THE BEHAVIOUR OF LEGENDRE ${\bf AND~ULTRASPHERICAL~POLYNOMIALS~IN~L_p\text{-}SPACES }$

N.J. KALTON AND L. TZAFRIRI

Preprint No. 13 1997/98

ABSTRACT. We consider the analogue of the $\Lambda(p)$ -problem for subsets of the Legendre polynomials or more general ultraspherical polynomials. We obtain the "best possible" result that if 2 then a random subset of <math>N Legendre polynomials of size $N^{4/p-1}$ spans an Hilbertian subspace. We also answer a question of König concerning the structure of the space of polynomials of degree n in various weighted L_p -spaces.

1. Introduction

Let (P_n) denote the Legendre polynomials on [-1,1] and let $\varphi_n = c_n P_n$ be the corresponding polynomials normalized in $L_2[-1,1]$. Then $(\varphi_n)_{n=0}^{\infty}$ is an orthonormal basis of $L_2[-1,1]$. If we consider the same polynomials in $L_p[-1,1]$ where p>2 then $(\varphi_n)_{n=0}^{\infty}$ is a basis if and only if $\sup \|\varphi_n\|_p < \infty$ if and only if p<4 ([8], [9]).

In this note our main result concerns the analogue of the $\Lambda(p)$ -problem for the Legendre polynomials. In [2] Bourgain (answering a question of Rudin [12]) showed that for the trigonometric system $(e^{in\theta})_{n\in\mathbb{Z}}$ in $L_p(\mathbf{T})$ where p>2 there is a constant

¹⁹⁹¹ Mathematics Subject Classification. 42C10, 33C45, 46B07.

The first author was supported by NSF grant DMS-9500125. The second author was partially supported by the Landau Center for Research in Mathematical Analysis and Related Areas, sponsored by the Minerva Foundation (Germany).

C so that for any N there is a subset A of $\{1, 2, ..., N\}$ with $|A| \ge N^{2/p}$ and such that for any $(\xi_n)_{n \in A}$,

$$\|\sum_{n\in\mathbb{A}} \xi_n e^{in\theta}\|_p \le C(\sum_{n\in\mathbb{A}} |\xi_n|^2)^{1/2}.$$

Actually Bourgain's result is much stronger than this. He shows that if $(g_n)_{n=1}^{\infty}$ is a uniformly bounded orthonormal system in some $L_2(\mu)$ where μ is a finite measure, then there is a constant C so that if \mathbb{F} is finite subset of \mathbb{N} then there is a further subset \mathbb{A} of \mathbb{F} with $|\mathbb{A}| \geq |\mathbb{F}|^{2/p}$ so that we have an estimate

(1.1)
$$\|\sum_{n\in\mathbb{A}} \xi_n g_n\|_p \le C(\sum_{n\in\mathbb{A}} |\xi_n|^2)^{1/2}.$$

In fact this estimate holds for a random subset of \mathbb{F} . For an alternative approach to Bourgain's results, see Talagrand [15].

It is natural to ask for a corresponding result for the Legendre polynomials. Since $(\varphi_n)_{n=1}^{\infty}$ is not bounded in $L_{\infty}[-1,1]$ one cannot apply Bourgain's result. However, Bourgain [2] states without proof the corresponding result for orthonormal systems which are bounded in some L_r for r>2. Suppose that (g_n) is an orthonormal system which is uniformly bounded in $L_r(\mu)$ for some $2 < r < \infty$. Then he remarks that if 2 there is a constant <math>C so that for any subset $\mathbb F$ of $\mathbb N$ there is a further subset $\mathbb A$ of $\mathbb F$ with $|\mathbb A| \geq |\mathbb F|^{(\frac{1}{p}-\frac{1}{r})/(\frac{1}{2}-\frac{1}{r})}$ so that we have the estimate (1.1). Again this result holds for random subsets. It follows from this result that if $2 and <math>\epsilon > 0$ $\{1, 2, \ldots, N\}$ contains a subset $\mathbb A$ of size $N^{4/p-1-\epsilon}$ so that we have the estimate

(1.2)
$$\| \sum_{n \in \mathbb{A}} \xi_n \varphi_n \|_p \le C (\sum_{n \in \mathbb{A}} |\xi_n|^2)^{1/2}.$$

As shown below in Proposition 3.1, there is an easy upper estimate $|\mathbb{A}| \leq CN^{4/p-1}$ for subsets obeying (1.2). The sharp estimate $N^{4/p-1}$ cannot be obtained from Bourgain's results since $(\varphi_n)_{n=1}^{\infty}$ is unbounded in $L_4[-1,1]$.

In this note we show that, nevertheless, if \mathbb{F} is a finite subset of \mathbb{N} then there is a subset of \mathbb{A} of \mathbb{F} with $|\mathbb{A}| \geq |\mathbb{F}|^{4/p-1}$ so that (1.2) holds, and again this holds for random subsets.

In fact we show the corresponding result for more general ultraspherical polynomials. Suppose $0 < \lambda < \infty$. Let $(\varphi_n^{(\lambda)})_{n=0}^{\infty}$ be the orthonormal basis of $L_2([-1,1],(1-x^2)^{\lambda-\frac{1}{2}})$ obtained from $\{1,x,x^2,\ldots\}$ by the Gram-Schmidt process. Then $(\varphi_n^{(\lambda)})$ is a basis in $L_p([-1,1],(1-x^2)^{\lambda-\frac{1}{2}})$ if 2 . We show in Theorem

3.6 that there is a constant C so that if \mathbb{F} is a finite subset of \mathbb{N} , there is a further subset \mathbb{A} of \mathbb{F} with $|\mathbb{A}| \geq |\mathbb{F}|^{2\lambda(\frac{r}{p}-1)}$ so that we have the estimate

$$\|\sum_{n\in\mathbb{A}} \xi_n \varphi_n^{(\lambda)}\|_p \le C(\sum_{n\in\mathbb{A}} |\xi_n|^2)^{1/2}.$$

Here of course norms are computed with respect to the measure $(1-x^2)^{\lambda-\frac{1}{2}}dx$. Again this result is best possible as with the Legendre polynomials (the case $\lambda=\frac{1}{2}$) and holds for random subsets. Notice that if we set $\lambda=0$ we obtain the (normalized) Tchebicheff polynomials which after a change of variable reduce to the trigometric system on the circle. Thus Bourgain's $\Lambda(p)$ -theorem corresponds to the limiting case $\lambda=0$.

As will be seen we obtain our main result by using Bourgain's theorem and an interpolation technique.

In Section 4 we answer a question of H. König by showing that the space \mathcal{P}_n of polynomials is uniformly isomorphic to ℓ_p^n in every space $L_p([-1,1],(1-x^2)^{\lambda-\frac{1}{2}})$ for $\lambda > \frac{1}{2}$ and 1 .

2. Preliminaries

In this section, we collect together some preliminaries. A good general reference for most of the material we need is the book of Szego [14].

For $-\frac{1}{2} < \lambda < \infty$ with $\lambda \neq 0$ we define the *ultraspherical polynomials* $P_n^{(\lambda)}$ as in [14] by the generating function relation

$$(1 - 2xw + w^2)^{-\lambda} = \sum_{n=0}^{\infty} P_n^{(\lambda)}(x)w^n.$$

For $\lambda = 0$ we define $P_n^{(0)}(x) = \frac{2}{n}T_n(x)$ where T_n are the Tchebicheff polynomials defined by $T_n(\cos \theta) = \cos n\theta$ for $0 \le \theta \le \pi$. Then we have that if $\lambda \ne 0$ ([14] p.81, (4.7.16)),

$$\int_{-1}^{+1} |P_n^{(\lambda)}(x)|^2 (1-x^2)^{\lambda-\frac{1}{2}} dx = 2^{1-2\lambda} \pi \Gamma(\lambda)^{-2} \frac{\Gamma(n+2\lambda)}{(n+\lambda)\Gamma(n+1)}.$$

It follows that we have

$$\varphi_n^{(\lambda)} = 2^{\lambda - \frac{1}{2}} \pi^{-\frac{1}{2}} \Gamma(\lambda) \left(\frac{(n+\lambda)\Gamma(n+1)}{\Gamma(n+2\lambda)} \right)^{1/2} P_n^{(\lambda)}.$$

We now recall Theorem 8.21.11 of [14] p. 197.

Proposition 2.1. Suppose $0 < \lambda < 1$. Then for $0 \le \theta \le \pi$ we have

$$|P_n^{(\lambda)}(\cos\theta) - 2\frac{\Gamma(n+2\lambda)}{\Gamma(\lambda)\Gamma(n+\lambda+1)}\cos((n+\lambda)\theta - \lambda\pi/2)(2\sin\theta)^{-\lambda}| \le 4\frac{\lambda(1-\lambda)\Gamma(n+2\lambda)}{\Gamma(\lambda)(n+\lambda+1)\Gamma(n+\lambda+1)}(2\sin\theta)^{-\lambda-1}.$$

Remark. Note we have used that $\Gamma(\lambda)\Gamma(1-\lambda) = \pi/\sin(\lambda\pi)$.

The next Proposition is a combination of results on p. 80 (4.7.14) and p. 168 (7.32.1) of [14]

Proposition 2.2. If $0 < \lambda < \infty$ then we have

$$\max_{-1 \le x \le 1} |P_n^{(\lambda)}(x)| = P_n^{(\lambda)}(1) = \binom{n + 2\lambda - 1}{n}$$

Here we write

$$\binom{u}{v} = \frac{\Gamma(u+1)}{\Gamma(u-v+1)\Gamma(v+1)}.$$

For our purposes it will be useful to simplify the Gamma function replacing it by asymptotic estimates. For this purpose we note that

$$\frac{\Gamma(n+\sigma)}{\Gamma(n)} = n^{\sigma} + O(n^{\sigma-1})$$

Proposition 2.3. Suppose $0 < \lambda < \infty$. Then there exists a positive constant $C = C(\lambda)$ such that

$$|\varphi_n^{(\lambda)}(\cos\theta) - (2/\pi)^{1/2}\cos((n+\lambda)\theta - \lambda\pi/2)(\sin\theta)^{-\lambda}| \le C(\sin\theta)^{-\lambda}(\min((n\sin\theta)^{-1}, 1).$$

Proof. Using the remark preceding the Proposition, we can deduce from Proposition 2.1 that

(2.1)

$$|P_n^{(\lambda)}(\cos\theta) - 2^{1-\lambda}n^{\lambda-1}\Gamma(\lambda)^{-1}\cos((n+\lambda)\theta - \lambda\pi/2)(\sin\theta)^{-\lambda}| \le Cn^{\lambda-2}(\sin\theta)^{-1-\lambda}$$

where $C = C(\lambda)$. This estimate also holds when $\lambda = 1$ trivially (with C = 0).

We now prove the same estimate provided $n \sin \theta \ge 1$ for all $\lambda > 0$ by using the recurrence relation

$$(2.2) 2(\lambda - 1)(1 - x^2)P_n^{(\lambda)}(x) = (n + 2\lambda - 2)P_n^{(\lambda - 1)}(x) - (n + 1)xP_{n+1}^{(\lambda - 1)}(x)$$

for which we refer to [14] p. 83 (4.7.27).

Indeed assume the estimate (2.1) is known for $\lambda - 1$. Then with $x = \cos \theta$,

$$|P_n^{(\lambda-1)}(x) - x P_{n+1}^{(\lambda-1)}(x) - 2^{-\lambda} n^{\lambda-2} \Gamma(\lambda-1)^{-1} \cos((n+\lambda-1)\theta - \lambda\pi/2) (\sin\theta)^{1-\lambda}| \le C n^{\lambda-3} (\sin\theta)^{-\lambda}.$$

We also have

$$|P_n^{(\lambda-1)}(x)| \le Cn^{\lambda-3}(\sin\theta)^{-\lambda} \le Cn^{\lambda-2}(\sin\theta)^{1-\lambda}$$

provided $n \sin \theta \ge 1$. Now using the recurrence relation (2) we obtain an estimate of the form (2.1) provided $n \sin \theta \ge 1$.

Next we observe that for all $\lambda > 0$ we have by Proposition 2.2,

$$|P_n^{(\lambda)}(x)| \le P_n^{(\lambda)}(1) \le Cn^{2\lambda - 1}$$

where C depends only on λ . Hence if $n \sin \theta < 1$ we have an estimate

$$(2.3) |P_n^{(\lambda)}(\cos\theta) - 2n^{\lambda - 1}\Gamma(\lambda)^{-1}\cos((n+\lambda)\theta - \lambda\pi/2)(\sin\theta)^{-\lambda}| \le Cn^{\lambda - 1}(\sin\theta)^{-\lambda}.$$

Combining (2.2) and (2.3) gives us an estimate

$$|P_n^{(\lambda)}(\cos\theta) - 2^{1-\lambda}n^{\lambda-1}\Gamma(\lambda)^{-1}\cos((n+\lambda)\theta - \lambda\pi/2)(\sin\theta)^{-\lambda}| \le (2.4)$$

$$\le C\min(n^{\lambda-2}(\sin\theta)^{-1-\lambda}, n^{\lambda-1}(\sin\theta)^{-\lambda})$$

Recalling the relationship between $\varphi_n^{(\lambda)}$ and $P_n^{(\lambda)}$ we obtain the result. \square

Proposition 2.4. Suppose $-1/2 < \lambda, \mu < \infty$. Then the orthonormal system $(\varphi_n^{(\lambda)})_{n=0}^{\infty}$ is a basis of $L_r([-1,1],(1-x^2)^{\mu-\frac{1}{2}})$ if and only if

$$\left|\frac{2\mu+1}{2r} - \frac{2\lambda+1}{4}\right| \le \min(\frac{1}{4}, \frac{2\lambda+1}{4}).$$

In particular, if $\lambda \geq 0$ and r > 2 then $(\varphi^{(\lambda)})_{n=0}^{\infty}$ is a basis of $L_r([-1,1], (1-x^2)^{\lambda-\frac{1}{2}})$ if and only if $r < 2 + \lambda^{-1}$.

Proof. This theorem is a special case of a very general result of Badkov [1], Theorem 5.1. The second part is much older: see Pollard [9],[10] and [11], Newman-Rudin [8] and Muckenhaupt [7].

We will also need some results on Gauss-Jacobi mechanical quadrature. To this end let $(\tau_{nk}^{(\lambda)} = \cos \theta_{nk}^{(\lambda)})_{k=1}^n$ be the zeros of the polynomial $\varphi_n^{(\lambda)}$ ordered so that $0 < \theta_{n,1}^{(\lambda)} < \theta_{n,2}^{(\lambda)} < \cdots < \theta_{nn}^{(\lambda)} < \pi$. (We remark that the zeros are necessarily distinct and are all located in (-1,1); see Szego [14] p. 44.)

Proposition 2.5. Suppose $-\frac{1}{2} < \lambda < \infty$. Then there exists a constant C depending only on λ so that

$$|\theta_{nk}^{(\lambda)} - \frac{k\pi}{n}| \le \frac{C}{n}.$$

Furthermore, there exists c > 0 so that

$$|\theta_{nk}^{(\lambda)}| \ge \frac{ck}{n}$$

if k < n/2.

Proof. The following result is contained in Theorem 8.9.1 of Szego[14] p.238. The second part follows easily from the first and the fact that $\lim_{n\to\infty} \theta_{n1}$ exists and is the first positive zero of the Bessel function $J_{\lambda+\frac{1}{2}}(t)$ (see Szego [14] Theorem 8.1.2 pp. 192-193. \square

We will denote by \mathcal{P}_n the space of polynomials of degree at most n-1 so that dim $\mathcal{P}_n = n$.

Proposition 2.6. Suppose that $-\frac{1}{2} < \lambda < \infty$. Then there exist positive constants $(\alpha_{nk}^{(\lambda)})_{1 < k < n < \infty}$ such that if $f \in \mathcal{P}_{2n}$ then

$$\int_{-1}^{1} f(x)(1-x^2)^{\lambda-\frac{1}{2}} dx = \sum_{k=1}^{n} \alpha_{nk}^{(\lambda)} f(\tau_{nk}^{(\lambda)}).$$

Furthermore there is a constant C depending only on λ such that

$$\alpha_{nk}^{(\lambda)} \le C(\sin \theta_{nk})^{2\lambda} n^{-1}.$$

Proof. This is known as Gauss-Jacobi mechanical quadrature. See Szego [14] pp. 47-50. The estimate on the size of $(\alpha_{nk}^{(\lambda)})$ may be found on p. 354. However this estimate is perhaps most easily seen by combining the Tchebicheff-Markov-Stieltjes separation theorem (Szego, p. 50) with the estimate on the zeros (Proposition 2.5). More precisely there exist $(y_k)_{k=0}^n$ such that $1 = y_0 > \tau_{n,1}^{(\lambda)} > y_1 > \tau_{n,2}^{(\lambda)} > \cdots > \tau_{nn}^{(\lambda)} > y_n = -1$ so that

$$\alpha_{nk}^{(\lambda)} = \int_{y_{k-1}}^{y_k} (1 - x^2)^{\lambda - \frac{1}{2}} dx.$$

The estimate follows from Proposition 2.5. \square

We first note that by Proposition 2.4, in order that $(\varphi_n^{(\lambda)})_{n=1}^{\infty}$ be a basis in $L_p([-1,1],(1-x^2)^{\lambda-\frac{1}{2}})$, it is necessary and sufficient that $2 . Let us denote this critical index by <math>r = r(\lambda) = 2 + \lambda^{-1}$.

Let \mathbb{A} be a subset of \mathbb{N} , and $2 . We will say that <math>\mathbb{A}$ is a $\Lambda(p, \lambda)$ -set if there is a constant C so that for any finite-sequence $(\xi_n : n \in \mathbb{A})$ we have

$$\left(\int_{-1}^{+1} \left| \sum_{n \in \mathbb{A}} \xi_n \varphi_n^{(\lambda)}(x) \right|^p (1 - x^2)^{\lambda - \frac{1}{2}} dx \right)^{1/p} \le C\left(\sum_{n \in A} |\xi_n|^2\right)^{1/2}.$$

This means that the operator $T: \ell_2(\mathbb{A}) \to L_p([-1,1], (1-x^2)^{\lambda-\frac{1}{2}})$ defined by $T\xi = \sum_{n \in \mathbb{A}} \xi_n \varphi_n^{(\lambda)}$ is bounded, and indeed since there is an automatic lower bound, an isomorphic embedding. We denote the least constant C or equivalently ||T|| by $\Lambda_{p,\lambda}(\mathbb{A})$. Note that if $\lambda = 0$ then $\varphi_n^{(\lambda)}(\cos \theta) = \cos n\theta$ and this definition reduces to the standard definition of a $\Lambda(p)$ -set introduced by Rudin [12].

Proposition 3.1. For each $\lambda > 0$ there is a constant $C = C(\lambda)$ depending on λ so that if \mathbb{A} is a $\Lambda_{p,\lambda}$ -set then

$$|\mathbb{A} \cap [1, N]| \leq C\Lambda_{p,\lambda}(\mathbb{A})^2 N^{2\lambda(r/p-1)}$$

Proof. Observe first that

$$\max_{-1 \le x \le 1} |\varphi_n^{(\lambda)}(x)| = \varphi(1) \ge cn^{\lambda}$$

for some constant c > 0 depending only on λ by Proposition 2.2 and the remark thereafter. It follows from Bernstein's inequality that if $0 \le \theta \le (2n)^{-1}$ then $\varphi_n^{(\lambda)}(\cos\theta) \ge cn^{\lambda}/2$.

In particular let $J = \mathbb{A} \cap [N/2, N]$. Then for $0 \le \theta \le (2N)^{-1}$ we have

$$\sum_{n \in J} \varphi_n^{(\lambda)}(\cos \theta) \ge cN^{\lambda}|J|$$

where c > 0 depends only on λ . Since $dx = (\sin \theta)^{2\lambda} d\theta$ we therefore have

$$cN^{\lambda}|J|N^{-(2\lambda+1)/p} \le C\Lambda(\mathbb{A})|J|^{1/2}$$

where $0 < c, C < \infty$ are again constants depending only on λ . We thus have an estimate $|J| \leq C\Lambda(\mathbb{A})^2 N^{(4\lambda+2)/p-2\lambda)} = C\Lambda(\mathbb{A})^2 N^{2\lambda(r/p-1)}$. This clearly implies the result. \square

Our next Proposition uses the approximation of Proposition 2.3 to transfer the problem to a weighted problem on the circle **T** which we here identify with $[-\pi, \pi]$.

Proposition 3.2. Suppose $\lambda > 0$ and $2 . Then <math>\mathbb{A}$ is a $\Lambda(p,\lambda)$ -set if and only if the operator $S : \ell_2(\mathbb{A}) \to L_p(\mathbf{T}, |\sin \theta|^{\lambda(2-p)})$ is bounded where $Se_n = e^{in\theta}$, where (e_n) is the canonical basis of $\ell_2(\mathbb{A})$. Furthermore there is a constant $C = C(p,\lambda)$ so that $C^{-1}||S|| \leq \Lambda_{p,\lambda}(\mathbb{A}) \leq C||S||$.

Proof. Let us start by proving a similar estimate to Proposition 3.1 for the system $\{e^{in\theta}\}$. Suppose S is bounded. If $N \in \mathbb{N}$ then we note that for $1 \le k \le N$ we have $\cos k\theta > 1/2$ if $|\theta| < \pi/3N$. Hence if $|\theta| < \pi/3N$ we have $\sum_{k \in J} \cos k\theta > \frac{1}{2}|J|$ where $J = \mathbb{A} \cap [1, N]$. It follows that

$$|J|N^{(\lambda(p-2)-1)/p} \le C||S|||J|^{1/2}$$

where C depends only on λ . This yields an estimate

$$|J| \le C||S||^2 N^{2\lambda(r/p-1)}$$

where C depends only on λ .

Now consider the map $S_0: \ell_2(\mathbb{A}) \to L_p([0,\pi], |\sin\theta|^{2\lambda})$ defined by $S_0e_n = \cos((n+\lambda)\theta - \lambda\pi/2))(\sin\theta)^{-\lambda}$. We will observe that S_0 is bounded if and only if S is bounded and indeed $||S_0|| \le 2||S|| \le C||S_0||$ where C depends only on p. In fact if $(\xi_n)_{n\in\mathbb{A}}$ are finitely non-zero and real then

$$||S_0\xi||^p \le \int_0^\pi \left|\sum_{n\in\mathbb{A}} \xi_n e^{in\theta}\right|^p |\sin\theta|^{\lambda(2-p)} d\theta \le ||Sa||^p$$

which leads easily to the first estimate $||S_0|| \le 2||S||$. For the converse direction, we note that $w(\theta) = |\sin \theta|^{\lambda(2-p)}$ is an A_p -weight in the sense of Muckenhaupt (see [3], [4] or [7]) i.e. there is a constant C so that for every interval I on the circle we have

$$\left(\int_{I} w(\theta) d\theta\right)^{1/p} \left(\int_{I} w(\theta)^{-p/p'} d\theta\right)^{1/p'} \le C|I|$$

where |I| denote the length of I. It follows that the Hilbert-transform is bounded on the space $L_p(\mathbf{T}, w)$ so that there is a constant $C = C(p, \lambda)$ such that if $(\xi_n)_{n \in \mathbb{A}}$ is finitely non-zero and real then

$$\left(\int_{-\pi}^{\pi}|\sum_{n\in\mathbb{A}}\xi_n\sin((n+\lambda)\theta-\lambda\pi/2)|^p|\sin\theta|^{\lambda(2-p)}d\theta\right)^{1/p}\leq$$

$$\leq C \left(\int_{-\pi}^{\pi} |\sum_{n \in \mathbb{A}} \xi_n \cos((n+\lambda)\theta - \lambda \pi/2)|^p |\sin \theta|^{\lambda(2-p)} d\theta \right)^{1/p}.$$

This quickly implies an estimate of the form $||S\xi|| \leq C||S_0\xi||$.

Now consider the map $T: \ell_2(\mathbb{A}) \to L_p([0,\pi], |\sin\theta|^{2\lambda})$ defined by $Te_n = \varphi_n^{(\lambda)}(\cos\theta)$. Then for some constant $C = C(\lambda)$ we have (using Proposition 2.3),

$$|\psi_n(\theta)| \le C(\sin \theta)^{-\lambda} \min((n \sin \theta)^{-1}, 1)$$

where

$$\psi_n(\theta) = \varphi_n^{\lambda}(\cos \theta) - \cos((n+\lambda)\theta - \lambda\pi/2)(\sin \theta)^{-\lambda}.$$

Now suppose $\mathbb A$ satisfies an estimate $|\mathbb A\cap [1,N]|\leq KN^{2\lambda(r/p-1)}$ for some constant K.

We will let $J_k = \mathbb{A} \cap [2^{k-1}, 2^k)$ and $E_k = \{\theta : 2^{-k} < \sin \theta < 2^{1-k}\}$. Then on E_k we have an estimate $|\psi(\theta)| \leq C2^{\lambda k}$ if $n \leq 2^k$ and $|\psi_n(\theta)| \leq Cn^{-1}2^{(1+\lambda)k}$ if $n > 2^k$. Here C depends a constant depending only on p and λ .

Let $(\xi_n)_{n\in\mathbb{A}}$ be any finitely non-zero sequence and set $u_k=(\sum_{n\in J_k}|\xi_n|^2)^{1/2}$. Note that $\sum_{n\in J_k}|\xi_n|\leq |J_k|^{1/2}u_k$.

It follows that if $1 \le l \le k$ we have

$$\left(\int_{E_k} |\sum_{n \in J_l} \xi_n \psi_n|^p (\sin \theta)^{2\lambda} d\theta \right)^{1/p} \le C 2^{\lambda k} 2^{-(1+2\lambda)k/p} |J_l|^{1/2} u_l$$

while if $k+1 \leq l < \infty$

$$\left(\int_{E_k} |\sum_{n \in J_l} \xi_n \psi_n|^p (\sin \theta)^{2\lambda} d\theta \right)^{1/p} \le C 2^{\lambda k + (k-l)} 2^{-(1+2\lambda)k/p} |J_l|^{1/2} u_l.$$

Note that $\lambda - (1+2\lambda)/p = \lambda(1-r/p)$. We also have $|J_l| \leq K2^{2\lambda l(r/p-1)}$. Hence we obtain an estimate

$$\|\chi_{E_k} \sum_{n \in \mathbb{A}} \xi_n \psi_n\| \le C K^{1/2} (\sum_{l=1}^k 2^{\lambda(r/p-1)(l-k)} u_l + \sum_{l=k+1}^\infty 2^{(\lambda(r/p-1)-1)(l-k)} u_l).$$

Let $\delta = \min(\lambda(r/p-1), 1-\lambda(r/p-1))$. Then the right-hand side may estimated by

$$CK^{1/2}(\sum_{l=1}^{\infty} 2^{-\delta|l-k|} u_l) = CK^{1/2} \sum_{j \in \mathbb{Z}} 2^{-\delta|j|} u_{k+j}$$

where $u_j = 0$ for $j \leq 0$. Since p > 2 we have

$$\|\sum_{n\in\mathbb{A}} \xi_n \psi_n\| \le (\sum_{k=1}^{\infty} \|\chi_{E_k} \sum_{n\in\mathbb{A}} \xi_n \psi_n\|^2)^{1/2}.$$

Hence by Minkowski's inequality in ℓ_2 we have

$$\|\sum_{n\in\mathbb{A}} \xi_n \psi_n\| \le CK^{1/2} \sum_{j\in\mathbb{Z}} 2^{-\delta|j|} (\sum_{l=1}^{\infty} u_l^2)^{1/2}.$$

We conclude that $||S_0\xi - T\xi|| \le CK^{1/2}$. Now if T is bounded then $K \le C||T||^2$ while if S is bounded then $K \le C||S||^2$. This yields the estimates promised. \square

As remarked above, using Proposition 3.2 we can transfer the problem of identifying $\Lambda(p,\lambda)$ -sets to a similar problem concerning the standard characters $\{e^{in\theta}\}$ in a weighted L_p -space. We will now solve a corresponding problem in the case when p=2 and then use the solution to obtain our main result in the case p>2. To this end we will first proof a result concerning weighted norm inequalities for an operator on the sequence space $\ell_2(\mathbb{Z})$ which is the discrete analogue of a Riesz potential.

Suppose $0 < \alpha < 1/2$. For $m, n \in \mathbb{Z}$ we define $K(m, n) = |m-n|^{\alpha-1}$ when $m \neq n$ and K(m, n) = 1 if m = n. Let $c_{00}(\mathbb{Z})$ be the space of finitely non-zero sequences. Then we can define a map $K : c_{00}(\mathbb{Z}) \to \ell_2(\mathbb{Z})$ by $K\xi(m) = \sum_{n \in \mathbb{Z}} K(m, n)\xi(n)$.

Now suppose $v \in \ell_{\infty}(\mathbb{Z})$. We define L(v) to be the norm in $\ell_2(\mathbb{Z})$ of the operator $\xi \to vK\xi$ which we take to be ∞ if this operator is unbounded. Thus $L(v) = \sup\{\|vK\xi\| : \|\xi\| \le 1\}$.

The following result can be derived from similar results in potential theory (for example, [13]). For more general results we refer to [5]. However we will give a self-contained exposition.

Theorem 3.3. Let $0 \leq M(v) \leq \infty$ be the least constant so that for every finite interval $I \subset \mathbb{Z}$ we have

$$\sum_{m,n\in I} v_m^2 v_n^2 \min(1,|m-n|^{2\alpha-1}) \leq M^2 \sum_{n\in I} v_n^2.$$

Then for a constant C depending only on α we have $C^{-1}M(v) \leq L(v) \leq CM(v)$.

Proof. First suppose $L(v) < \infty$. Then by taking adjoints the map $\xi \to K(v\xi)$ is bounded on $\ell_2(\mathbb{Z})$ with norm L(v). In particular we have for any interval I, $||K(v^2\chi_I)|| \leq L(v)||v\chi_I||$. Let us write $\langle \xi, \eta \rangle = \sum_{n \in \mathbb{Z}} \xi_n \eta_n$ where this is well-defined. Thus

$$\langle K^2(v^2\chi_I), v^2\chi_I \rangle \le L(v)^2 \sum_{n \in I} v_n^2.$$

Now observe that $K^2(m,n) = \sum_{l=1}^{\infty} K(m,l)K(l,n) \ge c(\min(1,|m-n|^{2\alpha-1}))$ where c>0 depends only on α . Expanding out we obtain that $M(v) \le CL(v)$ for some $C=C(\alpha)$.

We now turn to the opposite direction. By homogeneity it is only necessary to bound L(v) when M(v)=1. We therefore assume M(v)=1. Notice that it follows from the definition of M(v) that for any interval I, we have $|I|^{2\alpha-1}\sum_{m,n\in I}v_m^2v_n^2\leq \sum_{n\in I}v_n^2$ and so $\sum_{n\in I}v_n^2\leq |I|^{1-2\alpha}$.

Now let $u = Kv^2$ (this can be computed formally, with the possibility of some entries being infinite). Suppose $m \in \mathbb{Z}$ and define sets $I_0 = \{m\}$ and then $I_k = \{n : 2^{k-1} \leq |m-n| < 2^k\}$ for $k \geq 1$. Note that if $k \geq 1$ I_k is the union of two intervals of length 2^{k-1} . Let $J_k = I_0 \cup \cdots \cup I_k$.

For any k we have

$$u = K(v^2 \chi_{J_{k+1}}) + \sum_{l=k+2} K(v^2 \chi_{I_l}).$$

Let us write $u_1 = K(v^2 \chi_{J_{k+1}})$ and $u_2 = u - u_1$.

Now if $l \geq k + 2$ and $j \in I_k$ we have

$$K(v^2\chi_{I_l})(j) \le C2^{(\alpha-1)l} \sum_{n \in I_l} v_n^2.$$

Hence

$$u_2(j) \le C \sum_{l=k+2}^{\infty} 2^{(\alpha-1)l} \sum_{n \in I_l} v_n^2.$$

Squaring and summing, and estimating $\sum_{n \in I_i} v_n^2$, we have

$$\sum_{i \in I_k} u_2(j)^2 \le C2^k \sum_{i > l > k+2} 2^{(\alpha-1)(i+l)} 2^{i(1-2\alpha)} \sum_{n \in I_l} v_n^2.$$

Summing out over $i \geq l$ we have

$$\sum_{j \in I_k} u_2(j)^2 \le C 2^k \sum_{l \ge k+2} 2^{-l} \sum_{n \in I_l} v_n^2.$$

On the other hand

$$\sum_{j \in I_k} u_2^2(j) = \sum_{j \in I_k} \sum_{i \in J_{k+1}} \sum_{l \in J_{k+1}} K(j,i) K(j,l) v_i^2 v_l^2$$

$$\leq C \sum_{i \in J_{k+1}} \sum_{l \in J_{k+1}} \min(1,|i-l|^{2\alpha-1}) v_i^2 v_l^2$$

$$\leq C \sum_{n \in J_{k+1}} v_n^2$$

where C depends only on α .

Hence

$$\sum_{j \in I_k} u(j)^2 \le C \left(\sum_{n \in J_{k+1}} v_n^2 + 2^k \left(\sum_{l=k+2}^{\infty} 2^{-l} \sum_{n \in I_l} v_n^2 \right) \right).$$

This can be written as

$$\sum_{j \in I_k} u(j)^2 \le C \sum_{l=0}^{\infty} \min(1, 2^{k-l}) \sum_{n \in I_l} v_n^2.$$

Let us use this to estimate $Ku^2(m)$; we have (letting C be a constant which depends only on α but may vary from line to line),

$$Ku^{2}(m) \leq C \sum_{k=0}^{\infty} 2^{(\alpha-1)k} \sum_{n \in I_{k}} u_{n}^{2}$$

$$\leq C \sum_{k=0}^{\infty} 2^{(\alpha-1)k} \sum_{l=0}^{\infty} \min(1, 2^{k-l}) \sum_{n \in I_{l}} v_{n}^{2}$$

$$\leq C \sum_{l=0}^{\infty} \sum_{n \in I_{l}} v_{n}^{2} \sum_{k=0}^{\infty} 2^{(\alpha-1)k} \min(1, 2^{k-l})$$

$$\leq C \sum_{l=0}^{\infty} 2^{(\alpha-1)l} \sum_{n \in I_{l}} v_{n}^{2}$$

$$\leq CKv^{2}(m).$$

We thus have $Ku^2 \leq CKv^2$.

Now put $w = v + Kv^2$. Then $Kw^2 \le 2(Kv^2 + Ku^2) \le CKv^2 \le Cw$. We will show this implies an estimate on L(v).

Indeed if $\xi \in c_{00}(\mathbb{Z})$ is positive then

$$\langle wK\xi, wK\xi \rangle = \langle w^2, (K\xi)^2 \rangle.$$

Now

$$(K\xi)^2(m) = \sum_{i,j} K(m,i) K(m,j) \xi(i) \xi(j) \le C \sum_{i,j} K(i,j) (K(m,i) + K(m,j)) \xi(i) \xi(j).$$

This implies $(K\xi)^2 \leq CK(\xi K\xi)$. Hence

$$||wK\xi||^2 \le C\langle w^2, K(\xi K\xi)\rangle = C\langle Kw^2, \xi K\xi\rangle$$

and hence as $Kw^2 \leq Cw$

$$||wK\xi||^2 \le C\langle w, \xi K\xi \rangle = C\langle \xi, wK\xi \rangle \le C||\xi|| ||wK\xi||$$

which leads to $||wK\xi|| \leq C||\xi||$ or $L(v) \leq L(w) \leq C$ where C depends only on α . \square

Theorem 3.4. Suppose $0 < \alpha < 1/2$. Let \mathbb{A} be a subset of \mathbb{Z} . Let $\kappa(\mathbb{A}) = \kappa_{\alpha}(\mathbb{A})$ be the least constant (possibly infinite) such that for any finitely nonzero sequence $(\xi_n)_{n \in \mathbb{A}}$ we have

$$\left(\int_{-\pi}^{\pi} |\sum_{n\in\mathbb{A}} \xi_n e^{in\theta}|^2 |\sin\theta|^{-2\alpha} d\theta\right)^{1/2} \le \kappa (\sum_{n\in\mathbb{A}} |\xi_n|^2)^{1/2}.$$

Let $M = M(\mathbb{A}) = M(\chi_A)$, be defined as the least constant M so that for any finite interval I we have, setting $F = A \cap I$,

$$\sum_{m,n\in F} \min(1, |m-n|^{2\alpha-1}) \le M^2 |F|.$$

Then $\kappa(\mathbb{A}) < \infty$ if and only if $M(\mathbb{A}) < \infty$ and there is constant C depending only on α such that $C^{-1}M(\mathbb{A}) \leq \kappa(\mathbb{A}) \leq CM(\mathbb{A})$. \square

Proof. First suppose $M(\mathbb{A}) < \infty$. Note that $\psi(\theta) = |\theta|^{-\alpha}$ is an L_2 -function whose Fourier transform satisfies the property that $\lim_{|n| \to \infty} |n|^{1-\alpha}$ exists and is nonzero. Now suppose $(\xi_n) \in c_{00}(\mathbb{A})$ and let $g = \sum_{n \in \mathbb{A}} \xi_n e^{in\theta}$. Suppose $f \in L_2[-\pi, \pi]$. Then

$$\langle |\theta|^{-\alpha}g, f \rangle = \langle \hat{\psi} * \hat{g}, \hat{f} \rangle.$$

Hence for a suitable $C = C(\alpha)$ we have, using Plancherel's theorem, with K as in Theorem 3.3,

$$\langle |\theta|^{-\alpha}g, f \rangle \le C\langle K|\hat{g}|, |\hat{f}| \rangle = C\langle |\hat{g}|, \chi_{\mathbb{A}}K|\hat{f}| \rangle.$$

We deduce

$$\langle |\theta|^{-\alpha}g, f \rangle \le CM(\mathbb{A}) ||g||_2 ||f||_2.$$

Thus

$$\int_{-\pi}^{\pi} |g(\theta)|^2 |\theta|^{-2\alpha} d\theta \le C^2 M^2 \left(\sum_{n \in \mathbb{A}} |\xi_n|^2\right).$$

By translation we also have

$$\int_{-\pi}^{\pi} |g(\theta)|^2 (\pi - |\theta|)^{-2\alpha} d\theta \le C^2 M^2 (\sum_{n \in \mathbb{A}} |\xi_n|^2).$$

Since $|\theta|^{-2\alpha} + (\pi - |\theta|)^{-2\alpha} \ge |\sin \theta|^{-2\alpha}$ we obtain immediately $\kappa(\mathbb{A}) \le CM(\mathbb{A})$ where C depends only on α .

Conversely suppose $\kappa(\mathbb{A}) < \infty$. Note first that there is positive-definite and non-negative trigonometric polynomial h so that $h + \psi$ satisfies $\hat{h}(n) + \hat{\psi}(n) \ge c \min(1, |n|^{\alpha-1})$ where c > 0. Now clearly for $(\xi_n) \in c_{00}(\mathbb{A})$,

$$\int_{-\pi}^{\pi} |g|^2 (\psi + h)^2 d\theta \le C \kappa (\sum_{n \in \mathbb{A}} |\xi_n|^2)^{1/2}.$$

Thus again by Plancherel's theorem, if $\xi \geq 0$,

$$||K\xi||_2^2 \le C\kappa ||\xi||_2^2$$
.

A similar inequality then applies for general ξ .

It follows quickly by taking adjoints that $L(\chi_{\mathbb{A}}) \leq C\kappa$ and hence $M(\mathbb{A}) \leq C\kappa(\mathbb{A})$. \square

Theorem 3.5. Suppose \mathbb{F} is a finite subset of \mathbb{Z} and $|\mathbb{F}| = N$. Let $(\eta_j)_{j \in \mathbb{F}}$ be a sequence of independent 0-1-valued random variables (or selectors) with $\mathbf{E}(\eta_j) = \sigma = N^{-2\alpha}$ for $j \in \mathbb{F}$. Let $\mathbb{A} = \{j \in \mathbb{F} : \eta_j = 1\}$ be the corresponding random subset of \mathbb{F} . Then $\mathbf{E}(M(\mathbb{A})^2) \leq C$ where C depends only on α .

Proof. It is easy to see that if this statement is proved for the set $\mathbb{F} = \{1, 2, \dots, N\}$ then it is true for every interval \mathbb{F} and then for every finite subset of \mathbb{Z} . It is also easy to see that it suffices to prove the result for $N = 2^n$ for some n.

Note next that

$$M^2(\mathbb{A}) \le \sup_{1 \le k \le N} \sum_{n \in \mathbb{A}} \min(|k-n|^{2\alpha-1}, 1).$$

Hence

$$M^{2}(\mathbb{A}) \leq C \sum_{k=0}^{n} \max_{1 \leq j \leq 2^{n-k}} 2^{k(2\alpha-1)} |\mathbb{A} \cap [(j-1)2^{k} + 1, j2^{k}]|,$$

where C depends only on α .

Fix an integer s. We estimate, for fixed k,

$$\mathbf{E}(\max_{1 \le j \le 2^{n-k}} |\mathbb{A} \cap [(j-1)2^k + 1, j2^k]|) \le \mathbf{E}(\sum_{j=1}^{2^{n-k}} (\sum_{l=(j-1)2^k + 1}^{j2^k} \eta_l)^s)^{1/s} \\
\le \left(\mathbf{E}(\sum_{j=1}^{2^{n-k}} (\sum_{l=(j-1)2^k + 1}^{j2^k} \eta_l)^s)\right)^{1/s} \\
\le 2^{(n-k)/s} (\mathbf{E}(\sum_{j=1}^{2^k} \eta_j)^s)^{1/s}.$$

Let us therefore estimate, setting $m = 2^k$,

$$\mathbf{E}(\sum_{j=1}^{m} \eta_{j})^{s} = \sum_{\substack{l \leq \min(s,m) \ j_{1} + \dots + j_{l} = s}} \frac{s!}{j_{1}! \dots j_{l}!} \sigma^{l}$$

$$\leq \sum_{l=1}^{s} {m \choose l} l^{s} \sigma^{l}$$

$$\leq \sum_{l=1}^{s} l^{s} (m\sigma)^{l}$$

$$\leq s \max_{1 \leq l \leq m} (l^{s} (m\sigma)^{l}).$$

By maximizing the function $x^s e^{-ax}$ we see that if $m\sigma \geq e^{-1}$ we can estimate this by

$$\mathbf{E}(\sum_{j=1}^{m} \eta_j)^s \le s^{s+1} (m\sigma)^s.$$

On the other hand if $m\sigma < e^{-1}$

$$\mathbf{E}(\sum_{j=1}^{m} \eta_{j})^{s} \le s(s|\log m\sigma|^{-1})^{s/|\log m\sigma|} \le s^{s+1}|\log m\sigma|^{-s}.$$

Suppose k < n. Put s = n - k. We have

$$\mathbf{E}(\max_{1 \le j \le 2^{n-k}} |\mathbb{A} \cap [(j-1)2^k + 1, j2^k]|) \le C(n-k)2^k \sigma$$

whenever $2^k \sigma \ge e^{-1}$ where $C = C(\alpha)$. If $2^k \sigma < e^{-1}$,

$$\mathbf{E}(\max_{1 < j < 2^{n-k}} |\mathbb{A} \cap [(j-1)2^k + 1, j2^k]|) \le C \frac{n-k}{|\log(\sigma 2^k)|}.$$

Hence

$$\mathbf{E}(M(\mathbb{A})^2) \le \sum_{2^k \sigma < e^{-1}} \frac{n-k}{|\log(\sigma 2^k)|} 2^{(2\alpha-1)k} + \sum_{2^k \sigma > e^{-1}} (n-k+1) 2^{2\alpha k} \sigma.$$

We can estimate this further by

$$\mathbf{E}(M(\mathbb{A})^2) \le C(\sum_{2^k \sigma < e^{-n}} 2^{(2\alpha - 1)k} + n\sigma^{1 - 2\alpha} + 2^{2\alpha n}\sigma)$$

where $C = C(\alpha)$.

We now recall that $\sigma = N^{-2\alpha} = 2^{-2\alpha n}$. We then obtain an estimate

$$\mathbf{E}(M(\mathbb{A})^2) \le C(\alpha). \quad \Box$$

Theorem 3.6. Suppose $0 < \lambda < \infty$ and that $2 . Let <math>\mathbb{F} \subset \mathbb{N}$ be a finite set with $|\mathbb{F}| = N$. Let $(\eta_j)_{j \in \mathbb{F}}$ be a sequence of independent 0 - 1-valued random variables (or selectors) with $\mathbf{E}(\eta_j) = \sigma = N^{(1/p-1/2)/(1/2-1/r)}$ for $j \in \mathbb{F}$. Let $\mathbb{A} = \{j \in \mathbb{F} : \eta_j = 1\}$ be the corresponding random subset of \mathbb{F} (so that $\mathbf{E}(|\mathbb{A}|) = N^{(1/p-1/r)/(1/2-1/r)}$). Then $\mathbf{E}(\Lambda_{p,\lambda}(\mathbb{A})^p) \leq C$ where C depends only on p and λ .

Proof. Suppose $(\xi_n)_{n\in\mathbb{A}}$ are any (complex) scalars and let $f = \sum_{n\in\mathbb{A}} \xi_n e^{in\theta}$. Let $\alpha = (1/2 - 1/p)/(1 - 2/r)$, and let $\frac{1}{q} = \frac{1}{2} - \alpha$. Then by Holder's inequality, since $\frac{1}{p} = (1 - \frac{2}{r})\frac{1}{q} + \frac{2}{r}\frac{1}{2}$

$$\left(\int_{-\pi}^{\pi} (|f||\sin\theta|^{\lambda(2/p-1)})^{p} d\theta \right)^{1/p} \le$$

$$\le \left(\int_{-\pi}^{\pi} |f|^{q} d\theta \right)^{(1-2/r)/q} \left(\int_{-\pi}^{\pi} (|f||\sin\theta|^{r\lambda(1/p-1/2)})^{2} d\theta \right)^{1/r}.$$

Note that $r\lambda(1/p - 1/2) = (1/p - 1/2)/(1 - 2/r) = \alpha$. Hence

$$\left(\int_{-\pi}^{\pi}(|f||\sin\theta|^{\lambda(2/p-1)})^pd\theta\right)^{1/p}\leq (\Lambda_{q,0}(\mathbb{A})^{1-2/r}\kappa_{\alpha}(\mathbb{A})^{2/r}(\sum_{n\in\mathbb{A}}|\xi_n|^2)^{1/2}.$$

Thus we deduce

$$\Lambda_{p,\lambda}(\mathbb{A}) \leq (\Lambda_{q,0}(\mathbb{A})^{1-2/r} \kappa_{\alpha}(\mathbb{A})^{2/r}.$$

It follows further from Holder's inequality that

$$(\mathbf{E}(\Lambda_{p,\lambda}(\mathbb{A}))^p)^{1/p} \le (\mathbf{E}(\Lambda_{q,0}(\mathbb{A})^q)^{(1-2/r)/q} \mathbf{E}(\kappa_{\alpha}(\mathbb{A})^2)^{1/r}.$$

Hence by the $\Lambda(p)$ theorem of Bourgain [2] that $\mathbf{E}(\Lambda_{q,0}(\mathbb{A})^q)^{1/q} \leq C = C(q)$. By Theorem 3.5 above we obtain:

$$(\mathbf{E}(\Lambda_{p,\lambda}(\mathbb{A}))^p)^{1/p} \leq C$$

where $C = C(\lambda, p)$. \square

4. The structure of the space of polynomials

We recall that $(\tau_{nk}^{(\lambda)} = \cos \theta_{nk}^{(\lambda)})_{k=1}^n$ are the zeros of the polynomial $\varphi_n^{(\lambda)}$ ordered so that $0 < \theta_{n,1} < \theta_{n,2} < \cdots < \theta_{nn} < \pi$.

Theorem 4.1. Suppose $1 , <math>-\frac{1}{2} < \lambda$, $\mu < \infty$ and that the ultraspherical polynomials $(\varphi_n^{(\lambda)})_{n=0}^{\infty}$ form a basis of $L_p([-1,1],(1-x^2)^{\mu-\frac{1}{2}})$ or, equivalently that

(4.1)
$$\left| \frac{2\mu + 1}{2p} - \frac{2\lambda + 1}{4} \right| \le \min(\frac{1}{4}, \frac{2\lambda + 1}{4}).$$

Let $\tau_{nk} = \tau_{nk}^{(\lambda)}$. Then there is a constant $C = C(\lambda, \mu, p)$ independent of n so that if $f \in \mathcal{P}_n$ then

$$\frac{1}{C} \left(\frac{1}{n} \sum_{k=1}^{n} ((1 - \tau_{nk}^{2})^{\mu} |f(\tau_{nk})|^{p})^{1/p} \le \left(\int_{-1}^{1} |f(x)|^{p} (1 - x^{2})^{\mu - \frac{1}{2}} dx\right)^{1/p} \le C \left(\frac{1}{n} \sum_{k=1}^{n} ((1 - \tau_{nk}^{2})^{\mu} |f(\tau_{nk})|^{p})^{1/p}.$$

In particular $d(\mathcal{P}_n, \ell_p^n) \leq C^2$.

Proof. We will start by supposing that μ is not of the form $\frac{1}{2}(mp-1)$ for $m \in \mathbb{N}$ and that $-\frac{1}{2} < \lambda$ is arbitrary (i.e. we do not assume (4.1)). In this case we can find $m \in \mathbb{N}$ so that $-\frac{1}{2} < \mu - \frac{1}{2}mp < \frac{1}{2}(p-1)$. Then $w(\theta) = (\sin \theta)^{2\mu - mp}$ is an A_p -weight. This implies (cf.[4]) that there is a constant $C = C(\mu, p)$ so that for any trigonometric polynomial $h(\theta) = \sum_{k=-N}^{N} \hat{h}(k)e^{ik\theta}$ of degree N, and any $1 \leq l \leq N$ we have

$$\left(\int_{-\pi}^{\pi} \left| i \sum_{k \ge l} \hat{h}(k) e^{ik\theta} - i \sum_{k \le -l} \hat{h}(k) e^{ik\theta} \right|^p d\theta \right)^{1/p} \le C \left(\int_{-\pi}^{\pi} |h(\theta)|^p d\theta \right)^{1/p}.$$

Summing over l = 1, 2, ..., N we obtain

$$\left(\int_{-\pi}^{\pi}\left|\sum_{k=-N}^{N}ik\hat{h}(k)e^{ik\theta}\right|^{p}d\theta\right)^{1/p}\leq CN\left(\int_{-\pi}^{\pi}|h(\theta)|^{p}d\theta\right)^{1/p},$$

i.e.

$$\left(\int_{-\pi}^{\pi} |h'(\theta)|^p d\theta\right)^{1/p} \le CN \left(\int_{-\pi}^{\pi} |h(\theta)|^p d\theta\right)^{1/p}.$$

Now suppose $f \in \mathcal{P}_n$ and let $h(\theta) = (\sin \theta)^m f(\cos \theta)$ so that h is a trigonometric polynomial of degree at most m + n - 1. Let I_k be the interval $|\theta - \theta_{nk}| \leq \frac{\pi}{n}$ for $1 \leq k \leq n$. Then

$$\begin{split} \int_{I_k} |h(\theta)| d\theta &\leq \left(\int_{I_k} w(\theta)^{-p'/p} d\theta \right)^{1/p'} \left(\int_{I_k} |h(\theta)|^p w(\theta) d\theta \right)^{1/p} \\ &\leq C \frac{1}{n^{1/p'}} (\sin \theta_{nk})^{m-2\mu/p} \left(\int_{I_k} |h|^p |\sin \theta|^m d\theta \right)^{1/p}. \end{split}$$

Here we use the properties of (τ_{nk}) and (θ_{nk}) from Proposition 2.5. On the other hand,

$$\int_{I_k} |h(\theta) - h(\theta_{nk})| d\theta \le \frac{\pi}{n} \int_{I_k} |h'(\theta)| d\theta$$

$$\le C \frac{1}{n^{1+1/p'}} (\sin \theta_{nk})^{m-2\mu/p} \left(\int_{I_k} |h'|^p w d\theta \right)^{1/p}.$$

Putting these together we conclude that

$$\frac{1}{n} |h(\theta_{nk})|^p (\sin \theta_{nk})^{2\mu - mp} \le C^p \left(\int_{I_k} |h|^p w \, d\theta + \frac{1}{n^p} \int_{I_k} |h'|^p w \, d\theta \right).$$

On summing we obtain

$$\frac{1}{n} \sum_{k=1}^{n} |f(\tau_{nk})|^p (1 - \tau_{nk}^2)^{\mu} \le C^p \left(\int_{-\pi}^{\pi} |h|^p w \, d\theta + \frac{1}{n^p} \int_{-\pi}^{\pi} |h'|^p w \, d\theta \right)$$

since $\sum_{k=1}^{n} \chi_{I_k}$ is uniformly bounded by Proposition 2.5. Now appealing to (4.2) we have

$$\frac{1}{n} \sum_{k=1}^{n} |f(\tau_{nk})|^p (1 - \tau_{nk}^2)^{\mu} \le C^p \int_{-\pi}^{\pi} |h|^p w \, d\theta.$$

Recalling the definition of w and h this implies

$$(4.3) \qquad \left(\frac{1}{n}\sum_{k=1}^{n}|f(\tau_{nk})|^{p}(1-\tau_{nk}^{2})^{\mu}\right)^{1/p} \leq C\left(\int_{-1}^{+1}|f(x)|^{p}(1-x^{2})^{\mu-\frac{1}{2}}dx\right)^{1/p}.$$

Note that we only have (4.3) when μ is not the form $\frac{1}{2}(mp-1)$. We now prove (4.3) for μ in the exceptional case. We observe that if $\nu = \frac{2}{r}\mu + \frac{1}{r} - \frac{1}{2}$ then $\nu > -\frac{1}{2}$ and (4.1) hods for $\lambda = \nu$. In fact there exists $0 < \delta < \frac{p}{2}$ so that $(\varphi_n^{(\nu)})$ is a basis of both $L_p([-1,1],(1-x^2)^{\mu-\delta})$ and of $L_p([-1,1],(1-x^2)^{\mu+\delta})$. Let

$$S_n^{\nu}(f) = \sum_{k=0}^{n-1} \varphi_n^{(\lambda)} \int_{-1}^{+1} f(x) \varphi_n^{\nu}(x) (1 - x^2)^{\nu - \frac{1}{2}} dx$$

be the partial sum operator associated with this basis. Let us consider the map $T_n: L_p([-1,1], (1-x^2)^{\mu \pm \delta}) \to \mathbf{R}^n$ defined by

$$T_n(f)_k = (S_n^{(\nu)} f)(\tau_{nk}).$$

Then there is a constant C independent of n so that

$$\left(\frac{1}{n}\sum_{k=1}^{n}|T_n(f)_k|^p(1-\tau_{nk}^2)^{\mu\pm\delta}\right)^{1/p}\leq C\left(\int_{-1}^{+1}|f(x)|^p(1-x^2)^{\mu\pm\delta-\frac{1}{2}}\right)^{1/p}.$$

It follows by interpolation that we obtain

$$\left(\frac{1}{n}\sum_{k=1}^{n}|T_n(f)_k|^p(1-\tau_{nk}^2)^{\mu}\right)^{1/p} \le C\left(\int_{-1}^{+1}|f(x)|^p(1-x^2)^{\mu-\frac{1}{2}}\right)^{1/p}$$

and on restricting to \mathcal{P}_n we have (4.3) for all μ .

We now assume λ satisfies (4.1) and complete the proof by duality. Let σ be defined by $\frac{\sigma}{p'} + \frac{\mu}{p} = \lambda$. Then (4.1) also holds if we replace p, μ by p', σ .

Suppose $f \in \mathcal{P}_n$. Then there exists $h \in L_p([-1,1],(1-x^2)^{\sigma-\frac{1}{2}})$ so that

$$\int_{-1}^{+1} |h(x)|^{p'} (1-x^2)^{\sigma-\frac{1}{2}} dx = 1$$

and

$$\int_{-1}^{+1} h(x)f(x)(1-x^2)^{\lambda-\frac{1}{2}}dx = \left(\int_{-1}^{+1} |f(x)|^p (1-x^2)^{\mu-\frac{1}{2}}dx\right)^{1/p}.$$

Let $g = S_n^{(\lambda)} f$. Then

$$\int_{-1}^{+1} |g(x)|^{p'} (1-x^2)^{\sigma-\frac{1}{2}} dx \le C^p$$

where $C = C(p, \lambda, \mu)$ is independent of n. Now using Gauss-Jacobi quadrature (see Proposition 2.6) we have

$$\frac{1}{\sum_{k=1}^{n}} \alpha_{nk}^{(\lambda)} f(\tau_{nk}) g(\tau_{nk}) = \int_{-1}^{+1} f(x) h(x) (1-x^2)^{\lambda-\frac{1}{2}} dx.$$

We recall that

$$0 \le \alpha_{nk} \le C(1 - \tau_{nk}^2)^{\lambda} n^{-1}$$

where C is again independent of n. It follows that

$$\left(\int_{1}^{+1} |f(x)|^{p} (1-x^{2})^{\mu-\frac{1}{2}} dx\right)^{1/p} \leq$$

$$\leq C\left(\frac{1}{n} \sum_{k=1}^{n} |f(\tau_{nk})|^{p} (1-\tau_{nk}^{2})^{\mu}\right)^{1/p} \left(\frac{1}{n} \sum_{k=1}^{n} |g(\tau_{nk})|^{p'} (1-\tau_{nk}^{2})^{\sigma}\right)^{1/p'}.$$

Now applying (4.3) we can estimate the last term by a constant independent of n. Thus we have

$$\left(\int_{1}^{+1}|f(x)|^{p}(1-x^{2})^{\mu-\frac{1}{2}}dx\right)^{1/p}\leq C\left(\frac{1}{n}\sum_{k=1}^{n}|f(\tau_{nk})|^{p}(1-\tau_{nk}^{2})^{\mu}\right)^{1/p}.$$

This completes the proof. \Box

REFERENCES

- 1. V.M. Badkov, Convergence in mean and almost everywhere of Fourier series in polynomials orthogonal on an interval, Math. USSR Sbornik 24 (1974), 223-256.
- 2. J. Bourgain, Bounded orthogonal sets and the Λ(p)-problem, Acta Math. 162 (1989), 227–246.
- 3. J. Garnett, Bounded analytic functions, Academic Press, Orlando, 1981.
- 4. R.A. Hunt, B. Muckenhaupt and R.L. Wheeden, Weighted norm inequalities for the conjugate function and the Hilbert transfrom, Trans. Amer. Math. Soc. 176 (1973), 227–251.
- 5. N.J. Kalton and I. Verbitsky, Weighted norm inequalities and nonlinear equations, to appear, Trans. Amer. Math. Soc..
- B. Muckenhaupt, Mean convergence of Jacobi series, Proc. Amer. Math. Soc. 24 (1970), 288-292.
- 7. B. Muckenhaupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226.
- 8. D.J. Newman and W, Rudin, Mean convergence of orthogonal series, Proc. Amer. Math. Soc. 3 (1952), 219–222.
- 9. H. Pollard, The mean convergence of orthogonal series I, Trans. Amer. Math. Soc. **62** ((1947)), 387–403.
- 10. H. Pollard, The mean convergence of orthogonal series II, Trans. Amer. Math. Soc. 63 ((1948)), 355–367.
- 11. H. Pollard, The mean convergence of orthogonal series III, Duke Math. J. 16 (1949), 189-191.
- 12. W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-227.
- 13. E.T. Sawyer, A two-weight weak type inequality for fractional integrals, Trans. Amer. Math. Soc. 281 (1984), 339–345.
- 14. G. Szegö, *Orthogonal polynomials*, American Math. Soc. Colloquium Publications No. 23, Fourth edition, Providence, 1975.
- 15. M. Talagrand, Sections of smooth convex bodies via majorizing measures, Acta Math. 175 (1995), 273-300.
 - 1 DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI COLUMBIA, MO 65211, U.S.A. $E\text{-}mail\ address:}$ nigel@math.missouri.edu
 - 2 DEPARTMENT OF MATHEMATICS, THE HEBREW UNIVERSITY, JERUSALEM, ISRAEL *E-mail address*: liortz@math.huji.ac.il