The inversion of fractional integrals on a sphere

Boris Rubin¹

Preprint No. 21 1991

Abstract

The purpose of the paper is to invert Riesz potentials and some other fractional integrals on a spherical surface in \mathbb{R}^{n+1} in the closed form. New descriptions of spaces of the fractional smoothness on a sphere are obtained in terms of spherical hypersingular integrals. It is shown that Riesz potentials of the orders $n, n + 2, n + 4, \ldots$ on a sphere may be Noether operators with a d-characteristic which depends on the radius of the sphere.

¹Supported by the Landau Center for Research in Mathematical Analysis.

Introduction

There are many types of fractional integrals defined on the surface of the *n*-dimensional unit sphere $\Sigma_n \subset \mathbb{R}^{n+1}$. One of them is a Riesz potential

(1)
$$(I^{\alpha}\varphi)(x) = c_{n,\alpha} \int_{\Sigma_n} |x - y|^{\alpha - n} \varphi(y) dy,$$

where $\alpha > 0$; $\alpha \neq n, n+2, n+4, \ldots$;

(2)
$$_{n,\alpha} = 2^{-\alpha} \pi^{-n/2} \Gamma\left(\frac{n-2}{2}\right) / \Gamma(\frac{\alpha}{2}).$$

Due to the outward simplicity and to the plurality of applications the Riesz potential is a typical object in fractional calculus. Nevertheless, the inversion method for I^{α} , covering all admissible α seems unknown. There is a simple idea to change variables in (1), using the stereographic projection, and to turn the potential (1) in such a way into the Riesz potential over \mathbb{R}^n (up to some multipliers). The latter may be inverted by diverse known methods (see [14], [13]). This approach, suggested by the author, enables one to obtain a number of estimates of $I^{\alpha}\varphi$ using the corresponding estimates of the space potentials (see [10], [19]). However, this way leads to the unnatural awkward construction of $(I^{\alpha})^{-1}$ which depends on the pole of the projection. Furthermore, the proof of such an inversion formula is connected with large technical difficulties. It is more preferable to construct the operator $(I^{\alpha})^{-1}$ directly in spherical terms. In [10] Pavlov P.M. and Samko S.G. proved that if $f = I^{\alpha}\varphi$, $\varphi \in L_p(\Sigma_n)$, $0 < \alpha < 2$, $1 \le p < \infty$, then

(3)
$$\varphi(x) = c_1 f(x) + c_2 \int_{\Sigma_n} \frac{f(x) - f(y)}{|x - y|^{n+\alpha}} dy,$$

where

$$c_1 = \Gamma\left(\frac{n+\alpha}{2}\right)/\Gamma\left(\frac{n-\alpha}{2}\right)$$

,

$$c_2 = \frac{2^{\alpha - 1} \alpha \Gamma\left(\frac{n + \alpha}{2}\right)}{\pi^{n/2} \Gamma\left(1 - \frac{\alpha}{2}\right)}$$

,

$$\int_{\Sigma_n} (\ldots) = \lim_{\varepsilon \to \infty} \int_{|x-y| > \varepsilon} (\ldots)$$

The method of [10] gives no answer how to invert I^{α} for all $\alpha \geq 2$. In the present paper we suggest two different inversion methods for Riesz potentials of finite Borel measures in spherical terms. These methods are suitable for all $\alpha > 0$ (the definition of $I^{\alpha}\varphi$ for $\alpha = n, n+2, n+4, \ldots$, see below) and may be generalized for all complex α with Re $\alpha > 0$ as in [13]. Our formulas contain hypersingular integrals, the convergence of which is associated with a type of the measure to be restored. For arbitrary finite Borel measure these integrals converge in a weak sense. If the measure is absolutely continuous with a density belonging to $L_p(\Sigma_n)$, $1 \leq p < \infty$, then the convergence of hypersingular integrals is treated in the "almost everywhere" sense and in L_p -norm. If the density is continuous, then a uniform convergence is used.

In section 1, we construct the operator $(I^{\alpha})^{-1}$ using a direct regularization of the potential $I^{\alpha}\varphi$. This method was developed in [13]. The case $\alpha = n$ when $I^{\alpha}\varphi$ turns into the logarithmic potential, is considered in section 2. Another inversion method for $I^{\alpha}\varphi$, based on properties of a Poisson integral, is given in section 3.

The inversion problem for potentials (1) is closely connected with the characterization of functions of a fractional smoothness on a sphere. In section 4 we give a number of diverse descriptions of the spaces $L_p^{\alpha}(\Sigma_n)$, $C^{\alpha}(\Sigma_n)$, $M^{\alpha}(\Sigma_n)$ generated by L_p -functions, by continuous functions and by finite Borel measures respectively. By the way we obtain inversion formulas for some fractional integral operators introduced by du Plessis N.[11], Greenwald H.C. [6], [7], Muckenhoupt B. and Stein E.M.[9]. All these operators have the same range as I^{α} (with the exception of some values of α) and are built by means of a Poisson integral.

The investigation of Riesz potentials of the orders $\alpha = n + 2k$, k = 0, 1, ..., leads to the following integral equation on a sphere $\Sigma_n(a) = \{x \in \mathbb{R}^{n+1} : |x| = a\}$:

(4)
$$\int_{\Sigma_n(a)} \varphi(y)|x-y|^{2k} \log|x-y| dy = f(x)$$

In section 5 we show that in contrast to the case $\alpha \neq n + 2k$ the operator in the left-hand side of (4) may be the Noether one for some radii a. We define its two-sided regularizer and the d-characteristic explicity. It is interesting that the d-characteristic

depends on the value of a radius a.

The author is deeply grateful to E. Shamir for his support and encouragement during the work on this paper.

Notation

$$\Sigma_n \{ x \in \mathbb{R}^{n+1} : |x| = 1 \}, \ \sigma_n = |\Sigma_n| = 2\pi^{\frac{n+1}{2}} / \Gamma\left(\frac{n+1}{2}\right);$$

dx denotes the Lebesgue measure on Σ_n ; $\mathcal{Y}(\Sigma_n) = \{Y_{m,\mu}(x)\}$ denotes a complete orthonormal system of spherical harmonics on Σ_n ; $m = 0, 1, \ldots$; $\mu = 1, 2, \ldots, d_n(m)$, $d_n(m)$ being a dimension of the subspace of harmonics of the order m, $d_n(m) = (n + 2m - 1) \frac{(n+m-2)!}{m!(n-1)!}$ (see [18]). $\mathcal{B}(\Sigma_n)$ is the Borel σ -algebra of Σ_n . $M(\Sigma_n)$ denotes a Banach space of all regular complex valued finite Borel measures on $\mathcal{B}(\Sigma_n)$ with the norm $\|\nu\|_M$ equaled to a total variation of the measure ν on Σ_n ([3]); $C(\Sigma_n)$ denotes the space of all continuous functions on Σ_n ; $S(\Sigma_n)$ denotes the space of all infinitely differentiable functions on Σ_n with the standard Shwartz topology; $S'(\Sigma_n)$ is a dual to $S(\Sigma_n)$; (f,ω) denotes a value of a functional $f \in S'(\Sigma_n)$ on a function $\omega \in S(\Sigma_n)$. If $f \in M(\Sigma_n)(f \in L_1(\Sigma_n))$, then

$$(f,\omega) = \int_{\Sigma_n} \omega(x) df \ \left((f,\omega) = \int_{\Sigma_n} \omega(x) f(x) dx \right);$$

 $f_{m,\mu} = (f, Y_{m,\mu})$ denote Fourier-Laplace coefficients of a functional $f \in S'(\Sigma_n)$;

 $e_{n+1}(0,\ldots,0,1);\ a_+^{\lambda}=(\sup\{a,0\})^{\lambda};\ P^{(\rho,\sigma)}(t)$ denotes a Jacobi polynomial; \mathbb{Z}_+ denotes the set of all nonnegative integers;

$$\|\varphi\|_p = \|\varphi\|_{L_p(\Sigma_n)};$$

$$P_z(x,y) = \frac{1 - r^2}{\sigma_n |y - rx|^{n+1}}$$
 is a Poisson kernel, $0 < r < 1$;

 $f(x,r) = (f, P_r(x, \cdot))$ denotes a Poisson integral of a function (measure) f.

(5)
$$(I_+^{\lambda}\psi)(\tau) = \frac{1}{\Gamma(\lambda)} \int_{-\infty}^{\tau} \psi(t)(\tau - t)^{\lambda - 1} dt$$

is a Riemann-Liouville fractional integral of the order $\lambda > 0$. We define a truncated Marchand derivative by the equality

$$(D_{+,\varepsilon}^{\lambda}\psi)(\tau) = \frac{1}{\kappa_{\ell}(\lambda)} \int_{\varepsilon}^{\infty} \left(\sum_{j=0}^{\ell} {\ell \choose j} (-1)^{j} f(\tau - jt) \right) \frac{dt}{t^{1+\lambda}}$$

, where $\varepsilon > 0$, $\ell > \lambda$,

$$\kappa_{\ell}(\lambda) = \int_0^\infty \frac{(1 - e^{-t})^{\ell}}{t^{1+\lambda}} dt \text{ (see [14])}$$

.

Let $E \subset \mathbb{R}$ be some set with a limit point ε_0 , and let $\{A_{\varepsilon}\}_{{\varepsilon}\in E}$ be a family of linear operators defined on $\mathcal{Y}(\Sigma_n)$. If $\lim_{{\varepsilon}\to{\varepsilon}_0} A_{\varepsilon}Y_{m,\mu} = Y_{m,\mu} \ \forall Y_{m,\mu} \in \mathcal{Y}(\Sigma_n)$, then the family $\{A_{\varepsilon}\}$ will be called an approximative identity as ${\varepsilon}\to{\varepsilon}_0$.

Let us introduce functional spaces to be used later. Given $\alpha \in \mathbb{R}$; $1 \leq p \leq \infty$, we denote by $L_p^{\alpha}(\Sigma_n)$ $(C^{\alpha}(\Sigma_n), M^{\alpha}(\Sigma_n))$ the space of functionals $f \in S'(\Sigma_n)$ with the following property: for each $f \in S'(\Sigma_n)$ there exists a function $f^{(\alpha)} \in L_p(\Sigma_n)(f^{(\alpha)} \in C(\Sigma_n))$, a measure $f^{(\alpha)} \in M(\Sigma_n)$ such that $f_{m,\mu}^{(\alpha)} = (m+1)^{\alpha} f_{m,\mu}$ for any m,μ . The space $L_p^{\alpha}(\Sigma_n)$ $(C^{\alpha}(\Sigma_n), M^{\alpha}(\Sigma_n))$ is a Banach one with respect to the norm

(6)
$$||f|| = ||f^{(\alpha)}||_p (||f|| = ||f^{(\alpha)}||_{C(\Sigma_n)}, ||f|| = ||f^{(\alpha)}||_{M(\Sigma_n)})$$

If $\alpha > 0$, the elements of the spaces $L_p^{\alpha}(\Sigma_n)$, $C^{\alpha}(\Sigma_n)$, $M^{\alpha}(\Sigma_n)$ are usual functions represented by spherical fractional integrals (see section 4). Besides the Riesz potential that has the expansion

(7)
$$I^{\alpha}\varphi \sim \sum_{m,\mu} \frac{\Gamma\left(m + \frac{n-\alpha}{2}\right)}{\Gamma\left(m + \frac{n+\alpha}{2}\right)} \varphi_{m,\mu} Y_{m,\mu}$$

(see[15]) we shall use the following fractional integrals

(8)
$$I_1^{\alpha} \varphi = \frac{1}{\Gamma(\alpha)} \int_0^1 (1 - \rho)^{\alpha - 1} \varphi(x, \rho) d\rho \left(\sim \sum_{m, \mu} \frac{\Gamma(m + 1)}{\Gamma(m + 1 + \alpha)} \varphi_{m, \mu} Y_{m, \mu} \right),$$

(9)
$$I_2^{\alpha} \varphi = \frac{1}{\Gamma(\alpha)} \int_0^1 (\log \frac{1}{\rho})^{\alpha - 1} \varphi(x, \rho) d\rho \left(\sim \sum_{m, \mu} (m + 1)^{-\alpha} \varphi_{m, \mu} Y_{m, \mu} \right),$$

(10)
$$I_3^{\alpha} \varphi = \frac{1}{\Gamma(\alpha)} \int_0^1 (\log \frac{1}{\rho})^{\alpha - 1} \varphi(x, \rho) \frac{d\rho}{\rho} \left(\sim \sum_{m, \mu} m^{-\alpha} \varphi_{m, \mu} Y_{m, \mu} \right),$$

$$I_4^{\alpha} \varphi \frac{\frac{1}{2} \frac{1-\alpha}{(n-1)}}{\Gamma(\alpha/2)} \int_0^1 \rho \frac{n-3}{2} (\log \frac{1}{\rho})^{\alpha-1} I_{\frac{\alpha-1}{2}} (\frac{n-1}{2} \log \frac{1}{\rho}) \varphi(x,\rho) d\rho$$