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1. INTRODUCTION

This work deals with projections on a finite dimensional Banach space X which
have “almost” locally minimal norms (see the definition in Section 2). It will
make little sense to discuss these projections without mentioning the following
fundamental open problem which we hope to better understand by studying those

“almost locally minimal” objects.

Problem 1.1. Does there exist a function 9 () defined for A > 1 such that, for every
n > 1,1 <k < n and every projection P on £} with rank P = k and ||P|| = A,
d(P(£7), £5) < p(A)?

(d(Y, Z) is the Banach-Mazur distance between the isomorphic spaces Y and Z).

The problem has a positive answer in the special case of small \’s:

Theorem 1.2 ([Z-1] [Z-2]). There exists a function () defined for 1 < XA < 1.01

with ;Hnl Y(A) =1 such that, for everyn > 1,1 < k <n and every projection P on
—

2% with rank P =k and ||P|| = X < 1.01, d(P(£}),£5) < ().

Theorem 1.2 is proved by constructing a projection ) of norm 1 which is close
to P. Whenever P and () are projections on a space X and ||[P — Q| = a < 1,
the operator J = Q|p(x) is an isomorphism of P(X) onto Q(X) with ||Je —¢|| =
Qe — Pe|| < [|Q — Pllllell < alle|| for all e € P(X); hence d(P(X),Q(X)) <
(1 — )" (1 + «). This raises the following question: Given a projection P with
IP|| = A > 1 on £}, can we find a sequence of projections {P;}¥, on £} with
max{||Pi—1 — F||: 1 <i< N} < asuch that Py =P, ||Py|| =1 and Na < ¢(A),
where () is independent on n and k = rank(P)? The existence of such a sequence

will settle Problem 1.1 because
d(P(X), Pn(X)) < [(1— ) 7' (1 + o))V < e*™)

if a < % Let us pause for the following

Remark 1.3. It follows from Theorem 1 of [D-Z] that whenever P is a projection on
£} with ||P|| = X\, rankP = k and d(P(X), £¥) < u one can embed /7 isometrically
in /7% and extend P to a projection P of £7% onto P(X) in a natural way so
that P admits a sequence {P;}Y, of projections with Py = P, ||Py|| = 1 and
max{||Pi_1 — F;|]| 1 <i < N} = o where Na < 2\p.
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Unfortunately we are far from obtaining such a sequence without knowing in
advance that d(P(X),£¥) is under control. The main difficulty is the lack of infor-
mation about the structure of the set m(k), of projections of a fixed rank k, on a
space X.

We know that m(k) is a closed connected set which is not convex. it turns out

that m(k) is “almost” locally convex in the following sense:

Proposition 1.4. Let 0 < o < 1/8 and let P and Q) be projections on a Banach
space X with [[P[], [Q < A, [P = Q|| = o and rankP = k. Then there is a
continuous function 6 : [0,1] — w(k) such that 0(0) = P, 6(1) = Q and, for each
0<t<1)0@)—((1—-t)P+tQ)| <t(1—1t)Ca® where C = C(\) does not depend

on k, X or the particular projections.

Proposition 1.4 is a consequence of the following lemma which was proved in

[Z-2]:

Lemma 1.5. Let X be a Banach space and let A9 > 1. There exist a constant
C = C(Xo) and a continuous function 3(T) defined for all operators T on X which
satisfy the conditions |T| < Ao and |T? — T|| = a < %, such that B(T) is a
proejction and ||B(T) — T|| < Ca.

1
8

Proof of Proposition 1.4. For every 0 <t < 1put Ty = (1—t)P+tQ then ||Ti|| < Ao
and ||[T2 —T3|| = |[t(1—¢)(P—Q)?|| < t(1—t)o?. By Lemma 1.5, foreach 0 < ¢ < 1
there is a projection 0(t) = B(T}) such that

I(1 = t)P +1Q = 0(t)|| = |IT: — B(T)|| < t(1 - t)Ca®.

Since (3 is continuous, so is A(¢). O

In the sequel C' = C()\p) will denote the constant appearing in Lemma 1.5. An
explicit expression for C' can be C' = 4(2)g + 1)e.

2. ALMOST MINIMAL PROJECTIONS

The construction of the desired sequence of projections {P;}_, for which || Py|| =
|IP|| = A > 1 and ||Pn|| = 1 must be essentially a norm reduction process. In each
step we like to find in a ball B(P;, ) of radius & around P; another projection P4

of smaller norm. What happens if this cannot be done at a reasonable pace? The
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following discussion of this question deals with one type of a norm reduction pace

which seems to be useful.

Definition 2.1. Let \g > 1, D = 10+ 4)g and 0 < a < (8)\g)~ . A projection P
with ||P|| = A < A on X is called almost a-minimal if the ball B(P, &) does not
contain a projection Q with [|Q|] < A(1 — Da?). The projection P is said to be

almost locally minimal if it is almost a-minimal for all 0 < o < (8))~1.

Remark 2.2. The size of the constant D appearing in Definition 2.1 becomes sig-
nificant only in the necessity part of Theorem 2.4 bellow. Any positive constant D

will do for Theorem 2.3 and the sufficiency part of Theorem 2.4.

The main difficulty in the proofs of Theorems 2.3 and 2.4 below is the following;:
How do we construct a projection with good control over its norm and its position?
Lemma 1.5 provides us with a tool: If T is an operator which is d-close to its
square T2, then there is a projection which is C'd-close to T, where C is a universal
constant. Next, we need operators which are close to their squares. The following
surprising fact will be proved below: If P is a projection and U and V are any
operators with ||U]|, ||V]| < § then the operator T = P+ (I — P)VP + PV (I — P)
is C162-close to its square, where C; is a universal constant. With these ideas in

mind, let us proceed to precise statements and their proofs.

Theorem 2.3. Let a < 4AC~!, where C = C(\g) is the constant of Lemma
1.5, and let P be a projection on a finite dimensional space X with ||P]| = X < Ap.
Assume that P is almost a-minimal. Then there is an operator S on X with nuclear
norm ||S||x = 1 such that SP = PS and trPS > (1+8X2(A+1)D1a) " *A\(1—D;10?)
where D1 = D + A\ 2C.

Proof. Put
G(a) = {T = P+(I-P)UP+PV(I-P): U,V € L(X) and ||U|,||V]| € AAX1+N)]ta}

then, clearly, G(«) is a convex set, symmetric around P. Suppose that G(«a) con-

tains an element T'= P + (I — P)UP + PV (I — P) where

[TV < [4AAQ + A" e and [IT]] < A1 = (D +A72C)a?).
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Since

IT> -T||=||P+PV(I—-P)+(I—-PUP+ (I -PUPV(I-P)
+PV(I—-P)UP—-P—(I-P)UP-PV(I-P)|
=||(I = P)UPV(I — P) + PV(I — P)UP|| < [A(1+ A)? + X (1 + N)]|IU[[|IV]
<2X(1+ A2 [4A1 + N)]%a? < (80 ta?

we get by Lemma 1.5 that there is a projection @ on X such that ||Q — T|| <
Ca?(8)\)~1. Hence

QI < ITN+11Q — Tl < A1 — (D + A7*C)a’) + ACa®(8X%) 7

< A1 - Do?)
and, since o < 4\C 1,
1
[P=Ql <||P-T|+[T-Q| < §a+0a2(8)\)_1 <o

The last two inequalities contradict the assumption that P is almost a-minimal. Put
D; = D+)2C. Tt follows that the ball B(0, A\(1— D1a?)) and the convex set G(a)
are disjoint and therefore there exists a functional W* on L(X) which separates
these two sets, i.e. W*(F) < A(1 — D1a?) < W*(T) for all F € A\(1— D;a?)B(0,1)
and T € G(«). Without loss of generality we may assume that ||[W*|| = 1 and
W*(T) > A(1 — D1o?) for all T € G(a). Because of

(2.1) A1 = D1a®) <W*(P) < [[W*[[||P]| < A

and because P+~(I —P)UP+6PV (I —P) € G(«) for every choice of signs v = +1,
§ = £1 whenever |U][], [V]] < [4X(A + 1)] e, we get that

(2.2) \W*((I — PYUP)| + |W*(PV(I — P))| < ADya?

for all U,V € L(X) with |[U|,||[V]] < [4A(A + 1)]7'a. As is well known, the
functional W* on L(X) is represented by an operator W on X via the identity
W*(T) = tr(WT), where the nuclear norm ||W| s = 1. It follows from (2.2) that,
for every operator U € B(0, 1), we have that

(2.3) AN’ (A+1)Dya > |W*((I — P)UP)| = [tr(W(I — P)UP)|
= [tr(PW (I — P)U)|
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and

(2.4) AN\ +1)Dra > [WH*(PU(I — P))| = [tr(WPU(I — P))|
= |tz((I — P)WPU)|.

Hence ||[PW (I — P)||x < 4)\2(A + 1)D1c and
(I = PYWP||x <4X*(A+1)Dsar.
Define S; = PWP + (I — P)W(I — P) then S;P = PS; and
1Sy — W||a = [|[PW(I — P)+ (I — PYWP||x <8\ (A+1)D1«

hence ||S1|[x < ||W||a +8A2(X+1)D1c and the operator S = ||S1||x1S1 will satisfy
the desired conditions: ||S|» =1, SP = PS and, by (2.1),

trSP > (1 +8X2(\+ 1)Dya) tr(S1P) =
= (1+8\2(\+ 1)D1a) " Hr(WP) >
> (1+8X2(A+1)D1a) - A1 — D1a?) O

We will conclude the section with the following characterization of almost locally

minimal projections.

Theorem 2.4. A projection P on a finite dimensional space X with ||P|| = X is
almost locally minimal if and only if there is an operator S on X satisfying the

following three conditions: ||S||a =1, trSP = X and SP = PS.

Proof. Suppose that P is almost locally minimal then it satisfies the assumptions
of Theorem 2.3 for every a > 0 small enough. Hence, for each such « there is an

operator S, on X such that ||Sy||n =1, So.P = PS, and
tr(SeP) > (14 8X*(A + 1)D1a) ' A(1 — D1a?).

Since the constant Dy = D (o) does not depend on «, by passing to a convergent
subsequence as « tends to 0, we obtain a limit operator S on X with [|S||x = 1,
SP = PS and trPS = \. Conversely, suppose that there is an operator S satisfying

the above three conditions and suppose that P is not almost locally minimal. Then
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there is an 0 < a < (8A)~! and a projection Q € B(P, «) with ||Q] < A(1 — Da?).
We will show that this yields a contradiction. This is the place where the size of
the constant D of Definition 2.1 plays a role.

Let T = PQ+1—Q then T maps the subspace (I —Q)(X) identically onto itself
and the subspace Q(X) into P(X). Moreover, ||I-T| = ||Q—PQ| = [|(Q—P)Q|| <
Aa hence T is invertible and, if V = T71, then ||[V]| < (1—Aa)~! and we claim that
the operator R = P+ (I — P)V P is a projection of X onto Q(X) along (I — P)(X).
Indeed, R? = R, I — R = (I — P)(I — VP) and, by the definition of T, for every
y € Q(X), Ty = Py. Therefore

Ry=Py+ (I —-P)T 'Py=Py+ (I —-P)T 'Ty=y.

Moreover, if ||z]] < 1 then y = T71Pz € Q(X) and |ly]| < (1 — Xa)")\||z| <
(1 —Xa)"1X and so

(2.5)
|Rz — Pz|| = ||(I - P)T~'Pz|| = ||(I - P)Qy||

= (@ - P)Qull < eAllyll < aX*(1 = Aa) ™! < 2M 0.

Replacing P and @ by I — @ and I — P, respectively, in the above argument and
putting W = (I — Q)(I — P) + P we get that W|p(x) is the identity on P(X) and

i =Wl = Q- P)[|=Q(Q - P)[| < Ao

Hence W is invertible and it maps (I — P)(X) isomorphically onto (I —Q)(X). Put
U =W~" then ||U|| < (1— X&)~ ! and consider R =1 —-Q+ QU (I — Q). Then R is
a projection with kernel Q(X) and if y € (I — P)(X) then Wy = (I — Q)y therefore

Ry=(I-Qy+QWI-Q)y=y.

It follows that R is a projection of X onto (I — P)(X) with ker R = Q(X) and
hence R = I — R. Moreover, for every z € Ball(X) let y = W=Y(I — Q)z, then
y e - P)X)

(2.6) (R = Q)(@)]| = I(I - R)(z) - (I - Q)(x)]l =
= [[QU(I - Q)z| = [|Q — P)y]
< Aaflyll < Aa(1 +A)(1 = Ae) ™ |z]| < 4aA(1 + A)]lz].
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Consequently we get that
P+(I-P)VP=R=I-R=Q-QU(I-Q)

and hence

(2.7) Q=P+(I-P)VP+QUI - Q).

Note that
(2.8)
Q@-PUP-Q)=QU(I-Q)-QU(I-P)-PU(I-Q)+PU(I-P)=

=QU(I-Q)—-QU(I —-P)+PU(I—-P)

because U = W~! maps (I — Q)(X) onto (I — P)(X). Also,
(2.9)
QU(I-P)=QUI—-P)=(Q—-P)QU(I —-P)+PQU(I—-P) =

=(@-P)RQU(I - Q)+ (@ -P)QU(Q - P)+ PQU(I — P).

Combining identities (2.7), (2.8) and (2.9) we get that

(2.10)
Q=P+ (I —-P)VP+(Q-P)UP-Q)—PU( - P)

+(@-P)QRUI -Q)+(Q-P)QU(Q - P)+ PQU(I - P).
Since SP = PS, we have that
tr(S(I — P)VP) = tr(SPU(I — P)) = tr(SPQU(I — P)) = 0.
Now,
(@ — P)U(P - Q)| < o?IU|| < (1 = de) "' < 207,
(@ - P)QUI - Q)| <11Q — PIIIQU(I — Q)| < 4a’A(1+ X)
by (2.6) and, finally,
(@ — P)QU(Q — P)|| < Aa?(1 — )™+ < 2Xa.
It follows from (2.10) that
A1 = Da?) > ||S|a - [|Qf > trSQ >
trSP — [IS[IAl(Q@ = P)U(P = Q)| + [[(Q — P)QU(I — Q)|+
+ (@ — P)QU(Q — P[]
>A—a®(2+4A(1+ ) +2))
> Al — (8 +4))a?]

- a contradiction, in view of definition 2.1. [
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3. ALMOST LOCALLY MINIMAL PROJECTIONS ON /7

We start with a natural example of an almost locally minimal projection on

X = £,

Ezample 3.1. Let P be the orthogonal projection of X onto the 3-dimensional
subspace E, spanned by the vectors z; = (1,1,1,1), 3 = (1,—1,1,—-1) and z3 =
(1,—1,—1,1). We claim that P is almost locally minimal. With respect to the unit

vector basis {u;}7_, of X, P is represented by the matrix

[3 -1 1 1]

ol-1 3 11

P=4 1 1 3 -1
1 1 -1 3

Clearly, || P|| = 3/2. Consider the following vectors in 2 = X*: g; = (1,—1,1,1),
g2 = (—-1,1,1,1), g3 = (1,1,1,-1) and g4 = (1,1,—1,1). Then ||g;|| = 1 for all

4
1 <4 < 4 and hence the operator S = 471 Y~ g; ® u; has nuclear norm ||S||x < 1.
i=1
Let us compute the trace of PS.

tr(PS) =471 [Zgi(Pui) =3/2=|P|.

=1

It follows that ||S||» = 1. We claim that PS = SP. Indeed

1 -1 1 1
-1 1 1 1
— 41 —pPp__
S=4 1 1 1 1 =P I
1 1 -1 1

and hence PS = P(P—1I) = (P— 1I)P = SP. Tt follows from Theorem 2.4. that

P is almost locally minimal.

Note that in each row and each column of P the sum of the absolute values of
the entries is 3/2 = ||P||. Is this typical of almost locally minimal projections on

27?7 The answer is negative, as is shown in the next example.

Ezample 3.2. Let X = £3 and let

3 -1 1 1 0
-1 3 1 1 0
P=41'1 1 3 -1 0
1 1 -1 3 0
0 0 0 0 4
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Then P is a projection of X onto a 4-dimensional subspace of X, ||P|| = 3 and,

if g; = (94,0) € £2, and {u;};_, is the unit vector basis of X, then the operator

4 . .
S =4713%" g; ® u; has unclear norm ||S||x = 1, trPS = 3/2 and
i=1

Hence P is almost locally minimal by Theorem 2.4. Here the space £3 splits into
an £;-direct sum of £ and a (one dimensional) subspace [us], and the range of P is
isometric to the space rangeP & [us]. Moreover, the £, norm ||P||. = ||P||1 = 3/2.
It turns out that a similar property is shared by every almost locally minimal
projection on /7. Before we state the main result of this section let us discuss the

following special projections on L1[0, 1].

Definition 3.3. A projection P on L0, 1] is called \-doubly stochastic if it is rep-
. 1

resented by a kernel p(z,y) (i.e. (Pf)(z) = [ p(z,y)f(y)dy) satistying the following
0

equalities:
1

/ p(z,y)|dy = X a.e

0

and
1

/ lp(z,y)|dz = X a.e.

0
A projection P on /7 is said to be equivalent to a A-doubly stochastic projec-
tion P on L1 [0, 1] if there is an isometric embedding J : £7 — L1[0, 1] and n pairwise
disjoint measurable sets Ay, ..., A, with p(A4;) > 0 (4 = Lebesgue’s measure) such
that, for each unit vector basis element u;, 1 < i < n, of £7, Ju; = p(A;) txa,
and P = JPJ 'R, where R denotes the natural projection of L1[0,1] onto J(£7)
defined by

Rf =Y mA)! / F@)dy | xa..

Clearly, P(¢7) is isometric to P(L;).

Lemma 3.4. Let (Q be a projection on 7" and assume that () is represented by

the matriz (q;;)i%—, with respect to the unit vector basis {u;}i~,. Assume that
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Igij| = A for 1 < j < m and that there exist positive number {\;}~, with

NE

1
X; = 1 such that
1

30

-
1

Aj=A  foralll<i<m.

(3.1) AT laig

i=1

Then Q is equivalent to a A-doubly stochastic projection Q on L1[0,1].

i—1 i
Proof. Let A; denote the interval (Z Ajs > )\j) of [0,1] and embed £7* into
j=1 j=1

L1]0,1] by the map J : £7* — L1[0,1], defined by Ju; = A; 'xa, where x4, is the
indicator function of A;. Clearly, J is an isometric embedding and there is a natural
projection R of norm 1 of L1[0, 1] onto J(¢7*) defined by

Rf = Emj (/ 7 ).

=1

Put Q = JQJ 'R, then Q is a projection of L;[0,1] onto JQ(#7*) and ||Q|1 =
|Q|lx = A. Note that

1
/ q(x y)dy where
0

q(x qum y) | (Ju) ().

=1 7j=1

To show that () is A-doubly stochastic, let us compute the relevant integrals: If

x € Ay then, because the A; are pairwise disjoint,

/\q(w,y)ldy=u(z4k)‘l/ > arxa, ()| d

J:

XA

k)_l/i:: qk,j

=AM D lakslhg = A,
j=1
by (3.1). Also, if y € Ay then
1 .
[T ECIEIED S E
o =1 i=1
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This proves that Q is A-doubly stochastic. [

One important property of a A-doubly stochastic projection P on L is the
following fact:

(3.2) Regarding P as a projection on Lso[0,1], [|P|lec = A

Proof. Let ||f|looc = 1, then, for every 0 < z <1,

1

(P ()| = / p(,y) f (v)dy)| < / p(ay)|dy = A

0

The equality ||P||sc = A holds because, for almost every z, if f(y) = sign(p(z,y))
then |(Pf)(z)| =X O

Remark 3.5. We are interested in the isomorphic nature of the range E of a pro-
jection P on £T. We have just seen that if (3.1) holds then F is isometric to the

range of a A-doubly stochastic projection Pon L.

In general it may not true that the range E of a projection Q) satisfying the
assumptions of Lemma 3.4 is isometric to the range of a projection P on some
£ which is represented (with respect to the unit vector basis {v;}7*;) by a A-

=Y lgjil=Aforall<j<n.
=1

n
doubly stochastic matrix (g;,;) satisfying > |g; ;

=1
However, if \; are all rational numbers then the last statement holds. Indeed, let

Ai = % and let T : /7 — (7" be the isometry defined by

t;

T (u;) = ki_l Z vj dzefwi

J=ti—1+1

i
where tg = 0 and, for ¢ > 1, ¢; = > k;. Let V denote the natural projection
i=1

of /T onto [w;], defined by V(vg) = w; if t,_1 < k < t;. Then ||[V| =1 and
P =TQT™'V is the desired projection of £7* onto T'(E). Indeed, if t;,_1 < k < t3,
then

P’Uk = TQT_l’wh = TQuh =
tj

n n
=T qu'7h’l,tj = qu'7jkj_1 Z Vi.
j=1 7j=1

i=t; _1+1
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Therefore, if P = (p; j)7%_, then p;x = gjnk; - = m™qjpA;  if thoy <k <t and
tj—1 <1 <t;. It follows that

m
Z |Pi
i=1

n
=m™ ) lginlkiA; = A
i=1

for every 1 < k < m and

m
> |pik
k=1

A lainl e = A,
h=1

n
=m™} Z |gjnlknA;t =
h=1

by (3.1).
We are now ready to prove the following representation theorem for almost locally

minimal projections on £7.

Theorem 3.6. Let P be an almost locally minimal projection on X = {1 with

|IP|| = A > 1. Then there is an integer 2 < m < n, there are positive numbers
m

{AiHLy with 30 Ai = 1 and a permutation {u;}i_, of the unit vector basis of £}

=1
with respect to which

0 P,

where Q* = Q, P2 = Py, Q is an m x m matriz satisfying (3.1) and, therefore,
equivalent to a \-doubly stochastic projection, Py is an (n —m) X (n —m) matriz,

QI = A, [[Po]l < A and

d(Q([wili%y) @2, Po([wilj—pmin), P(£7)) < N2

Proof. By Theorem 2.4, there is an operator S on X such that ||S||s =1, trSP =
|IP|| = A and SP = PS. Because X = {7 there is a permutation {u;}?_; of the

m
unit vector basis of X with respect to which S = > X\;g; ® u; where 1 < m < n,
m n =1
Ai>0, > A =1,9,= ) giju; €Ly, and [|g;|| = mjax\gi,j\ =1foralll<i<m.
i=1 j=1
({u}}7—, denotes the unit vector basis of £3 ). Let P = (p; ;)7 ;_, be the matrix of
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P with respect to {u;}?_;, then

m m n
(3.2) PS=Y XNgi®Pui=Y X\gi® > pjit
v pa

=1

Z (Z /\megz) ® u;

It follows that

(33) A :tI‘(PS) = Z )\ipj,igi,j =
j=1li=1
= Z Ai Dj,igi,j Z Z Pl | <A
=1 7=1 =1 j=1

because A\ = ||P|| = max Z Ipjil and ||g;|| = max|g”| = 1.
7=1
Hence, for every 1 <i <m, if p; ; # 0 then

n
(3.4) gi; =sign(p;;) and Y |pjil = A
=1

On the other hand,
(3.5) PS =8P =Y X\P*g; ®u;.
i=1
Comparing (3.2) and (3.5) we get that, for 1 < j <m
(3.6) > " Nipjigi = AjP*g;.
i=1

Applying both sides of (3.6) to u; we obtain by (3.4) that
= Z AiDjiij = Z Aipj,igi(uj)
=1 =1
= AP g;(u;) = Ajg;(Puj) = Ajg; (Zpk J“k> =

n n
=X Prjgik =X D Dkl
k=1 k=1

Summing both sides of (3.7) over 1 < j < m we get, by (3.4), that

(38) Z Ai Z |p],z| = Z)\ (Z |pk,j|) = Z)\J)\ =\
j=1 k=1 j=1

(3.7)
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m
The equality (3.8) forces ) |pj;| = A for all 1 <4 < m hence
J=1

(3.9) pji=0 forall 1<i<m and m<j<n.

The relation P2 = P and the last equality imply that, for m < h, k < n,

n n
Ph.k = th,jpj,k = Z DPh,iDj .k
7j=1 j=m+1

hence, the (n —m) X (n — m) matrix Py = (Pn,k)}, k=m+1 1S & projection with
| Poll < [[P[| = A. Similarly, if we put g; j = p; j for 1 <4, j < m then Q = (¢i,5)i %=1

m
is easily checked to be a projection satisfying the equality > |¢; ;| = A. Also,
=1
by (3.6), Ajlgi il = Xigj(Puj) = M. It follows from Lemma 3.4 that @ is
j=1
equivalent to a A-doubly stochastic projection on L;[0,1]. Let us now discuss the

n

isomorphic type of Q([u;]i™;) @¢, Po([us]fpmi1)-

Let P denote the projection Q & Py on 27 (ie. Pu; = Qu; if 1 < i < m and
Pu; = Pyu; it m < i < n). Since P — P is an upper right m x (n — m) matrix, we
have that (P — P)2 = 0. The following lemma is needed for the completion of the
proof of Theorem 3.6.

Lemma 3.7. Let P and P be projections on a Banach space X and assume that

IP|I, 1P|l € A and (P — P)2 = 0. Then d(P(X), P(X)) < A%,

Proof. Since P+P = PP+ PP, multiplying both sides by P on the left we get that
P+ PP = PP+ PPP hence P = PPP. It follows that if z = Pz then z = PPz

and, therefore,

[l < [Pl Pl < APzl < N2[|]].

By symmetry we get that for every y = Py, |ly|| < A||Py| < A2||y||. It follows that
d(P(X),P(X)) <A O

It remains to discuss the magnitude of m. Suppose that m = 1 then, w.l.g.,
S = Ag1 ® uy; and so, A\1P*g; @ u; = SP = PS = \1g1 ® Puy. It follows that
u; = Puy, contradicting the fact that ||Puq|| = A > 1. This completes the proof of
Theorem 3.6. [l
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4. CONCLUDING REMARKS

How far are we from a positive solution of Problem 1.1 raised in the Introduction
and what is needed for a complete solution?

It seems that we still have a long way ahead, however, Theorem 3.6 suggests
that, under certain circumstances, and an inductive argument might work well. We

need positive answers to the following

Problem 4.1. Let P be a A-doubly stochastic projection on L[0, 1] with rank(P) =
k. Is d(P(L1),£¥) < 1(\) where 1 is independent on k?

Problem 4.2. Do there exist constants 0 < 8 = B(A) < 1 and 0 < o = «a(A) such
that if P is a projection on £7 with ||P|| < X which is almost a-minimal then there

is an almost locally minimal projection P on £% with ||[P—P|| < 8 and ||P|| < || P||?

Note that Theorem 1.2 settles Problem 4.2 in the special case of projections of
small norm, since any projection of norm 1 is locally minimal.

Suppose that Problems 4.1 and 4.2 have positive solutions. Starting with a
projection @ of norm A, either we can find a sequence {Q;}¥, with Qo = Q and
|Qn|| = 1 such that ||Q; — Qiv1]| < a and ||Qiz1|| < A(1 — Da?)*! for every
0 <¢< N —1or there is a Q; = P such that P is almost a-minimal. In the first
case, Problem 1.1 is solved because the discussion in the Introduction shows that

dQUM), %) < (1 —a) M1 + ). Since A(1 — Da?)N = 1 we get that
A(QE2), £5) 2 [(1 4 ) /(1 — a)|les(t=DaD)] " log A"

In the second case, if Problem 4.2 has a positive solution, there is an almost locally
minimal projection P on ¢} with |P — Q| < (. If problem 4.1 has a positive
solution then Theorem 3.6 ensures that P¢7 splits into a precise ¢;1-direct sum of
a ki dimensional subspace F of £ with d(F,£") < 4()\) and a range E of a
projection Qg of rank < k with ||Qo|| < A. With some luck an induction procedure

may then settle Problem 1.1 but, of course, additional work is required.

The case of orthogonal projections. Suppose that P is an almost locally minimal
orthogonal projection on £7, i.e., the representing matrix (p;;);';—; is symmetric.
In this case Theorem 3.6 states that the space £7 splits into a precise £;-direct sum

P @ l77™ and P = Q @ Py, where () and P, are orthogonal projections on /7
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and £77™ resp. with ||Q||, ||Pol| < ||P|| and where @ is an almost locally minimal
projection on /7" which is equivalent to a A-doubly stochastic projection. It will be

interesting to settle the following.

Problem 4.3. What is the isomorphic type of the range P(£T) of an orthogonal

A-doubly stochastic projection on £77

Problem 4.4. Let P be a A-doubly stochastic projection on £7. Is P almost locally

minimal?
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