THE MINIMAL CARDINALITY WHERE THE REZNICHENKO PROPERTY FAILS

BOAZ TSABAN

ABSTRACT. A topological space X has the Fréchet-Urysohn property if for each subset A of X and each element x in \overline{A}, there exists a countable sequence of elements of A which converges to x. Reznichenko introduced a natural generalization of this property, where the converging sequence of elements is replaced by a sequence of disjoint finite sets which eventually intersect each neighborhood of x. In [5], Kočinac and Scheepers conjecture:

The minimal cardinality of a set X of real numbers such that $C_p(X)$ does not have the weak Fréchet-Urysohn property is equal to b.

(b is the minimal cardinality of an unbounded family in the Baire space $\mathbb{N}^\mathbb{N}$). We prove the Kočinac-Scheepers conjecture by showing that if $C_p(X)$ has the Reznichenko property, then a continuous image of X cannot be a subbase for a non-feeble filter on \mathbb{N}.

1. INTRODUCTION

A topological space X has the Fréchet-Urysohn property if for each subset A of X and each $x \in \overline{A}$, there exists a sequence $\{a_n\}_{n \in \mathbb{N}}$ of elements of A which converges to x. If $x \not\in A$ then we may assume that the elements a_n, $n \in \mathbb{N}$, are distinct. The following natural generalization of this property was introduced by Reznichenko [7]:

For each subset A of X and each element x in $\overline{A}\setminus A$, there exists a countably infinite pairwise disjoint collection \mathcal{F} of finite subsets of A such that for each neighborhood U of x, $U \cap F \neq \emptyset$ for all but finitely many $F \in \mathcal{F}$.

In [7] this is called the weak Fréchet-Urysohn property. In other works [5, 6, 10] this also appears as the Reznichenko property.
For a topological space X denote by $C_p(X)$ the space of continuous real-valued functions with the topology of pointwise convergence. A comprehensive duality theory was developed by Arkhangel'skiĭ and others (see, e.g., [2, 9, 5, 6] and references therein) which characterizes topological properties of $C_p(X)$ for a Tychonoff space X in terms of covering properties of X. In [5, 6] this is done for a conjunction of the Reznichenko property and some other classical property (countable strong fan tightness in [5] and countable fan tightness in [6]). According to Sakai [9], a space X has countable fan tightness if for each $x \in X$ and each sequence $\{A_n\}_{n \in \mathbb{N}}$ of subsets of X with $x \in \overline{A_n} \setminus A_n$ for each n, there exist finite sets $F_n \subseteq A_n$, $n \in \mathbb{N}$, such that $x \in \bigcup F_n$. In Theorem 19 of [6], Kočinac and Scheepers prove that for a Tychonoff space X, $C_p(X)$ has countable fan tightness as well as Reznichenko’s property if, and only if, each finite power of X has the Hurewicz covering property.

The Baire space $^{\mathbb{N}}\mathbb{N}$ of infinite sequences of natural numbers is equipped with the product topology (where the topology of \mathbb{N} is discrete). A quasi-ordering \preceq^* is defined on the Baire space $^{\mathbb{N}}\mathbb{N}$ by eventual dominance:

$$f \preceq^* g \text{ if } f(n) \leq g(n) \text{ for all but finitely many } n.$$

We say that a subset Y of $^{\mathbb{N}}\mathbb{N}$ is bounded if there exists g in $^{\mathbb{N}}\mathbb{N}$ such that for each $f \in Y$, $f \preceq^* g$. Otherwise, we say that Y is unbounded. \mathfrak{b} denotes the minimal cardinality of an unbounded family in $^{\mathbb{N}}\mathbb{N}$. According to a theorem of Hurewicz [3], a set of reals X has the Hurewicz property if, and only if, each continuous image of X in $^{\mathbb{N}}\mathbb{N}$ is bounded. This and the preceding discussion imply that for each set of reals X of cardinality smaller than \mathfrak{b}, $C_p(X)$ has the Reznichenko property. Kočinac and Scheepers conclude their paper [5] with the following.

Conjecture 1. \mathfrak{b} is the minimal cardinality of a set X of real numbers such that $C_p(X)$ does not have the Reznichenko property.

We prove that this conjecture is true.

2. A proof of the Kočinac-Scheepers conjecture

Throughout the paper, when we say that \mathcal{U} is a cover of X we mean that $X \subseteq \bigcup \mathcal{U}$ but X is not contained in any member of \mathcal{U}. A cover \mathcal{U} of a space X is an ω-cover of X if each finite subset F of X is contained in some member of \mathcal{U}. This notion is due to Gerlits and Nagy [2], and is starring in [5, 6]. According to [5, 6], a cover \mathcal{U} of X is ω-groupable if there exists a partition \mathcal{P} of \mathcal{U} into finite sets such that for each finite $F \subseteq X$ and all but finitely many $\mathcal{F} \in \mathcal{P}$, there exists $U \in \mathcal{F}$ such that...
$F \subseteq U$. Thus, each ω-groupable cover is an ω-cover and contains a countable ω-groupable cover.

In [6] it is proved that if each open ω-cover of a set of reals X is ω-groupable and $C_p(X)$ has countable fan tightness, then $C_p(X)$ has the Reznichenko property. Recently, Sakai [10] proved that the assumption of countable fan tightness is not needed here. More precisely, say that an open ω-cover U of X is ω-shrinkable if for each $U \in U$ there exists a closed subset $C_U \subseteq U$ such that $\{C_U : U \in U\}$ is an ω-cover of X. Then the following duality result holds.

Theorem 2 (Sakai [10]). For a Tychonoff space X, the following are equivalent:

1. $C_p(X)$ has the Reznichenko property;
2. Each ω-shrinkable open ω-cover of X is ω-groupable.

It is the other direction of this result that we are interested in here. Observe that any clopen ω-cover is trivially ω-shrinkable.

Corollary 3. Assume that X is a Tychonoff space such that $C_p(X)$ has the Reznichenko property. Then each clopen ω-cover of X is ω-groupable.

From now on X will always denote a set of reals. As all powers of sets of reals are Lindelöf, we may assume that all covers we consider are countable [2]. For conciseness, we introduce some notation. For collections of covers of X \mathcal{U} and \mathcal{V}, we say that X satisfies $(\mathcal{U}, \mathcal{V})$ (read: \mathcal{U} choose \mathcal{V}) if each element of \mathcal{U} contains an element of \mathcal{V} [14]. Let $C_{\mathcal{G}}$ and C_{Gpr} denote the collections of clopen ω-covers and clopen ω-groupable covers of X, respectively. Corollary 3 says that the Reznichenko property for $C_p(X)$ implies $(C_{\mathcal{G}}, C_{\text{Gpr}})$.

As a warm up towards the real solution, we make the following observation. According to [11], a space X satisfies $\text{Split}(\mathcal{U}, \mathcal{V})$ if every cover $U \in \mathcal{U}$ can be split into two disjoint subcovers V and W which contain elements of \mathcal{V}. Observe that $(C_{\mathcal{G}}, C_{\text{Gpr}})$ implies $\text{Split}(C_{\mathcal{G}}, C_{\mathcal{G}})$. The critical cardinality of a property P (or collection) of sets of reals, $\text{non}(P)$, is the minimal cardinality of a set of reals which does not satisfy this property. Write

$$\text{cf}_3 = \text{non}(\{X : C_p(X) \text{ has the Reznichenko property}\}).$$

Then we know that $\mathfrak{b} \leq \text{cf}_3$, and the Kočinac-Scheepers conjecture asserts that $\text{cf}_3 = \mathfrak{b}$. By Corollary 3, $\text{cf}_3 \leq \text{non}(\text{Split}(C_{\mathcal{G}}, C_{\mathcal{G}}))$. In [4] it is proved that $\text{non}(\text{Split}(C_{\mathcal{G}}, C_{\mathcal{G}})) = \mathfrak{u}$, where \mathfrak{u} is the ultrafilter number denoting the minimal size of a base for a nonprincipal ultrafilter on \mathbb{N}. Consequently, $\text{cf}_3 \leq \mathfrak{u}$. It is well known that $\mathfrak{b} \leq \mathfrak{u}$, but it is consistent
that $b < u$. Thus this does not prove the conjecture. However, this is the approach that we will use: We will use the language of filters to prove that $\non\left(\mathcal{C}_{\text{pp}}\right) = b$. By Corollary 3, $b \leq \aleph_3 \leq \non\left(\mathcal{C}_{\text{pp}}\right)$, so this will suffice.

A nonprincipal filter on \mathbb{N} is a family $\mathcal{F} \subseteq P(\mathbb{N})$ that contains all cofinite sets but not the empty set, is closed under supersets, and is closed under finite intersections (in particular, all elements of a nonprincipal filter are infinite). A base \mathcal{B} for a nonprincipal filter \mathcal{F} is a subfamily of \mathcal{F} such that for each $A \in \mathcal{F}$ there exists $B \in \mathcal{B}$ such that $B \subseteq A$. If the closure of \mathcal{B} under finite intersections is a base for a nonprincipal filter \mathcal{F}, then we say that \mathcal{B} is a subbase for \mathcal{F}. A family $\mathcal{Y} \subseteq P(\mathbb{N})$ is centered if for each finite subset \mathcal{A} of \mathcal{Y}, $\cap \mathcal{A}$ is infinite. Thus a subbase \mathcal{B} for a nonprincipal filter is a centered family such that for each n there exists $B \in \mathcal{B}$ with $n \notin B$. For a nonprincipal filter \mathcal{F} on \mathbb{N} and a finite-to-one function $f : \mathbb{N} \to \mathbb{N}$, $f(\mathcal{F}) := \{A \subseteq \mathbb{N} : f^{-1}[A] \in \mathcal{F}\}$ is again a nonprincipal filter on \mathbb{N}.

A filter \mathcal{F} is feeble if there exists a finite-to-one function f such that $f(\mathcal{F})$ consists of only the cofinite sets, \mathcal{F} is feeble if, and only if, there exists a partition $\{F_n\}_{n \in \mathbb{N}}$ of \mathbb{N} into finite sets such that for each $A \in \mathcal{F}$, $A \cap F_n \neq \emptyset$ for all but finitely many n (take $F_n = f^{-1}[\{n\}]$). Thus \mathcal{B} is a subbase for a feeble filter if, and only if:

1. \mathcal{B} is centered,
2. For each n there exists $B \in \mathcal{B}$ such that $n \notin B$; and
3. There exists a partition $\{F_n\}_{n \in \mathbb{N}}$ of \mathbb{N} into finite sets such that for each k and each $A_1, \ldots, A_k \in \mathcal{B}$, $A_1 \cap \cdots \cap A_k \cap F_n \neq \emptyset$ for all but finitely many n.

Define a topology on $P(\mathbb{N})$ by identifying it with Cantor’s space $\mathbb{N} \{0, 1\}$ (which is equipped with the product topology).

Theorem 4. For a set of reals X, the following are equivalent:

1. X satisfies $\left(\mathcal{C}_{\text{pp}}\right)$;
2. For each continuous function $\Psi : X \to P(\mathbb{N})$, $\Psi[X]$ is not a subbase for a non-feeble filter on \mathbb{N}.

Proof. ($1 \Rightarrow 2$) Assume that $\Psi : X \to P(\mathbb{N})$ is continuous and $\mathcal{B} = \Psi[X]$ is a subbase for a nonprincipal filter \mathcal{F} on \mathbb{N}. Consider the (clopen) subsets $O_n = \{A \subseteq \mathbb{N} : n \in A\}$, $n \in \mathbb{N}$, of $P(\mathbb{N})$. For each n, there exists $B \in \mathcal{B}$ such that $B \notin O_n$ ($n \notin B$), thus $X \not\subseteq \Psi^{-1}[O_n]$.

As \mathcal{B} is centered, $\{O_n\}_{n \in \mathbb{N}}$ is an ω-cover of \mathcal{B}, and therefore $\{\Psi^{-1}[O_n]\}_{n \in \mathbb{N}}$ is a clopen ω-cover of X. Let $A \subseteq \mathbb{N}$ be such that the enumeration $\{\Psi^{-1}[O_n]\}_{n \in A}$ is bijective. Apply $\left(\mathcal{C}_{\text{pp}}\right)$ to obtain a partition $\{F_n\}_{n \in \mathbb{N}}$ of A into finite sets such that for each finite $F \subseteq X$, and all but
finally many n, there exists $m \in F_n$ such that $F \subseteq \Psi^{-1}[O_m]$ (that is, $\Psi[F] \subseteq O_m$, or $\bigcap_{F_n} \Psi(x) \cap F_n \neq \emptyset$). Add to each F_n an element from $\mathbb{N} \setminus A$ so that $\{F_n\}_{n \in \mathbb{N}}$ becomes a partition of \mathbb{N}. Then the sequence $\{F_n\}_{n \in \mathbb{N}}$ witnesses that \mathcal{B} is a subbase for a feeble filter.

(2 \Rightarrow 1) Assume that $\mathcal{U} = \{U_n\}_{n \in \mathbb{N}}$ is a clopen ω-cover of X. Define $\Psi : X \to P(\mathbb{N})$ by

$$
\Psi(x) = \{n : x \in U_n\}.
$$

As \mathcal{U} is clopen, Ψ is continuous. As \mathcal{U} is an ω-cover of X, $\mathcal{B} = \Psi[X]$ is centered (see Lemma 2.2 in [13]). For each n there exists $x \in X \setminus U_n$, thus $n \notin \Psi(x)$. Therefore \mathcal{B} is a subbase for a feeble filter. Fix a partition $\{F_n\}_{n \in \mathbb{N}}$ of \mathbb{N} into finite sets such that for each $\Psi(x_1), \ldots, \Psi(x_k) \in \mathcal{B}$, $\Psi(x_1) \cap \cdots \cap \Psi(x_k) \cap F_n \neq \emptyset$ (that is, there exists $m \in F_n$ such that $x_1, \ldots, x_k \in U_m$) for all but finitely many n. This shows that \mathcal{U} is groupable.

\begin{cor}
\textbf{Corollary 5.} $\non\left(\left(\frac{C_0}{C_{app}}\right)\right) = b$.
\end{cor}

\begin{proof}
Every nonprincipal filter on \mathbb{N} with a (sub)base of cardinality smaller than b is feeble (essentially, [12]), and by an unpublished result of Petr Simon, there exists a non-feeble filter with a (sub)base of cardinality b — see [1] for the proofs. Use Theorem 4.
\end{proof}

This completes the proof of the Kočinac-Scheepers conjecture.

3. CONSEQUENCES AND OPEN PROBLEMS

Let \mathcal{B}_α and $\mathcal{B}_{\alpha_{pp}}$ denote the collections of countable Borel ω-covers and ω-groupable covers of X, respectively. The same proof as in Theorem 4 shows that the analogue theorem where “continuous” is replaced by “Borel” holds.

\mathcal{U} is a large cover of a space X if each member of X is contained in infinitely many members of \mathcal{U}. Let \mathcal{B}_Λ, Λ, and C_Λ denote the collections of countable large Borel, open, and clopen covers of X, respectively. According to [6], a large cover \mathcal{U} of X is groupable if there exists a partition \mathcal{P} of \mathcal{U} into finite sets such that for each $x \in X$ and all but finitely many $\mathcal{F} \in \mathcal{P}$, $x \in \cup \mathcal{F}$. Let $\mathcal{B}_{\Lambda_{pp}}$, Λ_{pp}, and $C_{\Lambda_{pp}}$ denote the collections of countable groupable Borel, open, and clopen covers of X, respectively.

\begin{cor}
\textbf{Corollary 6.} The critical cardinalities of the classes (\mathcal{B}_α), $(\mathcal{B}_{\alpha_{pp}})$, (\mathcal{B}_α), (α_{pp}), (α_{pp}), (\mathcal{B}_α), (α_{pp}), $(\mathcal{B}_{\alpha_{pp}})$, (α_{pp}), and $(\mathcal{B}_{\alpha_{pp}})$ are all equal to b.
\end{cor}

\begin{proof}
By the Borel version of Theorem 4, $\non(\mathcal{B}_\alpha) = b$. In [15] it is proved that $\non(\mathcal{B}_{\alpha_{pp}}) = b$. These two properties imply all other
properties in the list. Now, all properties in the list imply either \(C_{\kappa^p} \)

or \(C_{\kappa^{2^p}} \), whose critical cardinality is \(b \) by Theorem 4 and [15]. □

If we forget about the topology and consider arbitrary countable covers, we get the following characterization of \(b \), which extends Theorem 15 of [6] and Corollary 2.7 of [15]. For a cardinal \(\kappa \), denote by \(\Lambda_{\kappa}, \Omega_{\kappa}, \Lambda_{\kappa}^{gp}, \) and \(\Omega_{\kappa}^{gp} \) the collections of countable large covers, \(\omega \)-covers, groupable covers, and \(\omega \)-groupable covers of \(\kappa \), respectively.

Corollary 7. For an infinite cardinal \(\kappa \), the following are equivalent:

1. \(\kappa < b \),
2. \(\Lambda_{\kappa}^{gp} \),
3. \(\Omega_{\kappa}^{gp} \); and
4. \(\Omega_{\kappa}^{gp} \).

It is an open problem [10] whether item (2) in Sakai’s Theorem 2 can be replaced with \(\Omega_{\kappa}^{gp} \) (by the theorem, if \(X \) satisfies \(\Omega_{\kappa}^{gp} \), then \(C_{\kappa}(X) \) has the Reznichenko property; the other direction is the unclear one).

For collections \(\mathcal{U} \) and \(\mathcal{V} \) of covers of \(X \), we say that \(X \) satisfies \(S_{fin}(\mathcal{U}, \mathcal{V}) \) if:

For each sequence \(\{U_n\}_{n \in \mathbb{N}} \) of members of \(\mathcal{U} \), there is a sequence \(\{F_n\}_{n \in \mathbb{N}} \) such that each \(F_n \) is a finite subset of \(U_n \), and \(\bigcup_{n \in \mathbb{N}} F_n \in \mathcal{V} \).

In [15] it is proved that \(\Omega_{\kappa}^{gp} = S_{fin}(\Lambda, \Lambda^{gp}) \) (which is the same as the Hurewicz covering property [6]). We do not know whether the analogue result for \(\Omega_{\kappa}^{gp} \) is true.

Problem 8. Does \(\Omega_{\kappa}^{gp} = S_{fin}(\Omega, \Omega^{gp}) \) ?

In [6] it is proved that \(X \) satisfies \(S_{fin}(\Omega, \Omega^{gp}) \) if, and only if, all finite powers of \(X \) satisfy the Hurewicz covering property \(S_{fin}(\Lambda, \Lambda^{gp}) \), which we now know is the same as \(\Lambda_{\kappa^{2^p}} \).

Added after publication. The answer to Problem 8 is “No”, in the following strong sense: Masami Sakai proves in: Weak Fréchet-Urysohn property in function spaces (preprint), that every analytic set of reals (and, in particular, the Baire space \(\mathbb{N}^\mathbb{N} \)) satisfies \(S_{fin}(\mathbb{N}^\mathbb{N}) \). But we know that \(\mathbb{N}^\mathbb{N} \) does not satisfy the Hurewicz covering property.
REFERENCES

EINSTEIN INSTITUTE OF MATHEMATICS, HEBREW UNIVERSITY OF JERUSALEM, GIVAT RAM, JERUSALEM 91904, ISRAEL
E-mail address: tsaban@math.huji.ac.il
URL: http://www.cs.biu.ac.il/~tsaban