A POSITIVE SOLUTION TO THE GENERALIZED BUSEMANN-PETTY PROBLEM FOR TWO AND THREE-DIMENSIONAL SECTIONS

BORIS RUBIN

ABSTRACT. The generalized Busemann-Petty problem asks: If K and L are origin-symmetric convex bodies in \mathbb{R}^n, and the volume of $K \cap \xi$ is smaller than the volume of $L \cap \xi$ for every i-dimensional subspace ξ, $1 \leq i \leq n - 1$, does it follow that the volume of K is also smaller than the volume of L? For $i = 1$, the affirmative answer is obvious. Bourgain and Zhang gave a negative answer for all $3 < i \leq n - 1$. We show that in the cases (a) $i = 2$, $n \geq 3$, and (b) $i = 3$, $n \geq 4$, the answer is positive. This completes the problem.

1. INTRODUCTION

Let $G_{n,i}$ be the Grassmann manifold of i-dimensional subspaces ξ of \mathbb{R}^n, and $vol_i(\cdot)$ denote the i-dimensional volume function, $1 \leq i \leq n$. Is it true that for origin-symmetric convex bodies K and L in \mathbb{R}^n, the inequality

(1.1) \[vol_i(K \cap \xi) \leq vol_i(L \cap \xi) \quad \forall \xi \in G_{n,i} \]

implies

(1.2) \[vol_n(K) \leq vol_n(L) \quad ? \]

This question is known as the generalized Busemann-Petty problem (GBP). For $i = n - 1$, the problem was posed by Busemann and Petty [BP] in 1956 and has a long history (see [G2]). In the past decade a good deal of studying various aspects of this problem was made by Bourgain, Gardner, Koldobsky, Zhang and others. It was proven [GKS], [BFM], [P], [Z2] that for $i = n - 1$, the answer is YES if and only if $n \leq 4$, and in the general case the answer is NO for $3 < i \leq n - 1$ [BZ]. In [Z1]

2000 Mathematics Subject Classification. Primary 52A38; Secondary 44A12.

Key words and phrases. The Busemann-Petty problem, Radon transforms, convex bodies.

The author was supported in part by the Edmund Landau Center for Research in Mathematical Analysis and Related Areas, sponsored by the Minerva Foundation (Germany).
a negative answer was also claimed for \(i = 3 \). The case \(i = 2, n \geq 5 \) remained open. In the present article we show that GBP has an affirmative answer if \(i = 2 \) and \(i = 3 \). This disproves the aforementioned statement from [Z1]. One should note that there is a series of accompanying results which are of independent interest but do not solve GBP. We shall not discuss these results here.

The present article is almost self-contained, and the argument is simpler than that in [GKS], [Z2] and [BFM]. The Busemann-Petty case \(i = n - 1 \) is also included. The key idea is a remarkable interrelation between euclidean \(i \)-plane transforms on \(\mathbb{R}^n \), the dual geodesic Radon transforms on the unit sphere \(S^{n-1} \) in \(\mathbb{R}^n \), and the classical fractional calculus [R1], [SKM]. This interrelation was used implicitly in [BFM] for \(i = n - 1 \). We extend it to all \(i \leq n - 1 \) and simplify technicalities.

Remark 1.1. In contrast to [GKS] (and some other papers by A. Koldobsky), our approach does not employ the Fourier analysis on \(\mathbb{R}^n \). In this connection one should mention earlier papers by V.I. Semyanistyi [Se1], [Se2] containing a systematic study of interrelation between homogeneous distributions on \(\mathbb{R}^n \) and analytic families of convolution operators on the sphere (including the Minkowski-Funk and cosine transforms). According to the Gel’fand-Šapiro theory [GS], the Fourier transform serves as a bridge between these two classes of objects. Similar results were obtained by Semyanistyi and his collaborators for hyperbolic spaces and more general settings.

Section 2 contains auxiliary statements about Radon transforms of different kinds. In Section 3 we prove the following

Theorem A. If origin-symmetric convex bodies \(K \) and \(L \) in \(\mathbb{R}^n \) satisfy \(vol_i(K \cap \xi) \leq vol_i(L \cap \xi) \forall \xi \in G_{n,i} \), where \(i = 2, n \geq 3 \) (or \(i = 3, n \geq 4 \)), then \(vol_n(K) \leq vol_n(L) \).

Since for \(3 < i \leq n - 1 \), GBP has a negative answer [BZ], Theorem A completes the problem.

Acknowledgements. I am very grateful to Professors Giancarlo Travaglini and Luca Brandolini for useful discussions.

2. PASSAGE TO RADON TRANSFORMS AND PRELIMINARIES

We shall use the following notation: \(\sigma_{n-1} = |S^{n-1}| = 2\pi^{n/2}/\Gamma(n/2) \) is the area of the unit sphere in \(\mathbb{R}^n \); \(e_1, e_2, \ldots, e_n \) denote the coordinate unit vectors, \(p_0 = \mathbb{R}_e n_{n+1} + \ldots + \mathbb{R}_e n \) is the coordinate \(i \)-plane; \(du \) and \(d\xi \) are invariant measures so that \(\int_{S^n_{n-1}} du = \sigma_{n-1} \) and \(\int_{G_{n,i}} d\xi = 1 \). The totally geodesic Radon transform of an integrable function \(f \) on
\(S^{n-1} \) is defined by
\[
(R_i f)(\xi) = \int_{S^{n-1} \cap \xi} f(u) d_\xi u, \quad \xi \in G_{n,i},
\]
where \(d_\xi u \) is the induced Lebesgue measure on the section \(S^{n-1} \cap \xi \). We identify the \(i \)-plane \(\xi \) with the \((i-1)\)-dimensional circle \(S^{n-1} \cap \xi \). The case \(i = n-1 \) in \((2.1) \) corresponds to the Minkowski-Funk transform \((Rf)(u) = (R_{n-1} f)(u^\perp) \). The dual Radon transform of a function \(\varphi \in L^1(G_{n,i}) \) is defined by
\[
(R^*_i \varphi)(u) = \int_{SO(n-1)} \varphi(r_u \gamma p_0) d\gamma, \quad u \in S^{n-1},
\]
where \(r_u \in SO(n) \) is a rotation so that \(r_u e_n = u \), and \(SO(n-1) \) is the isotropy subgroup of \(e_n \) [He], [R2]. The relevant duality reads
\[
\frac{1}{\sigma_{n-1}} \int_{G_{n,i}} (R^*_i f)(\xi) d\xi = \frac{1}{\sigma_{n-1}} \int_{S^{n-1}} f(u)(R^*_{i} \varphi) (u) du.
\]

Each origin-symmetric star body \(K \) can be identified with its radial function
\[
\rho_K(u) = \sup \{ \lambda \geq 0 : \lambda u \in K, \ u \in S^{n-1} \} \quad \in C_{even}(S^{n-1}).
\]
By passing to polar coordinates, we have
\[
vol_n(K) = \frac{1}{n} \int_{S^{n-1}} \rho_K^\alpha(u) du = V(K),
\]
\[
vol_i(K \cap \xi) = \frac{1}{i} \int_{S^{n-1} \cap \xi} \rho_K^\alpha(u) d_\xi u = \frac{1}{i} (R_i \rho_K^\alpha)(\xi).
\]
It is worth mentioning the paper by Hadwiger [H] who studied more general “radialpotenzintegrale” like \((2.4) \) and \((2.5) \) for zonal functions on \(S^2 \) with \(\rho^\alpha_K \) and \(\rho^\beta_K \) replaced by \(\rho^\alpha_K \) and \(\rho^\beta_K \) \(\forall \alpha, \beta \geq 0 \).

We shall deal with the following classes of star bodies:
\[
\mathcal{K}_e = \text{the set of all origin-symmetric star bodies;}
\]
\[
\mathcal{K}_c = \{ K : K \in \mathcal{K}_e, \ K \text{ is convex} \};
\]
\[
\mathcal{I}_{n,i} = \{ K : K \in \mathcal{K}_e, \ \rho^\alpha_K \in R^*_i(L^1(G_{n,i})) \}
\]
where \(R^*_i(L^1(G_{n,i})) \) is the range of the dual transform \((2.2) \) on non-negative functions \(\varphi \in L^1(G_{n,i}) \).

The definition \((2.6) \) is motivated by the following

Lemma 2.1. If \(K \in \mathcal{I}_{n,i} \) then \((1.1) \) implies \((1.2) \) \(\forall L \in \mathcal{K}_e \).
Proof. Let $\rho_{K}^{n-i} = R_{i}^{*}\varphi$, $\varphi \in L^{1}_{+}(G_{n,i})$. By (2.3)-(2.5),
\[
V(K) = \frac{1}{n} \int_{S^{n-1}} \rho_{K}^{i}(u)\rho_{K}^{n-i}(u)du = \frac{1}{n} \int_{S^{n-1}} \rho_{K}^{i}(u)(R_{i}^{*}\varphi)(u)du
\]
\[
= \frac{\sigma_{n-1}}{n\sigma_{i-1}} \int_{G_{n,i}} (R_{i}\rho_{K}^{i})(\xi)\varphi(\xi)d\xi \leq \frac{\sigma_{n-1}}{n\sigma_{i-1}} \int_{G_{n,i}} (R_{i}\rho_{L}^{i})(\xi)\varphi(\xi)d\xi
\]
\[
= \frac{1}{n} \int_{S^{n-1}} \rho_{L}^{i}(u)\rho_{K}^{n-i}(u)du.
\]
By Hölder’s inequality, $V(K) \leq V(L)^{i/n}V(K)^{1-i/n}$, and (1.2) follows.
\]

The above lemma is well known. Such a simple argument was used, e.g., by Hadwiger [H] and Lutwak [L].

Lemma 2.2. If $\varphi \in L^{1}(G_{n,i})$ then $R_{i}^{*}\varphi = \sigma_{n-2}^{-1}R\psi$ where $R\psi$ is the Minkowski-Funk transform of a function
\[
(2.7) \quad \psi(\lambda e_{n-1}) = \int_{SO(n-2)} \varphi(\lambda\gamma p_{0})d\gamma, \quad \lambda \in SO(n),
\]
satisfying $\int_{S^{n-1}} \psi(u)du = \sigma_{n-1} \int_{G_{n,i}} \varphi(\xi)d\xi$.

Proof. By (2.1) and (2.2),
\[
\frac{1}{\sigma_{n-2}}(R\psi)(u) = \int_{SO(n-1)} \psi(r_{u}\rho e_{n-1})d\rho
\]
\[
= \int_{SO(n-1)} d\rho \int_{SO(n-2)} \varphi(r_{u}\rho\gamma p_{0})d\gamma = \int_{SO(n-1)} d\gamma \int_{SO(n-2)} \varphi(r_{u}\rho\gamma p_{0})d\rho.
\]
Replacing $\rho\gamma$ by ρ, we get $(R_{i}^{*}\varphi)(u)$. Furthermore,
\[
\int_{S^{n-1}} \psi(u)du = \sigma_{n-1} \int_{SO(n)} \psi(\lambda e_{n-1})d\lambda = \sigma_{n-1} \int_{SO(n)} d\lambda \int_{SO(n-2)} \varphi(\lambda\gamma p_{0})d\gamma
\]
\[
= \sigma_{n-1} \int_{SO(n)} \varphi(\lambda p_{0})d\lambda = \sigma_{n-1} \int_{G_{n,i}} \varphi(\xi)d\xi.
\]
\]

\]
We shall need some facts from [Mu], [Herz] about functions of matrix argument. Let \(\mathcal{M}_{n,k} \), \(n \geq k \), be the space of real matrices \(x = (x_{i,j}) \) having \(n \) rows and \(k \) columns with the volume element \(dx = \prod_{i=1}^{n} \prod_{j=1}^{k} dx_{i,j} \). In the following \(x' \) denotes the transpose of \(x \), \(|x| = \det(x) \) (for square matrices), and \(I_k \) is the identity \(k \times k \) matrix. Let \(V_{n,k} = \{ v \in \mathcal{M}_{n,k} : v'v = I_k \} \) be the Stiefel manifold of orthonormal \(k \)-frames in \(\mathbb{R}^n \). For \(n = k \), \(V_{n,n} = O(n) \) represents the orthogonal group in \(\mathbb{R}^n \). We fix a measure \(dv \) on \(V_{n,k} \) which is \(O(n) \) left-invariant, \(O(k) \) right-invariant, and normalized by \(\int_{V_{n,k}} dv = \sigma_{n,k} \), where \(\sigma_{n,k} = 2^k \pi^{n^2} / \Gamma_k(n/2) \), and

\[
\Gamma_k(\alpha) = \pi^{k(k-1)/4} \Gamma(\alpha - \frac{1}{2}) \Gamma(\alpha - \frac{k-1}{2})
\]

is the Siegel Gamma function. We denote by \(P_k \) the cone of positive definite symmetric \(k \times k \) matrices \(r = (r_{i,j}) \) with the volume element \(dr = \prod_{i \leq j} dr_{i,j} \). The following polar decomposition can be found in ([Herz], p. 482]; [Mu], p. 66]; [GR]).

Lemma 2.3. Almost all \(x \in \mathcal{M}_{n,k} \), \(n \geq k \), can be decomposed as

\[
x = vr^{1/2}, \quad v \in V_{n,k}, \quad r = x'x \in P_k \quad \text{with} \quad dx = 2^{-k} |r|^{(n-k-1)/2} dr dv.
\]

The next statement mimics Lemma 6.1 from [GZ]. We present it in a more complete form, and give an alternative proof.

Lemma 2.4. Let \(f = Rg \), \(g \in C_+(S^{n-1}) \), and let \(K \) be a star body so that \(\rho_{K}^{n-1}(u) = (n-1)g(u) \). Then for \(1 < i < n \),

\[(2.8) \quad f^{n-i}(u) = (R_i \varphi)(u), \quad \varphi(\eta) = \int_{\eta \cap K} dx_1 \cdots \int_{\eta \cap K} |x'x|^{(i-1)/2} dx_{n-i},
\]

\(x = [x_1, \ldots, x_{n-i}] \in \mathcal{M}_{n,n-i} \), and

\[(2.9) \quad \int_{\mathcal{G}_{n,i}} \varphi(\eta) d\eta = c(vol_n(K))^{n-i}, \quad c = \frac{\sigma_{n-i,n-i}}{\sigma_{n,n-i}}.
\]

Proof. By (2.5), \(f(u) = vol_{n-1}(K \cap u^+) \), and therefore

\[
f^{n-i}(u) = \prod_{j=1}^{n-i} \int_{K \cap u^+} dx_j = \int_{\mathcal{M}_{n-1,n-i}} F(y) dy
\]
where \(F(y) \) is the product of characteristic functions \(\chi_{r_u^{-1}K}(y_j), j = 1, \ldots, n-i \), of the rotated body \(r_u^{-1}K \). Now Lemma 2.3 yields

\[
\begin{align*}
\int_{G_{n-i}} f^{n-i}(u) &= 2^{i-n} \int_{V_{n-1,n-i}} \int_{O(n-i)} d\gamma \int_{\mathbb{P}_{n-i}} F(v\gamma r^{1/2}) |r|^{(i-2)/2} \, dr \\
&= \frac{2^{i-n}}{\sigma_{n-i,n-i}} \int_{V_{n-1,n-i}} \int_{O(n-i)} d\gamma \int_{\mathbb{P}_{n-i}} F(v\gamma r^{1/2}) |r|^{(i-2)/2} \, dr \\
&= \frac{1}{\sigma_{n-i,n-i}} \int_{V_{n-1,n-i}} \int_{\mathbb{M}_{n-1,n-i}} F(vz) |z'|^{(i-1)/2} \, dz \\
&= \int_{SO(n-1)} \int_{\mathbb{M}_{n-1,n-i}} F(\alpha \begin{bmatrix} I_{n-i} \\ 0 \end{bmatrix}) z) |z'|^{(i-1)/2} \, dz \\
&= \int_{G_{n-1,n-i}} \int_{\mathbb{S}_{n-1}^{n-i}} F(y) |y'|^{(i-1)/2} \, dy_1 \cdots dy_{n-i}.
\end{align*}
\]

After changing variables this reads

\[
\int_{\eta \in u} \left(\int_{\eta \cap K} \int_{\eta \cap K} d\xi_1 \cdots d\xi_{n-i} \right) |x' x|^{(i-1)/2} \, dx_{n-i} \, d\eta, \quad \eta \in G_{n,i},
\]

and (2.8) follows. In order to prove (2.9) we proceed in the opposite direction with slight changes:

\[
\begin{align*}
\int_{G_{n,i}} \varphi(\eta) \, d\eta &= \int_{SO(n)} \int_{\mathbb{M}_{n-1,n-i}} \int_{\mathbb{S}_{n-i}} F(\beta \begin{bmatrix} I_{n-i} \\ 0 \end{bmatrix}) z) |z'|^{(i-1)/2} \, dz \\
&= \frac{1}{\sigma_{n,n-i}} \int_{V_{n,n-i}} \int_{\mathbb{M}_{n-1,n-i}} \int_{\mathbb{S}_{n-i}} F(wz) |z'|^{(i-1)/2} \, dz \\
&= \frac{2^{i-n}}{\sigma_{n,n-i}} \int_{V_{n,n-i}} \int_{O(n-i)} \int_{\mathbb{P}_{n-i}} F(wr^{1/2}) |r|^{(i-2)/2} \, dr \\
&= \frac{2^{i-n} \sigma_{n,n-i}}{\sigma_{n,n-i}} \int_{V_{n,n-i}} \int_{\mathbb{P}_{n-i}} F(wr^{1/2}) |r|^{(i-2)/2} \, dr \\
&= \frac{c}{\sigma_{n,n-i}} \int_{\mathbb{M}_{n-1,n-i}} F(y) dy = c \int_{r_u^{-1}K} dy_1 \cdots \int_{r_u^{-1}K} dy_{n-i} = c(\text{vol}_n(K))^{n-i}.
\end{align*}
\]

\[\square\]
The next statement is especially important. It concerns interrelation between spherical and euclidean Radon transforms. We consider the euclidean i-plane transform $[He]$

\[(2.10) \quad (P_i f)(\xi, x'') = \int f(x' + x'') dx', \quad \xi \in G_{n,i}, \quad x'' \in \xi^{\perp}.\]

Since $\int_{\xi^{\perp}} (P_i f)(\xi, x'') dx'' = \int_{\mathbb{R}^n} f(x) dx \forall \xi$, $P_i f$ is well defined for all $f \in L^1(\mathbb{R}^n)$. The case $i = 1$ in (2.10) corresponds to the X-ray transform of f.

Lemma 2.5. Let $f \in L^1(\mathbb{R}^n)$, $\xi \in G_{n,i}$. Then for all $\omega \in S^{n-1} \cap \xi^{\perp}$ and $t \in \mathbb{R}$,

\[(2.11) \quad R^*_t : (P_i f)(\xi, \omega t) \to \sigma_{i-2} \int_{|t|}^{\infty} \psi_u(r)(r^2 - t^2)^{(i-3)/2} rdr\]

where

\[(2.12) \quad \psi_u(r) = \frac{1}{\sigma_{i-2}} \int_{S^{n-1} \cap u^{\perp}} (P_1 f)(\theta, r\theta) d\theta\]

is the average of the X-ray transform of f over all lines parallel to u at distance r from the origin.

Proof. Let $p_0 = \mathbb{R}e_{n-i+1} + \ldots + \mathbb{R}e_n$, $y = y' + y''$, $y' \in p_0$, $y'' \in p_0^{\perp}$. Given $u \in S^{n-1}$, we fix a rotation $r_u \in SO(n)$ so that $r_u : e_n \to u$, and denote $f_u(x) = f(r_u x)$. By (2.2),

\[(R^*_t[(P_i f)(\xi, x'')])(u) = \int_{SO(n-1)} (P_i f_u)(\rho p_0, \rho y) d\rho = \int_{SO(n-1)} d\rho \int_{p_0} f_u(\rho(y' + y'')) dy'.\]

For $y = \sum_{k=1}^n y_k e_k$, we write

\[y = z + y_n e_n, \quad z = z' + z'', \quad z' = \sum_{k=n-i+1}^{n-1} y_k e_k, \quad z'' = \sum_{k=1}^{n-i} y_k e_k = y''.\]
Then the last integral reads
\[
\int_{\mathbb{R}^{n-1}} \int_{-\infty}^{\infty} \int_{SO(n-1)} f_u(\rho z + y_n e_n) d\rho d\sigma d\alpha
\]
\[
= \int_{\mathbb{R}^{n-1}} \int_{-\infty}^{\infty} \int_{SO(n-1)} f_u(\rho \sqrt{|z'|^2 + |z''|^2} e_1 + y_n e_n) d\rho d\sigma d\alpha
\]
\[
= \sigma_{i-2} \int_0^\infty s^{i-2} \psi_u(\sqrt{s^2 + |y''|^2}) ds = \sigma_{i-2} \int_0^\infty \psi_u(r)(r^2 - r^2)^{(i-3)/2} dr,
\]
where \(t = |z''| = |y''| = |x''| \), and
\[
\psi_u(r) = \int_{SO(n-1)} dp \int_{-\infty}^{\infty} f_u(r p e_1 + y_n e_n) d\sigma d\alpha = \frac{1}{\sigma_{n-2}} \int_{S^{n-1} \cap u^\perp} (P_1 f)(u, r \theta) d\theta.
\]

3. PROOF OF THE MAIN RESULT

Denote
\[
(3.1) \quad M_\xi(\omega, t) = (P_1 f)(\xi, \omega t), \quad \omega \in S^{n-1} \cap \xi^\perp, \quad t \in \mathbb{R}.
\]
If \(f = \chi_K \) is the characteristic function of \(K \), then (3.1) is a volume of the \(i \)-dimensional plane section of \(K \) in the direction \(\omega \) at distance \(|t| \) from the origin. Our nearest goal is to apply Lemma 2.5 to \(f = \chi_K, K \in \mathcal{K}_c \), and to express \(\psi_u(0) = (P_1 f)(u, 0) = 2\rho_K(u) \) through \(M_\xi(\omega, t) \). Let
\[
(3.2) \quad F_u(t) = (R_i [M_\xi(\omega, t)])(u), \quad t \geq 0,
\]
and suppose that \(K \) has a \(C^\infty \)-boundary. If \(i \) is odd we follow [BFM] and write (2.11) as
\[
\frac{F_u(t)}{\sigma_{i-2}} = \int_0^\infty \psi_u(r)(r^2 - t^2)^{(i-3)/2} dr - t^{i-1} \int_0^1 \psi_u(t s)(s^2 - 1)^{(i-3)/2} s ds.
\]
The first term in the right hand side is a polynomial of degree \(i - 3 \), and simple calculation yields
\[
\frac{F_u(t)}{\sigma_{i-2}} = -\sigma_{i-2}(i - 1)! \psi_u(0) \int_0^1 (s^2 - 1)^{(i-3)/2} s ds
\]
\[
(3.3) \quad = \pi^{i/2-1} 2^i (-1)^{(i-1)/2} \Gamma(i/2) \rho_K(u).
\]
For \(i \) even, the required result can be easily obtained by making use of Marchaud’s fractional derivative which was introduced in 1927 [M], and is well known in fractional calculus. Numerous generalizations and applications of this notion can be found in [R1], [SKM]. We recall some basic facts from the book [R1] containing a detailed account and further development of Marchaud’s method. For a large class of functions \(\varphi \) on a half-line, the Weyl fractional integral

\[
\Phi(t) = (I^\alpha_0 \varphi)(t) = \frac{1}{\Gamma(\alpha)} \int_t^\infty \varphi(r)(r - t)^{\alpha - 1} dr, \quad Re \alpha > 0,
\]

can be inverted as \(\varphi = D^\alpha_0 \Phi \) where

\[
(D^\alpha_0 \Phi)(r) = \frac{1}{\kappa_\ell(\alpha)} \int_0^\infty \left[\sum_{j=0}^\ell \binom{\ell}{j} (-1)^j \Phi(r + j \ell) \right] \frac{dt}{t^{1+\alpha}},
\]

\[
\kappa_\ell(\alpha) = \int_0^\infty \frac{(1 - e^{-\ell t})^\ell}{\ell^{1+\alpha}} dt, \quad \ell > Re \alpha, \quad \ell \in \mathbb{N}.
\]

The expression (3.5) containing a finite difference of \(\Phi \) of order \(\ell \), is called the Marchaud fractional derivative of \(\Phi \). The integer \(\ell > Re \alpha \) can be arbitrary due to normalization. If \(\Phi \) has \(\ell + 1 \) continuous derivatives in a neighborhood of \(r \) then \(D^\alpha_0 \Phi \) exists as an improper integral. Otherwise it represents a hypersingular integral which is understood in a certain special sense (see Theorem 10.21 in [R1]). For \(r = 0 \), (3.5) yields

\[
(D^\alpha_0 \Phi)(0) = \frac{1}{\kappa_\ell(\alpha)} \int_0^\infty \left[\sum_{j=0}^\ell \binom{\ell}{j} (-1)^j \Phi(j \ell) \right] \frac{dt}{t^{1+\alpha}}.
\]

This expression represents analytic continuation (a.c.) of the integral

\[
I(\beta) = \frac{1}{\Gamma(\beta)} \int_0^\infty \Phi(r)r^{\beta - 1} dr \quad \text{in the strip } \mathcal{L} = \{ \beta : -\ell < Re \beta < 0 \} \text{ at the point } -\alpha \in \mathcal{L}.
\]

If \(\Phi^{(2m+1)}(0) = 0 \), \(m = 0, 1, \ldots \), then \(\ell \) can be reduced so that (3.6) holds for all \(\ell > 2[Re \alpha/2] \), \([a]\) being the integral part of \(a \) (see Corollary 10.15 in [R1]).

We note that in applications of fractional calculus, a difference regularization is sometimes more effective than the classical one [GS]

\[
a.c. \int_0^\infty \Phi(r)r^{\beta - 1} dr = \int_0^\infty \left[\Phi(r) - \sum_{j=0}^{\ell - 1} \frac{r^j}{j!} \Phi^{(j)}(0) \right] r^{\beta - 1} dr,
\]

\[-\ell < Re \beta < -\ell + 1.\]
We shall use both regularizations of \(I(\beta) \). By (2.11) and (3.2), \(F_u(\sqrt{t}) = \pi^{(i-1)/2} (F_u^{(i-1)/2} \psi_u(\sqrt{t}))(t) \). Hence

\[
\psi_u(0) = \frac{\pi^{(i-\alpha)/2}}{\kappa \ell((i-1)/2)} \int_0^\infty \left[\sum_{j=0}^\ell \binom{\ell}{j} (-1)^j F_u(\sqrt{t}) \right] \frac{dt}{t^{(i+1)/2}}
\]

\[= a.c. \frac{\pi^{(i-\alpha)/2}}{\Gamma(\alpha)} \int_0^\infty t^{\alpha-1} F_u(\sqrt{t}) dt \bigg|_{\alpha = (1-\alpha)/2} \]

\[= a.c. \frac{2\pi^{(i-\alpha)/2}}{\Gamma(\beta/2)} \int_0^\infty \tau^{\beta-1} F_u(\tau) d\tau \bigg|_{\beta = 1-\alpha}.
\]

Since odd derivatives of \(F_u(t) \) are zeros at \(t = 0 \), and \(\psi_u(0) = 2\rho_K(u) \), according to (3.7) we get

\[(3.8) \quad \rho_K(u) = c_i \int_0^\infty \left[F_u(\tau) - \sum_{m=0}^{(i-2)/2} \frac{\tau^{2m}}{(2m)!} F_u^{(2m)}(0) \right] \frac{d\tau}{\tau^i}.
\]

\[c_i = \frac{\pi^{(i-\alpha)/2}}{\Gamma((1-\alpha)/2)} = \frac{(-1)^{i/2}(i-1)!!}{(2\pi)^{i/2}}.
\]

This implies the following

Theorem 3.1. Let \(\rho_K \in C^\infty(S^{n-1}) \), \(2 \leq i \leq n-1 \). For \(\xi \in G_{n,i}, \omega \in S^{n-1} \cap \xi^\perp \), and \(t \geq 0 \), we set

\[(3.9) \quad M_\xi(\omega, t) = vol\{K \cap \{\xi + \omega t\}\},
\]

and denote by \(M_\xi^{(j)}(\omega, 0), j = 1, 2, \ldots, \) directional derivatives of \(M_\xi(\omega, \cdot) \) in the direction \(\omega \) at \(t = 0 \). Then \(\rho_K = R^*_h \), where \(h \equiv h(\xi, \omega) \in C^\infty(G_{n,i}) \). The function \(h \) has the form

\[(3.10) \quad h(\xi, \omega) = \frac{(-1)^{(i-1)/2}}{\pi^{i/2-1} 2^{i/2} \Gamma(i/2)} M_\xi^{(i-1)}(\omega, 0)
\]

if \(i \) is odd, and

\[(3.11) \quad h(\xi, \omega) = \frac{(-1)^{i/2}(i-1)!!}{(2\pi)^{i/2}} \int_0^\infty \left[M_\xi(\omega, \tau) - \sum_{m=0}^{(i-2)/2} \frac{\tau^{2m}}{(2m)!} M_\xi^{(2m)}(\omega, 0) \right] \frac{d\tau}{\tau^i}
\]

if \(i \) is even.

For \(i = n-1 \), Theorem 3.1 was proven in [GKS] and [BFM]. Our proof is essentially simpler and based on different ideas. We recall that the argument in [GKS] relies heavily on the Fourier analysis of
homogeneous distributions in \mathbb{R}^n. Derivation of (3.11) in [BFM] (for $i = n - 1$) is more complicated than ours. It is worth noting that for $i < n - 1$, one deals with the family of functions h parameterized by the vector ω belonging to the $(n - i - 1)$-dimensional unit sphere. In the case $i = n - 1$ there exist only one such function.

Now we can return to the generalized Busemann-Petty problem. We denote by $A(GBP)$ the set of all pairs (i, n), $2 \leq i \leq n - 1$, so that (1.1) \Rightarrow (1.2) for all $K, L \in K_c$, and let $\kappa_K(x)$ be the Gaussian curvature of the boundary $\text{bd}(K)$ at the point $x \in \text{bd}(K)$ [Sch]. Consider the following class of “test bodies”:

$$K^{\infty}_{c+} = \{K : K \in K_c; \quad \rho_K \in C^\infty(S^{n-1}); \quad \kappa_K(x) > 0 \quad \forall x \in \text{bd}(K)\}.$$

Lemma 3.2. If $K^{\infty}_{c+} \subset I_{n,i}$ (see (2.6)) then $(i, n) \in A(GBP)$.

Proof. Following Gardner’s scheme ([G1], Theorem 3.1), we suppose that for some $K, L \in K_c$ satisfying (1.1), $\text{vol}_n(K) > \text{vol}_n(L)$. There exists an approximating body $K' \in K^{\infty}_{c+}$ so that $K' \subset K$ and $\text{vol}_n(K') > \text{vol}_n(L)$ (see, e.g., [G2], p. 297, and [G1], p. 438). By Lemma 2.1, $K' \not\in I_{n,i}$, and we arrive at contradiction. \square

Proof of Theorem A. Let $K \in K^{\infty}_{c+} \subset K_c$, be a “test body”. By Lemma 3.2 it suffices to show that

$$\rho_K^{-i}(u) \in R^*_i(L^1_+(G_{n,i})).$$

By Theorem 3.1,

$$h(\xi, \omega) = \frac{1}{2\pi} \int_0^\infty \frac{M_\xi(\omega, 0) - M_\xi(\omega, \tau)}{\tau^2} d\tau$$

if $i = 2$, and

$$h(\xi, \omega) = -\frac{1}{4\pi} M''_\xi(\omega, 0)$$

if $i = 3$. Fix $\omega \in S^{n-1} \cap \xi^\perp$ and consider the $(i + 1)$-dimensional plane π_{i+1} spanned by ξ and ω. The $(i+1)$-dimensional body $K \cap \xi_i$ belongs to the class K^{∞}_{c+} (on π_{i+1}), and by the Brunn-Minkowski theory [Sch] the function h in (3.13) and (3.14) is positive. Moreover, it is continuous in $\xi \in G_{n,i}$. Let $\tilde{h}(\xi)$ be the average of h over all $\omega \in S^{n-1} \cap \xi^\perp$. By Theorem 3.1, $\rho_K(u) = (R^*_i \tilde{h})(u)$, and owing to Lemma 2.2, $\rho_K(u)$ is represented by the Minkowski-Funk transform of a function ψ which is defined by (2.7) with φ replaced by \tilde{h}. Since $\tilde{h} \in C_+(G_{n,i})$, then $\psi \in C_+(S^{n-1})$. Next we use Lemma 2.4, which implies (3.12). This completes the proof.
REFERENCES

THE GENERALIZED BUSEMANN-PETTY PROBLEM

Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel
E-mail address: boris@math.huji.ac.il