
0.1. Projective representations. LetG be a group V a vector space.
A map A : G → GL(V ), g → Ag is a projective representation if there
exist a function c : G×G → C

⋆ such that Ag′Ag′′ = c(g′, g′′)Ag′g′′ for all
g′, g′′ ∈ G. Why would anybody consider projective representations?

Let H,G be groups, and G acts on H by automorphisms h→ hg, h ∈
H, g ∈ G. Let π : H → GL(V ) be an irreducible representation of
the group H . For any g ∈ G the map πg : H → GL(V ), πg(h) :=
π(hg) is also a representation of H . Assume that for any g ∈ G the
representation πg of H is equivalent to the representation π. Then
there exists Ag ∈ Gl(V ) such that π(h)Ag = Agπ

g(h) for all h ∈ H .

Lemma 0.1. The map A : G → GL(V ), g → Ag is a projective repre-
sentation.

Proof. Then for any g′, g′′ ∈ G we have

π(h)Ag′Ag′′ = Ag′π
g′(h)Ag′′ = Ag′π(hg′)Ag′′ = Ag′Ag′′π(hg′g′′

)
= Ag′Ag′′π(hg′g′′)

Define C(g′, g′′) := A−1
g′g′′Ag′Ag′′ ∈ GL(V ). Then

C(g′, g′′)π(h) = A−1
g′g′′Ag′Ag′′π(h) = A−1

g′g′′π(hg′g′′)Ag′Ag′′ =

π(h)A−1
g′g′′Ag′Ag′′ = π(h)C(g′, g′′)

Since π is an irreducible representation it follows from the Schur lemma
that C(g′, g′′) = c(g′, g′′)IdV , c(g

′, g′′) ∈ C⋆. In other words the map
g → A(g) defines a projective representation of the group G. �

Given a projective representation A : G → GL(V ), g → Ag one can
ask whether one can correct a choice of operators Ag ∈ Gl(V ) to obtain
an honest representation of the group G. In other way could one find
a function d : G→ C

⋆ such that the map g → d(g)Ag is representation
of group G. It is clear that this is possible iff one can find dg ∈ C⋆ such
that c(g′, g′′) = d−1

g′g′′dg′dg′′ for all g′, g′′ ∈ G.

How to see an obstruction to an existence of dg ∈ C⋆ such that
c(g′, g′′) = d−1

g′g′′dg′dg′′ for all g′, g′′ ∈ G? For any pair g′, g′′ ∈ G the

commutator q(g′, g′′) := Ag′Ag′′A
−1
g′ A

−1
g′′ does not change if you replace

Ag by d(g)Ag. So if there exist two pairs (g′, g′′), ((s′, s′′) of elements

of the group G such that g′g′′g′−1g′′−1 = s′s′′s′−1s′′−1 but q(g′, g′′) 6=
q(s′, s′′) the projective representation g → Ag can not be corrected to
obtain an honest representation g → d(g)Ag. In particular if there
exists a pair g′, g′′ ∈ G of commuting elements such that q(g′, g′′) 6= Id
then there is no way to correct the projective representation A : g →
Ag.
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Example 0.2. Since the subgroup Z = {(0, 0; a)} ⊂ H is in the center
of the group H the group L = H/Z acts on H be the conjugation. In
this case we can choose Al = π(l; 0). It is clear that for any l′, l′′ ∈ L
we have q(l′, l′′) = ψ(< l′, l′′ >). Since the group L is commutative
we see that there exists no representation A : L → GL(V ) such that
A(l)π(h) = πl(h)A(l) for all h ∈ H .

Remark 0.3. R:pr a) Let A : G → GL(V ), g → Ag be a projective
representation which could be corrected to an honest representation
g → B(g). That is there exists a function d : G → C⋆ such that
the map g → B(g) := d(g)Ag is representation of group G. Then

B(g′g′′g′−1g′′−1) = q(g′, g′′) for any pair g′, g′′ ∈ G.

b) If G = [G,G] then a correction B(g) := d(g)Ag is unique if it
exists.

0.2. Weil representations. We choose a basis e1, e2 in L such that
< e1, e2 >= 1 and identify L with F2

q. The group SL2(Fq) acts on
L and preserves the form <,>. Therefore the map h → hg, (l, a) →
(gl, a), (l, a) ∈ H, g ∈ SL2(Fq) is an automorphism of a group H which
acts trivially on Z. Let π : H → GL(V ) be an irreducible represen-
tation such that π(0, a) = ψ(a)Id for any a ∈ Fq. As follows from
Proposition 21 c) in examples the representation πg is equivalent to the
representation π for any g ∈ SL2(Fq).

Let π : H → GL(V ) be the realization of π as in Example 1.22
in examples. How to find a map A : G → GL(V ), g → Ag such
that Agπ(h) = πg(h)Ag for all h ∈ H? Consider elements ua, tλ, w ∈
SL2(Fq) where

ua =

(

1 0
a 1

)

, tλ =

(

λ
0 λ−1

)

, w =

(

0 1
−1 0

)

where a ∈ Fq, λ ∈ F⋆
q.

How to find Aua
? Let h = (x, y; a). By the definition hua = (x +

ay, y; a). We want to find an operator Aua
such that π(x, y; 0)Aua

=
Aua

π(x, y+ax; 0) for all x, y ∈ Fq. In particular we have π(0, y; 0)Aua
=

Aua
π(0, y; 0) for all a ∈ Fq. So we see that the operator Aua

commutes
with operators π(0, y; 0) for all y ∈ Fq. In other word the operator
Aua

: C[Fq] → C[Fq] commutes with the multiplication by functions
ψ(az/2), z ∈ Fq for all a ∈ Fq. Since the span of functions ψ(az/2),∈ Fq

is equal to the set of all functions on Fq we see that an operator Aua

commutes with the multiplication by any function on Fq. Therefore
Aua

has a form f(z) → ra(z) where ra(z) is a function on Fq.
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To find the function ra(z) we use the equation π(x, 0; 0)Aua
(φ) =

Aua
π(x, ax; 0)(φ), φ ∈ C[Fq]. In other words

ra(x+ z)φ(x+ z) = ψ(ax2/2 + axz)ra(z)φ(z)∀φ ∈ C[Fq]

In other words we have ra(x+z) = ψ(ax2/2+axz)ra(z). If we put z = 0
we see that ra(x) = caψ(ax2/2), ca ∈ C⋆. In other words Aua

(φ)(x) =
caψ(ax2/2)φ(x), φ ∈ C[Fq].

Problem 0.4. Show that Atλ(φ)(x) = cλφ(λx) and Atλ(φ)(x) = cF(φ)(x).

Theorem 0.5. T:W There exists a representation ω : SL2(Fq) →
GL(V ) such that ω(g)π(h) = πg(h)ω(g) for all h ∈ H and

a) ω(ua)(φ)(x) = ψ(ax2/2)φ(x).

b) ω(tλ)(φ)(x) = ǫ(λ)φ(λx) where ǫ : F⋆
q → C⋆ is the unique non-

trivial character of F
⋆
q of order 2.

c) ω(w) = 1/sqrtqF


