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Abstract

The purpose of the paper is to invert Riesz potentials and some other fractional
integrals on a spherical surface in R**! in the closed form. New descriptions of
spaces of the fractional smoothness on a sphere are obtained in terms of spherical
hypersingular integrals. It is shown that Riesz potentials of the orders n,n +
2,n+4,...on a sphere may be Noether operators with a d-characteristic which

depends on the radius of the sphere.
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Introduction
There are many types of fractional integrals defined on the surface of the n-dimensional

unit sphere 3,, C R**t!. One of them is a Riesz potential

1) (199) () = cnn / = — 4" (y)dy,

n

where o > 0; a #n,n+2,n+4,..

(2) o = 27 ™/2T (” 5 2) /r(%).

Due to the outward simplicity and to the plurality of applications the Riesz potential is
a typical object in fractional calculus. Nevertheless, the inversion method for I, covering
all admissible & seems unknown. There is a simple idea to change variables in (1), using
the stereographic projection, and to turn the potential (1) in such a way into the Riesz
potential over R” (up to some multipliers). The latter may be inverted by diverse known
methods (see [14], [13]). This approach, suggested by the author, enables one to obtain
a number of estimates of [%p using the corresponding estimates of the space potentials
(see [10], [19]). However, this way leads to the unnatural awkward construction of (1*)~!
which depends on the pole of the projection. Furthermore, the proof of such an inversion
formula is connected with large technical difficulties. It is more preferable to construct the
operator (I®)~! directly in spherical terms. In [10] Pavlov P.M. and Samko S.G. proved
that if f =1%, ¢ € Lp(35), 0 < a<2,1<p< o0, then

3 oa)=af@+e [ HE=Ta,

one (13 (75)




The method of [10] gives no answer how to invert I for all « > 2. In the present paper
we suggest two different inversion methods for Riesz potentials of finite Borel measures in
spherical terms. These methods are suitable for all & > 0 ( the definition of %y for
a=n,n+2,n+4,..., see below) and may be generalized for all complex o with Reax > 0
as in [13]. Our formulas contain hypersingular integrals, the convergence of which is
associated with a type of the measure to be restored. For arbitrary finite Borel measure
these integrals converge in a weak sense. If the measure is absolutely continuous with a
density belonging to L,(3,), 1 < p < oo, then the convergence of hypersingular integrals
is treated in the “almost everywhere” sense and in L,-norm. If the density is continuous,
then a uniform convergence is used.

In section 1, we construct the operator (I*)~! using a direct regularization of the
potential I*p. This method was developed in [13]. The case & = n when I%p turns into
the logarithmic potential, is considered in section 2. Another inversion method for I%¢p,
based on properties of a Poisson integral, is given in section 3.

The inversion problem for potentials (1) is closely connected with the characterization
of functions of a fractional smoothness on a sphere. In section 4 we give a number of
diverse descriptions of the spaces Lg(%,), C%(%,), M*(X,) generated by L,-functions,
by continuous functions and by finite Borel measures respectively. By the way we obtain
inversion formulas for some fractional integral operators introduced by du Plessis N.[11],
Greenwald H.C. [6], [7], Muckenhoupt B. and Stein E.M.[9]. All these operators have the
same range as I® (with the exception of some values of ) and are built by means of a
Poisson integral.

The investigation of Riesz potentials of the orders « = n + 2k, k = 0,1,..., leads to

the following integral equation on a sphere ¥, (a) = {z € R*"™ : |z| = a}:

(4) / o)z — y* log|z — yldy = f(z)
En(a)

In section 5 we show that in contrast to the case a # n + 2k the operator in the
left-hand side of (4) may be the Noether one for some radii a. We define its two-sided

regularizer and the d-characteristic explicity. It is interesting that the d-characteristic
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depends on the value of a radius a.
The author is deeply grateful to E. Shamir for his support and encouragement during

the work on this paper.

Notation

n 1
So{z € R : |z =1}, 0, = [S,| = 205 /T ("; );

dx denotes the Lebesgue measure on X,,; Y(3,,) = {Ym, .(2)} denotes a complete orthonor-
mal system of spherical harmonics on ¥,,;; m=0,1,...; p=1,2,...,d,(m), d,(m) being
a dimension of the subspace of harmonics of the order m, d,,(m) = (n + 2m — 1)%
(see [18]). B(X,) is the Borel o-algebra of ¥,. M (X, ) denotes a Banach space of all
regular complex valued finite Borel measures on B(X,) with the norm ||v|/as equaled to
a total variation of the measure v on %, ([3]); C(3,) denotes the space of all continuous
functions on ¥,; S(3,) denotes the space of all infinitely differentiable functions on ¥,

with the standard Shwartz topology; S’(X,) is a dual to S(X,); (f,w) denotes a value of
a functional f € S’(X,) on a function w € S(X,). If f € M(%,)(f € L1(X5)), then

(f,w) = /2 w(@)df ((f.w)= /2 () f(z)de )
Jmu = (f,Ym, ) denote Fourier-Laplace coefficients of a functional f € S§'(2,);

en+1(0,...,0,1); a} = (sup{a,0})*; P®)(t) denotes a Jacobi polynomial; Z, denotes

the set of all nonnegative integers;

lelle = llellz, .

1—r?
P,(xz,y) = Py is a Poisson kernel, 0 < r < 1;

f(x,r) = (f, Py(z,-)) denotes a Poisson integral of a function (measure) f.

(5) (D) (r / B(O) (7 — ) dt

is a Riemann-Liouville fractional integral of the order A > 0. We define a truncated
Marchund derivative by the equality
L

D= [ ng(j)(—l)ff(T—jt) o
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, where ¢ > 0, £ > )\,
(1 —et)t
ke(A) = / (ﬂ%dt (see [14])
0

Let E C R be some set with a limit point €y, and let {Ac}.cg be a family of linear
operators defined on Y(X,). If lim._,o, AcYy, , = Yo o VY5 o € V(E,,), then the famlily
{A¢} will be called an approximative identity as e — €.

Let us introduce functional spaces to be used later. Given @ € R; 1 < p < o0,
we denote by Ly (X,) (C%(%,), M*(%,)) the space of functionals f € S'(3%,) with the
following property: for each f € S'(¥,) there exists a function f(® € L,(%,)(f® €
C(%,), a measure f(®) € M(%,)) such that fr(,f‘L = (m+1)*fm,, for any m, u. The space
L5 (%) (C*(,), M*(X,)) is a Banach one with respect to the norm

(6) LA =170 (£ = 1o, 1= 1N ae.))

If a > 0, the elements of the spaces Ly (3,), C*(3,), M*(3,) are usual functions rep-
resented by spherical fractional integrals (see section 4). Besides the Riesz potential that

has the expansion
L (m+ 259)
7 I1%p ~ —2 Ly Y
(7) ¥ ZF(m+’”'T")(P’” N
(see[15]) we shall use the following fractional integrals

(8) I?‘P = ﬁ A (1 - p)a—lcp(m, p)dp (N Z lﬂ(I‘TrETZ—ii)OA)(Pm,MYm,M> )

I

(10) Igo = / (log )2 (2, )2 [ ~ S Mo Yo |
( ) 0 P ——
1 1—« 5
— n_
w2(n—1) 2 b —— n—1
¢ 2 (log 2)2~1r log =~ d
e | 0 2 Goe) o1 (b ety



