n|**” 1)<M221)

m,nel nel
Then for a constant C depending only on o we have C™*M (v) < L(v) < CM (v).

Proof. First suppose L(v) < oo. Then by taking adjoints the map £ — K (v€)
is bounded on /5(Z) with norm L(v). In particular we have for any interval I,
| K (v?x1)]| < L(v)||uxzl]- Let us write (€,1) = 3, oz &ntin Where this is well-defined.
Thus
(K?(v*x1),v*x1) < L(v)? Z V2.
nel
Now observe that K2(m,n) =Y ;°, K(m,l)K(l,n) > c(min(1, |m — n[**~1) where
¢ > 0 depends only on a. Expanding out we obtain that M (v) < CL(v) for some
C =C(a).
10



We now turn to the opposite direction. By homogeneity it is only necessary to
bound L(v) when M (v) = 1. We therefore assume M (v) = 1. Notice that it follows
from the definition of M( ) that for any interval I, we have [I|>**~13" nel vZ 2 <
Y oner Ve and so > o v2 < |[I|12e

Now let u = Kv? (this can be computed formally, with the possibility of some
entries being infinite). Suppose m € Z and define sets Iy = {m} and then I}; = {n :
2F=1 < |m — n| < 2%} for k > 1. Note that if k > 1 I}, is the union of two intervals
of length 28=1. Let J, = IoU---U I.

For any k& we have

u=K@xs )+ Z K(v®x1,)-
I=k+2

Let us write u1 = K (v?xy,,,) and up = u — uy.
Now if I > k + 2 and j € I, we have

K (v*x5)(j) < 027Dy " or.

nEIl

Hence

Wi <C Y 2600y 2.

I=k+2 nel;

Squaring and summing, and estimating v2, we have

nel;

Z us(j)? < C2F Z o(a—1)(i+]) 9i(1-2a) Z o2,

jelk ZZle+2 nGIl
Summing out over ¢ > [ we have
d ua(j)? <028 Y 27h Yy el
jelk l2k+2 nel;

On the other hand

dDuii =Y. > D K@G)K@G Dl

JEIL JEIL i€Jky1 €Ty

<C Z Z min(1, [i — I[**1)vZv?

1€Jg11 €T

where C' depends only on a.
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Hence

SNu@P<col D k426 ) 27 e

JEI n€EJg41 I=k+2 n€el;

This can be written as
Z 2 < C’Zmln (1, ok— l Z v,

Let us use this to estimate Ku?(m); we have (letting C be a constant which
depends only on « but may vary from line to line),

<CZ2(0¢ 1k Z u?

nGIk
<C’ZQ(°‘ 1)kz:rmn 1,2k l Zv
nel;
<CZZ 22(0‘ Dk min(1, 287
= OnEIl
< 022(a 1) Z v2
nel;
< CK'U (m).

We thus have Ku? < CKv2.

Now put w = v + Kv2. Then Kw? < 2(Kv? + Ku?) < CKv? < Cw. We will
show this implies an estimate on L(v).

Indeed if € € cpp(Z) is positive then

(wKE wKE) = (w”, (K¢€)?).
Now

(K€)*(m) = ZK(m ) K (m, 5)E()E(7) < CZK(i,J’)(K(m,i)+K(m7j))§(i)§(J’)-I

1,9 1,9

This implies (K§)? < CK (£K£). Hence
lwKE|? < C(w®, K(EKE)) = C(Kw®, EKE)
and hence as Kw? < Cw
lwK¢E|? < Clw, EKE) = C(€, wKE) < O||¢|||lwKE]|

which leads to ||lwK¢|| < CJ|€|| or L(v) < L(w) < C where C depends only on
a. O

12



Theorem 3.4. Suppose 0 < o < 1/2. Let A be a subset of Z. Let k(A) = kq(4)
be the least constant (possibly infinite) such that for any finitely nonzero sequence

(€n)nea we have

T 1/2
(/ e sinerzade) <Y el

T neA neA
Let M = M(A) = M(xa), be defined as the least constant M so that for any finite
interval I we have, setting FF = ANI,

Z min(1, |m — n|?*~1) < M?|F|.
m,neEF

Then k(A) < oo if and only if M(A) < oo and there is constant C depending only
on a such that C~'M(A) < k(A) < CM(A). O

Proof. First suppose M (A) < oco. Note that ¢(0) = |0|~* is an Ly—function whose
Fourier transform satisfies the property that limj,|_ |n|1= exists and is nonzero.
Now suppose (&n) € coo(A) and let g =", -, &ne™. Suppose f € Ly[—m, w]. Then

(0179, f) = (D% 3, ).

Hence for a suitable C' = C(«) we have, using Plancherel’s theorem, with K as in
Theorem 3.3,

(612, £) < C(Kgl, |f1) = C(al, xu K| f])
We deduce
(61=g, £) < CMA)gll2 | =
Thus .
| la@Pia0 < 23S ),

By translation we also have

| 1P - lo) 20 < C2a(Y ).
- neA
Since 0]72% + (7w — |0]) 72> > |sinf|72* we obtain immediately x(A) < CM(A)
where C' depends only on .
Conversely suppose k(A) < oo. Note first that there is positive-definite and
non-negative trigonometric polynomial h so that h + ¢ satisfies h(n) + ¢(n) >
cmin(1, |n|*~!) where ¢ > 0. Now clearly for (£,) € coo(A),

[l + 120 < on(S el

neA
13



Thus again by Plancherel’s theorem, if £ > 0,
K&l < Crll€]l5.

A similar inequality then applies for general &.

It follows quickly by taking adjoints that L(xa) < Ck and hence M(A) <
Ck(A). O

Theorem 3.5. Suppose F is a finite subset of Z and |F| = N. Let (nj);er be a
sequence of independent 0 — 1-valued random variables (or selectors) with E(n;) =
o=N72*forjeTF. Let A= {j € F:n; =1} be the corresponding random subset
of F. Then E(M(A)?) < C where C depends only on .

Proof. 1t is easy to see that if this statement is proved for the set F = {1,2,--- , N}
then it is true for every interval F and then for every finite subset of Z. It is also
easy to see that it suffices to prove the result for N = 2" for some n.

Note next that

M?(A) < sup min(|k — n[?*7 1 1).
o 1<k<NZ ( n )

Hence

k(20—1) 1ok k
<Czl<§ga2>§k2 AN[(G—1)28 + 1,524,

where C' depends only on a.

Fix an integer s. We estimate, for fixed &,

on—k g2k

E( max [AN[{—1)2%+1,52%|) < E( Z( Z m)*)V?

1<j<2n—k J=1 1=(j—1)2k+1
2n7k j2k 1/8
<X X w9
j=1 l—(j—1)2k+1

< 2(n—k)/s Zn l/s
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Let us therefore estimate, setting m = 2F,

m

B = Y0 T

| |
7=1 I<min(s,m) j1+--+5i=s Jis-- i

S

=\

< Z 1*(mo)*
1=1

< L) l .
<s 12{;};0 (mo)")

1

By maximizing the function x°e~%* we see that if mo > e~ we can estimate

this by
Z”ﬂ < 5™ (mo)”.
On the other hand if mo < e~ !
() 7;)" < s(s|logmo| )/ m7 < 54 logma| .
j=1
Suppose k < n. Put s =n — k. We have
E( max [AN[(j—1)2"+1,52%)) < C(n—k)2*e

whenever 28 > e~ where C = C(a). If 2k0 < e71,

—k
E AN —1)2F +1,52F <Cn7.
(max, [AN1G— 128 +1,24) < O
Hence
n—k
EMA2 < 7(2a 1)k —k 122ak
(M@ < > Tog(029)] 2 + > (n—k+1)

2kg<e1 2kg>e—1

We can estimate this further by
E(M(A)2) < C( Z 2(2a—1)k + n0_1—2a + 22an0_)
2kg<e—n
where C = C(a).

We now recall that 0 = N72@ = 2722 We then obtain an estimate

E(M(A)*) < C(a). O
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Theorem 3.6. Suppose 0 < A < oo and that 2 < p <7 =2+ A"1. Let FC N
be a finite set with |F| = N. Let (n;);er be a sequence of independent 0 — 1-valued
random variables (or selectors) with E(n;) = o = NA/P=Y/2D/Q/2=1") for j € T,
Let A = {j € F : n; = 1} be the corresponding random subset of F (so that
E(|A|) = NU/p=1/1)/(1/2=1/7))  Then E(Ap A(A)P) < C where C depends only on p
and A.

Proof. Suppose ({n)nea are any (complex) scalars and let f = > . £ne™ . Let
a=(1/2—-1/p)/(1 —2/r), and let % = 1 — o. Then by Holder’s inequality, since

2
-0-di+3

p q
Q 1/p
([ asismopen—ypas) ™ <

—T

™ (1-2/r)/q ™ 1/r
s(/ \f|"d9> (/ (\f||Sin9|”(1/p_1/2))2d9> .

Note that rA\(1/p—1/2) = (1/p—1/2)/(1 —2/r) = . Hence
™ 1/p
([ sisimopernypan) ™ < (0= @2 (X 21

Thus we deduce
Ap,>\<A) < (Aq,O(A)l_Z/T a7e" (A)2/T-

It follows further from Holder’s inequality that
(E(Apn(A))P)7 < (B(Aqo(A)T) 2N/ 9E (ko (A)) 7.

Hence by the A(p) theorem of Bourgain [2] that E(A,0(A)9)Y/2 < C = C(q). By
Theorem 3.5 above we obtain:

(EApa(A))* <0

where C = C(A,p). O

4. THE STRUCTURE OF THE SPACE OF POLYNOMIALS
» _ M)yn o1 )
We recall that (7,7’ = cos 6,7 )}_, are the zeros of the polynomial ¢’ ordered

sothat 0 < 0,1 <Opo<---<0Op, <.
16



Theorem 4.1. Suppose 1 < p < o0, —% < A\ < oo and that the ultraspherical
polynomials ((,0%/\))3‘;0 form a basis of L,([—1,1], (1— x2)“_%) or, equivalently that

u+1  2x+1 12,\+1)
2p 4 424

< min(

(4.1)

Let Ty, = 7'752). Then there is a constant C = C(\, u, p) independent of n so that if

f € Py then

1/p

1.1 g 2 \u »1/p ' p 2\pu—3
STED SR AN < ([ rera-epia) <
e S (N T IO
k=1

In particular d(Pp, L) < C?.

Proof. We will start by supposing that p is not of the form %(mp —1) form e N
and that —1 < X is arbitrary (i.e. we do not assume (4.1)). In this case we can
find m € N so that —3 < p— 3mp < 1(p —1). Then w(f) = (sin)?*~™? is an
Ap-weight. This implies (cf.[4]) that there is a constant C = C(p, p) so that for any
trigonometric polynomial k() = Zsz_ N h(k)ei*® of degree N, and any 1 <1< N
we have

P 1/p
™ ™ 1/17
/ i > h(k)e*® —i > h(k)e™?| do <C (/ |h(9)|pd0> .
T k>l k<—1 —
Summing over [ = 1,2,..., N we obtain
T N p 1/p T 1/p
< / > ikh(k)e™*? d9> < CN ( / \h(&)\?d&) :
—T k=—N —T

l.e.

(4.2) ( /_ 1 \h’(9)|pd9> 7 on ( /_ 7; |h(0)\pd0) Up.

Now suppose f € P, and let h(f) = (sin@)™ f(cos ) so that h is a trigonometric
polynomial of degree at most m +n — 1. Let Iy be the interval |0 — 01| < T for
1 <k <n. Then

[ nioyias < (f k (o) 7d9) " ( ] hOPu©)D) v

1 . o) . 1/p
< CW(Slank) Hip (/Ik |h|P|sin 6| d0> .
17



Here we use the properties of (7,x) and (6,r) from Proposition 2.5. On the other
hand,

h(0) — h(Bn]do < = [ |1/ (0)|d6
Iy, n Iy,

1 . m—
S CW(SIH enk) 2u/p (

1/p
|h"pwd9) .
Iy,

Putting these together we conclude that

1
luu@mﬂp@mﬂn@%kwwfgcp< |thd9+———/1V#Pwdé>.
n nP Jr,

I,

On summing we obtain

LS e - <o ([

k=1 -

|www+—/'wmm@

since > r_; x1, is uniformly bounded by Proposition 2.5. Now appealing to (4.2)
we have

1< i

Sl Epa -y <cr [ prwas,

k=1 -

Recalling the definition of w and A this implies

1 1/p +1 1/p
(43) (— S )L~ Tzkw) <o [ uwra-eyia)
" k=1 -1
Note that we only have (4.3) when g is not the form 1 (mp — 1). We now prove
(4.3) for p in the exceptional case. We observe that if v = 2+ X — % then v > —1
and (4.1) hods for A = v. In fact there exists 0 < § < £ so that (¢, (v )) is a basis of
both L,([—1,1], (1 — 2%)#~°) and of L,([-1,1], (1 — )“+5). Let

S () =3 g / F (@)t (z)(1 — 22~ ¥ da

be the partial sum operator associated with this basis. Let us consider the map
Ty : Lp([—1,1], (1 — 2%)#%%) — R™ defined by

To(f)e = (Sr(zy)f)(Tnk)-

18



Then there is a constant C' independent of n so that
+1 1/p
G sy <o ([ impa-atyset)
-1
It follows by interpolation that we obtain
+1 1/p
G-y so ([ e e
-1
and on restricting to P,, we have (4.3) for all p.
We now assume A satisfies (4.1) and complete the proof by duality. Let o be
defined by -+ “ = A. Then (4.1) also holds if we replace p, u by p/, 0.
Suppose f € Pn. Then there exists h € L,([—1,1], (1 — 22)°~2) so that

+1 , )
/ (@) (1 — 227 Fdy = 1

-1

/+1 W) f(z)(1 — 22)* 2 de = (/“ F(@)Pa - $2)”_%da:> 1/p.

—1 —1

and

Let g = S f. Then
+1 , )
| la@ra st tas < ov
-1

where C' = C(p, A, i) is independent of n. Now using Gauss-Jacobi quadrature (see
Proposition 2.6) we have
1m +1

S o) f (Tu) g (o) = » F(@)h(z)(1 - 22 2 da.

We recall that
0<an <C- 'rsk)’\n_l

where C' is again independent of n. It follows that
1/p

</1+1 |[f(z)[P(1 = wz)“_%dx> <

< O3 () P = 72" Zwmp (1= 72)7 )7

k=1
Now applying (4.3) we can estimate the last term by a constant independent of

n. Thus we have
1/p n

1 . 1
([ r@ra-ptas) <o Sl - e

k=1
This completes the proof. [
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