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ABSTRACT. In 1938 I.J. Schoenberg asked for which positive numbers p is the func-
tion exp(—|z|?) positive definite, where the norm is taken from one of the spaces
Zg, q > 2. The solution of the problem was completed in 1991, by showing that for
every p € (0, 2], the function exp(—|z[?) is not positive definite for the £ norms with
q > 2 and n > 3. We prove a similar result for a more general class of norms, which
contains some Orlicz spaces and g—sums, and, in particular, present a simple proof
of the answer to the original Schoenberg’s question. Some consequences concerning
isometric embeddings in L; spaces for 0 < p < 2 are discussed as well.
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1. INTRODUCTION

A complex valued function f defined on R” is called positive definite on R”,
if for every finite sequence {z;}7, in R™ and every choice of complex numbers
{c;}™,, the following inequality holds

m m

ZZciEjf(xi —x;) > 0.

i=1 j=1
A fundamental result concerning positive definite functions is due to Bochner. It
states that continuous, positive definite functions on R™, are precisely the Fourier
transforms of positive, finite, Borel measures on R™. (For a proof, see, e.g., [2], p.
184).

The 1938 Schoenberg’s question on positive definite functions, [16], is the follow-
ing: for which p > 0 is the function exp(—|z|}) (r € R™) positive definite? Here
the norm | - [, is the norm of the space £, where n > 2 and ¢ > 2. The solution
was completed in 1991, [6], and it shows in particular that the function exp(—|z[%)
is not positive definite if n > 3, 0 < p < 2 and ¢ > 2. In this article we present a

short proof of the following more general result:

Theorem 1. Let X be a three dimensional normed space with a normalized basis
{e1, ea,e3} so that
(1) For every fized (z2,73) € R2\{0}, the function 1 — ||T1e1 + T262 + T3€3]
has a continuous second derivative everywhere on R, and

/ "
”:CHxl (07$27 .'133) = H-/L'Hm% (0, .’1327(133) = 07

where Hxﬂ;l and ||a:||;% stand for the first and second derivatives by x,, re-
spectively.

(2) There exists a constant K so that for every 1 € R and every (x4, x3) € R?
with |zeey + x3e3| = 1, one has Ha:||;% (x1,22,23) < K.

Then, for every 0 < p < 2, the function exp(—|z|P) is not positive definite.

Examples of spaces satisfying conditions (1) and (2), which will be discussed in
§3, include g-sums of normed spaces with ¢ > 2, and Orlicz spaces £}, whose Orlicz
function M has a continuous second derivative and M (0) = M (0) = 0. Both of
these classes of spaces include the £ spaces for ¢ > 2. Thus Theorem 1 answers

Schoenberg’s question for a more general class of norms.

There is a close connection between positive definite functions and isometric
embeddings into L,. It was known already to P.Levy, [9], that if X = (R*,| - |)
is isometric to a subspace of L,, 0 < p < 2, then exp(—|z|?) is a positive definite
function, hence a multiple of a characteristic function of a stable measure. The
actual equivalence of the two notions was discovered by Bretagnolle, Dacunha-
Castelle, and Krivine [1] who proved that, for 0 < p < 2, a Banach space E is
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isometric to a subspace of L, if and only if the function exp(—|z|?) is positive
definite. They have used this fact to show that the space L, embeds isometrically
in L, if 0 < p < ¢ < 2. Thus Schoenberg’s question can be reformulated in terms of
isometric embeddings: For which numbers p € (0, 2], qg > 2, is the space £7 isometric
to a subspace of L,?

After L.Dor had answered in [3] the question for p € [1,2], (by proving that £y
is not isometric to a subspace of Ly if n > 3 and ¢ > 2), the complete solution
(including p € (0,1)) was given in [13] for ¢ = oo and in [6] for 2 < g < oo: for
0 < p < 2 the function exp(—|z[?) is not positive definite if the dimension of the
space is greater than 2, and for n = 2 the function is positive definite if and only if
0<p<1. (For 0 <p<1,n=2 this was well known; see [4],[5],[10]).

Not very long after the paper [6] appeared, V. Zastavny, [17,18], proved that
for a 3-dimensional normed space X, there are no non-constant positive definite
functions of the form f(|z|) if there exists a basis ey, €9, €3 so that the function

(y’ Z) — H:L.el + Yyea + 2’63”;;(1, Y, Z)/”el + yea + 2'63”7 Y, z, eR

belongs to the space Li(R?). This criterion provided, in particular, a new proof of
the answer to Schoenberg’s question. For the spaces X = Eg, similar results were
established by Misiewicz (for ¢ = 00), in [13], and by Lisitsky (for 2 < ¢ < o0) in
[11].

Theorem 1 imposes a necessary condition on the norm of the space X, in order
that the space will be isometric to a subspace of L,, with 0 < p < 2. Zastavny’s
result also imposes a necessary condition, that can be checked for certain spaces,
but for others can be quite difficult to check. For example, Zastavny’s test can be
applied to £7 and more generally to g-sums where ¢ > 2, but cannot be applied
in general to the class of Orlicz spaces. On the other hand, the ”second derivative
test” formulated in Theorem 1, applies to both of these cases. We refer the reader
to [7,14,15] for other results related to positive definite norm dependent functions

and their applications to probability and isometric embeddings in L,,.

2. PROOF OF THEOREM 1

Throughout this section, we remain under the conditions and notation of Theo-
rem 1. We need a few simple facts.

Remarks. (i) It is easy to see that, for every continuous, homogeneous of degree 1,
positive outside of the origin function f on R" and every a > —n, the function f¢
is locally integrable on R™. In particular, for any p > 0, the function (z2,x3) —
|T2es + w3e3]|P~2 is locally integrable on R2.
(ii) A simple consequence of the triangle inequality is that —1 < ||z[|,, <1 at every
point x € R3 with (z3,13) # 0.
(iii) For every fixed (z2,73) € R? \ {0}, ||z|| is a convex differentiable function of z;
whose derivative at zero is equal to zero. Therefore, for every = = (z1, 22, z3) €
R3, we have ||z|| > ||z2e2 + z3e3]].
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(iv) The function ||ac||;2 is non-negative, homogeneous of degree —1. Let K be the
1
constant from the condition (2) of Theorem 1. Then, for every z; € R and every
(x9,23) € R? \ {0}, the second derivative ||.T||;;2 (x1, 22, 13) is equal to
1

e (e 2 T
x
|z2es + z3es|| o |z2es + z3es||’ ||w2es + xaes||’ ||zaes + z3es||””

which is less or equal to K/||z2e2 + x3es|| by the condition (2) of Theorem 1.

We are ready to prove Theorem 1.

Proof of Theorem 1. Since for 0 < p; < pa < 2 there is an isometric embedding of
Ly, into L,,, we may assume that 0 <p < 1.
Suppose that the function

F(ﬂfh Ta, 333) = eXP(—||37161 + T9e9 + 33363”10),

is positive definite on R3. Similarly as in [18], we pass to a positive definite function
of one variable as follows. Let

(1 = [za])(1 = |zs]), max{|zs], |23} <1

0, otherwise.

h(z2,z3) = {

Denote du(xa, x3) = h(xa, z3) dxradrs. Then the function

(1) P(t) = /R2 exp(—|ter + z2e2 + z3e3|P) du(x2, 3)

is positive definite on R. Indeed, the function h(zs,z3) is positive definite because

: 2 . 2
/ ei(uQ$2+u3w3)du(x2’x3) _ (SIDU2/2> <SIHU3/2> > 0.
R2

U2/2 U3/2
Therefore, for each ¢ > 0, the function F(z1,x2,xs)h(za, z3)e %1l is positive
definite on R3, as a product of positive definite functions. Hence:

Vu e R? : / eiu'“”F(scl,a:z,3:3)6_6|“”1| dzy dp(xe, x3) > 0,
R3

where u - x denotes the inner product of u and z. By taking u = (s,0,0) we get

VseR: / eirs (/ F(z1,x9,x3) d,u(asg,xg)> e~cl®l gy > 0.
RQ

— 00

Therefore, the function z; — e~¢/#tly(z1) is positive definite. Since ¢ > 0 is
arbitrary, 1 (t) is a positive definite function. This argument appeared in [18]. The
idea is now to differentiate twice the function under the integral in (1) and deduce
that 4" (0) = 0.
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Assume from now on that (z3,z3) € R?\{0}. We have

1

le (SL‘l, o, .1,'3) = —p”:[,‘lel + To€2 + I3€s3 ”p_l”ZEH;lF(JIl, I, 1'3).
By remarks (ii), (iii) we get
2) |, (w1, 52, 35)| < plwier + maen + wes|P < plasen + wges [P,

for every x; € R and (22, z3) € R?\{0}. For the second derivative, we have

"

Fyy (w1, 22, w3) = F(21, 72, 73)[ — p(p — D]z [P *(|2l,,)* — plz|P~ =],

+p? |2V (|, ).

By remarks (ii),(iii),(iv), and since |F'| < 1, we have for every 21 € R and (z9, z3) €
R*\{0},

|Fz21> (z1, 29, 23)| < (1 — p)p|z1e1 + zoey + z3e3|P™2 + pK|z1e1 + zoes + z3e3|P 2
+ p2 HCE1€1 + To€2 + I3€3 ”2p—2

<p(K +1—p)|zses + z3e3|P~? + p?|zaes + z3e3]| P 2.

Thus both the first and second partial derivatives of F' by the variable x; are
bounded above by locally integrable functions in R?, which do not depend on z;.
(Here we use remark (i)). We have for every ¢t > 0, # 0,

,l/)(t+€) _¢(t) / F(t+€,$2,$3) —F(t,$2,$3)
R2\{0}

g g

d/l(x% $3)a
— [ o, (0(t.2,02,), 52,0 d(z2, )
R2\{0}

where 0(t,e, x2,x3) € (t,t+¢) (or (t —e,t)). By (2), the function \F;l (21,22, 23)|
is bounded by an integrable function of the variables x5, 3, so we can apply
Lebesgue’s bounded convergence theorem and pass to the limit as ¢ — 0, under the
integral sign. By continuity of the first derivative we get

(3) P (t) :/ F, (t, 2, 73)dju(w2, 73).
R2\{0}
Repeating this argument, we obtain
(4) lb”(t) :/ Ft’; (t, z2, T3)dp(z2, T3).
R2\{0}
By condition (1) of the Theorem, the integrands in (4) and in (3) tend pointwise

to zero as t — 0. The integrands are also bounded above by integrable functions
independent of . Therefore, applying Lebesgue’s bounded convergence theorem
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"

once more, we finally get ¢ (0) = ¢" (0) = 0. Therefore, ¥(t) = ¥(0) + o(t2) as
t — 0. Since 1 is positive definite, we must have ¢(t) = ¢(0), ([12], Th. 4.1.1). In
other words

(V) /F(t,$2,$3)dﬂ($2,$3)5/ F (0,22, 3)dp(w2, T3).
R? R?

Since F'(t,x2,x3) < F(0,29,23) (remark (iii)), and g is a positive measure with
continuous density, we must have F(t, z2,z3) = F(0,z2,x3) for every ¢, and this is
clearly a contradiction. []

Remark 1. Note that the statement of Theorem 1 is not true for two-dimensional
spaces all of which embed isometrically in L, for every p € (0, 1]. The reason that
the proof of Theorem 1 does not work for two-dimensional spaces is that, unlike
the function ||zees + z3e3||P~2 on R2, the function |z5|P~2 is not locally integrable
onRif0<p< 1.

3. APPLICATIONS TO CERTAIN SPACES.

Let us first present a class of Orlicz spaces satisfying the conditions of Theorem 1.
An Orlicz function M is a non-decreasing convex function on [0,00) such that
M(0) =0 and M(t) > 0 for every ¢t > 0.

For an Orlicz function M, the norm | - |as of the n-dimensional Orlicz space £7%,
is defined by the equality > p_, M(|zx|/||z|lm) =1, z € R™ \ {0}.

Theorem 2. Let M be an Orlicz function so that M € C?([0,00)), M'(0) =
M"(0) = 0. Then, for every 0 < p <2 and n > 3, the function exp(—|z|%,) is not
positive definite and the space £, does not embed isometrically into L.

Proof. Clearly, we can assume n = 3. We are going to show that the norm of
the space /3, satisfies the conditions of Theorem 1. Since the Orlicz norm is an
even function with respect to each variable, it suffices to consider the points z =
(21,22, 23) with non-negative coordinates. We denote by ey, eq, es the standard
normalized basis in £3,. In order to avoid unwieldy notation, we shall omit below
the subscript M from the norm | - |/

The function M’ is non-decreasing, continuous on [0,00) and M'(0) = 0. Since
M(0) =0 and M(t) > 0 for every ¢ > 0, the function M’ can not be equal to zero
on an interval, so M'(t) > 0 for every t > 0.

Let © = (1, T2, r3) with (z2,z3) # 0. Then one of the numbers xoM'(z2/||z]|)
or z3M'(z3/||x||) is positive. By implicit differentiation,

e, = =14 ()
T .1,'1M (W) +£L‘2MI(”:I;”) +.I'3M (W)

Also,
(5)

o lzll = zallzlle, )M () + 23 lzlla,) > M (72) + 23 (lellq, )M ()
]| = [ Ell

llzll

el (M7 () + 22 (2) + oM ()
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The condition (1) of Theorem 1 follows from the fact that M’(0) = M"(0) = 0.
Let us show that the norm satisfies the condition (2) of Theorem 1. Put

¢ = min{zoM'(22/2) + x3M'(23/2) : ||z2€2 + z3€3|| = 1, 22,23 > 0}.

Since M’ is a continuous function and M'(t) > 0 for ¢ > 0, we have ¢ > 0. Let
d = maxte[o,l] M”(t).

Clearly, z; < ||z||, 4 = 1,2, 3. Therefore, using both Remark (ii) and the positive-
ness of [, , we have 0 < ||z|| — z1|zll,, < ||zll, and (||z]| — 21|zl )2/ =] < 1.

Consider any z2,x3 > 0 with ||zges + x3es3|| = 1. Then z9,z3 < 1. If 21 € [0, 1]
then 1 < ||z|| < 2, hence, z;/||z| > (z;/2), i = 1,2,3. We get from (5) that
Il < 3d/c.

If 1 > 1 then z1/||z]| > 1/2, and (5) implies ||a:||;% < 3d/M’'(1/2), because M’
is an increasing function.

We see that in either case z1 € [0, 1], or 21 > 1, the second derivative is bounded
by constants which do not depend on the choice of x5, 3 with ||zaes + z3es|| = 1.
Thus condition (2) of Theorem 1, is valid. O

The class of Orlicz functions satisfying the conditions of Theorem 2 includes
all the functions M(t) = [t|?, ¢ > 2. So, Theorem 2 generalizes the solution to
Schoenberg’s problem.

Given a sequence of Banach spaces {Y}7_,, their g-sum, denoted by Y 7_, ®,Y%
is the space of all sequences (y1, - .., yn) equipped with the norm

n 1/q
I(y1, - yn)| = (Z Ika||q> :
k=1

Concerning g-sums, the following result holds.

Theorem 3. If ¢ > 2 and 0 < p < 2, then for the norm of the g-sum X @, Y,
where dim X > 2, the function exp(—|z|P) is not positive definite , and there is no
isometric embedding of X ®4Y into L,.

Proof. Any g-sum whose dimension is at least three contains (isometrically) a g-
sum of the form X &, R where X = (R?, |- |). We shall apply Theorem 1 to show
that such g-sums are not isometric to a subspace of L, if ¢ > 2 and 0 < p < 2.
Indeed, the space X @, R can be identified with R3 equipped with the norm

(21, w2, 23) | = (| (21, 22)| 7 + |23 %) 1.

The first and second partial derivatives with respect to x3, vanish at zero. Moreover,

2], (@1, 22, 23) = (g — 1)|23]972| (21, 22) [9(| (21, 22) |7 + |23]7) 772,
z3
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which shows that on the set {(z1, z2,z3) : [(1,22)| = 1}, the second derivative is
uniformly bounded. Thus Theorem 1 can be applied. [

Remark 2. A special case of Theorem 3 was proved by Dor in [3]. Namely, Dor
proved that if dim X > 2 and X is not a Hilbert space then no g-sum of the form
X ®4 Y where g > 2, embeds isometrically into L;. Theorem 3 can also be proved
by using Zastavny’s result which was mentioned in the introduction.

Remark 3. A related result to Theorem 1 has been recently established by the first
named author. Namely, it can be shown that the unit ball of a normed space
is not an intersection body (An origin symmetric convex body K in R" is called
an intersection body if its radial function is the spherical Radon transform of a
non-negative measure on the unit sphere S™~1!) if the dimension of the space is
greater than or equal to 5, and the norm satisfies the conditions of Theorem 1, and
the condition that limg, ¢ (21, SE2,$3)”;% = 0 uniformly on the set {(x1,z2,x3) :
|xoea + x3eg| = 1}. This result provides an alternative way to conclude that the
Busemann-Petty problem on sections of convex bodies has a negative answer when
the dimension is at least 5. For more details see [8].
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