Problems for M.Sc. Workshop no.4, November 11, 2012

Prof. Y.Kifer
21. Let $X_{x}(t)$ be the solution of an autonomous system of ordinary differential equations on the plane \mathbb{R}^{2},

$$
\begin{aligned}
& \frac{d X_{x}(t)}{d t}=A\left(X_{x}(t), Y_{y}(t)\right), \quad X_{x}(0)=x \\
& \frac{d Y_{y}(t)}{d t}=B\left(X_{x}(t), Y_{y}(t)\right), \quad Y_{y}(0)=y
\end{aligned}
$$

where A and B are bounded twice differentiable functions on \mathbb{R}^{2}. For any open set U let U_{t} be the set of pairs $\left(X_{x}(t), Y_{y}(t)\right)$ for all $(x, y) \in U$. Denote by ℓ the Lebesgue measure on \mathbb{R}^{2}. Prove that $\ell\left(U_{t}\right)=\ell(U)$ for any t and any open U if and only if

$$
\frac{\partial A}{\partial x}+\frac{\partial B}{\partial y} \equiv 0
$$

The analogous result holds true for systems of n equations in \mathbb{R}^{n}.
22. Given a matrix A we are allowed for one step to change all signs in one column or in one row. Prove that for any initial matrix A we can arrive for a finite number of steps to a matrix which has nonnegative sums along each column and along each row.
23. Show that there exists a natural number n such that both 2^{n} and 3^{n} begin with the digit 7 .
24. All edges of the complete graph with n vertices are colored by one of three colors. Prove that there exists a monochromatic connected subgraph whose number of vertices is not less than $n / 2$.
25. Show that any bounded function $f: \mathbb{Z}^{2} \rightarrow \mathbb{R}$ which satisfies

$$
f(x, y)=\frac{1}{4}(f(x+1, y)+f(x-1, y)+f(x, y+1)+f(x, y-1))
$$

is constant.
26. A particle performs a random walk on integers so that if $i \neq 0$ then it jumps from i to either $i+1$ or $i-1$ with probability $1 / 2$ but from 0 it jumps to 1 with probability $3 / 5$, to -1 with probability $1 / 5$ and stays at 0 with probability $1 / 5$. Find probability that the particle arrives at 1000000 before it arrives at -1000000 .

