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§0 INTRODUCTION(D

Let A be a linear operator in the vector space V = GF[2]". The set {a, A, A%a, . ..
is the orbit of o under A. The period of « is the minimal m such that for some sg
A3T™ = A3 for all s > s.

Questions of periods and behavior of orbits were treated quite extensively in the
context of “linear recurring sequences” [2,3]. Such sequences figure in various appli-
cations in Mathematics and Engineering (e.g. in coding theory), and implemented
by shift-register circuits [2].

In the case of a linear recurring sequence, the operator is represented by the

matrix
0 1 0 0
0 0 1 0
ap a3 Aas ... Ap—1
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This is easily seen to be a canonical form of a cyclic linear transformation in V,
for which the minimal polynomial is of degree n = dim V.

In this note(® we study the orbits of a cyclic linear transformation directly,
without using a canonical form. The main result is a detailed structure of V' with
respect to orbits and periods, counting numbers of periods of various sizes and some
related counts.

Realizations of general operators on V = (GF|[2])™ by circuits (and vice versa)
are quite important in circuit design, verification and various uses of automata [1].
Operators on (GF[2])™ represent “symbolically” any finite state transformation.
The periods of orbits are relevant for many issues in automata application, such as
re-initialization, synchronization, pseudo-random character of orbits. These appli-
cations motivated the original manuscript (1) and its restriction to the field GF[2].
However it is easy to see that results and proofs carry over to GF[p] with obvious

adjustments.

§1. TRREDUCIBLE MINIMAL POLYNOMIAL

Let f(x), the minimal polynomial of A, be an irreducible polynomial of degree

n=dmV.

Claim 1la. There is a integer m dividing 2™ — 1 such that all 0 # o € V have
period of length m.

Claim 1b. Given m dividing 2™ — 1, there are ¢(m)/n irreducible polynomials

satisfying 1a, where o(m) is the number of integers m and relatively prime to m.

Proof. Since f is irreducible, the set of polynomial in A

{p(A) =po + p1A+p24>...} ={p(z) mod f(z)}

is a finite extension field of degree n over GF[2]. Thus it is isomorphic to GF[2"].
The non-zero elements in this field form a cyclic group of order 2™ — 1. The powers
{A*} form a cyclic subgroup of order m and clearly m|(2" — 1). Thus A™ —1 =10
and (A™ —1l)a=0foralla e V.

Now let a # 0 be such that A'a = A®«a, s < t. Then A*(A*"% — 1)a = 0. The

elements p(A) of the field are either 0 or non-singular, which is the case for the
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powers of A. Thus A" = 1 where r = ¢t — s, and so m|r. This proves that the period
of any a # 0 is exactly m. Moreover already A™a = a.

1b is ascribed by [3] to Pellet in 1870[4]. We outline the proof. Period m for
x implies ™ — 1 = 0 in GF[2"]. Each group of n primitive roots of z™ —1 = 0
form the set of roots of an irreducible polynomial of degree n and period m. There

are ¢(m)/n disjoint groups. (A primitive element is a cyclic generator of the group

GF[2"] - 0).

§2. MINIMAL POLYNOMIAL - POWER OF IRREDUCIBLE ONE

Let the minimal polynomial of A be f(z) = g(z)" where deglg(z)] = k, g(x)
irreducible and n = k - r. Let m be the period (by claim 1a) of g(x). As we know
™ —1 = h(z)g(z). Since m divides ™ — 1, it is odd an the m’th roots of unity -
the solutions of ™ — 1 = 0 - are distinct. Hence g.c.d[h(x),g(z)] = 1.

Consider the descending scale of spaces

V=VyDoViDVe---DV; =0 where
(2.1) . .
Vi=g(A)'"V ={g(A)'a, a € V}.

Claim 2a. dimV;/V;1; = k over GF[2]; A induced on this quotient has g(x) as

its minimal polynomial.
Claim 2b. .
gA)aeV; iff aeVi_;, 0<j<i<r;
if g(A)aé¢V; then o€V i.
Proof. We define also an ascending scale
Vi =ker[g(A)Y] = {a €V, g(A)'a = 0};
we’ll show V* = V,_;.

(2.2) g(A)"V =0 implies V' D g(A)"™V =V,_,,

however g(A)"~1V = V,_; # 0 since the minimal polynomial of A is g(z)". The
space V' is invariant under A and g(A)V® C V*~1  hence the action of A is well-

defined on the quotient V¢=!/V? and the minimal polynomial of this action is
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g(A) (it clearly annihilates, and it is irreducible). Thus if Vi # V¢*1 the quotient-

dimension is 2 k, else (if equality holds)
g(A)Ya =0 implies g(A) la=0;

using this for o = g(A)" 7B, it readily implies g(A)"~13 = 0 for all 8 € V, contrary
to the definition of r.

Thus V7™—* 2 V% and now by induction dimV* > ik. Since V" = V is of
dimension -k = n, it must be that dim V* = ik for all ¢. In a similar way, we prove
dim V,_; = ik and in view of the inclusion (2.2), V,_; = V* and all the successive

quotient are of dimension k. Now
g(Aia eV, iff g(A)F"Ia=0, so acV~ U=V,

as claimed in (2.1). The second claim follows easily.

Computation of the periods.
Let
(AM —Da=0, aeV;— Vi

Then in V;/V;41 the induced o # 0 and A satisfies (AM — 1)a = 0. By claim 1a,
m divides M.

Claim 2c. Let t = argmin,[2® = r — ¢]. Then the period of a € V; — Vi1 is m2t.

The maximum period in V — V; is m27, where 27 > r (So between mr and

2mr).
Proof.

a=g(A) oy, ageVo—V, 28 +i>r>271 4

A" = [1 4 h(A)g (A =1+ h(A)* g(A)*

(A" — Do = h(4)* g(A)* g(A)ap € g(4)*HV C g(A)V =0,
hence A2 Mq = q.

For v < m2t, let v = m2°N, s < t, N odd. Then
AY = (14 h(A)g(A)ZN = (1 + h(A)¥ g(4)*" )N

=1+ (JD hA)? g(A)* + Bg(A)¥ .
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If (AY — 1)ae = 0, the sum of the last two terms will annihilate o

C+Bylp=0, p=ga¥a, = (V).

The vector g is in V;y9s — V;42:_1 by claim 2b and
CB = —Bg(A)B € Vigr42: (if i 4+2° <r),

but (]f) =1 since N is odd and g.c.d(h,g) = 1 so h(A) is a non-singular matrix in
the quotient V4 9s —Vii9s 1 and so is (f)h(A)?. SoB=—-C71Bg(A)B € Viyas_1,

which is a contradiction. Thus the period cannot be less then 2!m.QED

Count. For a fized t, the number of orbits with period 2t - m is

(2.3) > on—(i+Dk 9k _1)/9tm.
r—2t<i<r—2t-1
Indeed the first factor counts the size of the vector space V;;; whose dimension
is n— (14 1)k; note that each equivalence class in the quotient V;/V;; also has this
size, and (2% — 1) is the number of classes. Thus the counting formula follows from
claim 2c. There are two extreme cases. For orbits of minimal period m (¢ = 0),
i = r—1 and their total number is (2¥ —1)/m. For orbits of maximum period 27m,

the number of orbits is obtained from (2.3) by setting ¢ = T' and summing from

i=0tor—2T-1_1.

§3 A GENERAL MINIMAL POLYNOMIAL OF DEGREE n

L
f(z) = [ g;x)", g; irreducible, of degree k; and pairwise relatively prime. The
j=1
space V' decomposes into a direct sum ) o Vj, with a = ) a; correspondingly. A
induces linear transformations on V; with minimal polynomials g;(z)" of degree

n; = kj - r;. Moreover
Ala =a iff Alaj=0a;, 1<75<4.

So if a; # 0 its period is 2%m;, ¢; defined as in claim 2c, thus 2%m; divides the

exponent g and the period of « is

(3.1) m = lLem.(2%m;|1 < j < 4,a; #0).
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Conversely given a vector of partial periods as in (3.1), there is a vector v € V'
with the period m, namely & = Y «; where a; € V; has period 2m; (if a; is
taken # 0). The number of such vectors is the product

H Z an—(i—i—l)kj (2kj _ 1) =

r—2ti §i<r—2tj -1

J
a;#0

and the total number of orbits in this set is b/m.
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