CHAPTER 2
Character theory

2.1 The character of a representation

Let V be a vector space having a basis \((e_i)\) of \(n\) elements, and let \(a\) be a linear map of V into itself, with matrix \((a_{ij})\). By the trace of \(a\) we mean the scalar

\[
\text{Tr}(a) = \sum_i a_{ii}.
\]

It is the sum of the eigenvalues of \(a\) (counted with their multiplicities), and does not depend on the choice of basis \((e_i)\).

Now let \(\rho: G \to GL(V)\) be a linear representation of a finite group \(G\) in the vector space \(V\). For each \(s \in G\), put:

\[
\chi_\rho(s) = \text{Tr}(\rho(s)).
\]

The complex valued function \(\chi_\rho\) on \(G\) thus obtained is called the character of the representation \(\rho\); the importance of this function comes primarily from the fact that it characterizes the representation \(\rho\) (cf. 2.3).

Proposition 1. If \(\chi\) is the character of a representation \(\rho\) of degree \(n\), we have:

(i) \(\chi(1) = n\),
(ii) \(\chi(s^{-1}) = \chi(s)^*\) for \(s \in G\),
(iii) \(\chi(sts^{-1}) = \chi(s)\) for \(s, t \in G\).

(If \(z = x + iy\) is a complex number, we denote the conjugate \(x - iy\) either by \(z^*\) or \(\bar{z}\).)

We have \(\rho(1) = 1\), and \(\text{Tr}(1) = n\) since \(V\) has dimension \(n\); hence (i).

For (ii) we observe that \(\rho_s\) has finite order; consequently the same is true
of its eigenvalues $\lambda_1, \ldots, \lambda_n$ and so these have absolute value equal to 1 (this is also a consequence of the fact that ρ_s can be defined by a unitary matrix, cf. 1.3). Thus

$$\chi(s)^* = \text{Tr}(\rho_s)^* = \sum\lambda_i^* = \sum\lambda_i^{-1} = \text{Tr}(\rho_s^{-1}) = \text{Tr}(\rho_{s^{-1}}) = \chi(s^{-1}).$$

Formula (iii) can also be written $\chi(uv) = \chi(uv)$, putting $u = ts, v = t^{-1}$; hence it follows from the well known formula

$$\text{Tr}(ab) = \text{Tr}(ba),$$

valid for two arbitrary linear mappings a and b of V into itself. \hfill \Box

Remark. A function f on G satisfying identity (iii), or what amounts to the same thing, $f(uv) = f(vu)$, is called a class function. We will see in 2.5 that each class function is a linear combination of characters.

Proposition 2. Let $\rho^1: G \to \text{GL}(V_1)$ and $\rho^2: G \to \text{GL}(V_2)$ be two linear representations of G, and let χ_1 and χ_2 be their characters. Then:

(i) The character χ of the direct sum representation $V_1 \oplus V_2$ is equal to $\chi_1 + \chi_2$.

(ii) The character ψ of the tensor product representation $V_1 \otimes V_2$ is equal to $\chi_1 \cdot \chi_2$.

Let us be given ρ^1 and ρ^2 in matrix form: R_1^1, R_2^1. The representation $V_1 \oplus V_2$ is then given by

$$R_s = \begin{pmatrix} R_1^1 & 0 \\ 0 & R_2^2 \end{pmatrix}$$

whence $\text{Tr}(R_s) = \text{Tr}(R_1^1) + \text{Tr}(R_2^2)$, that is $\chi(s) = \chi_1(s) + \chi_2(s)$.

We proceed likewise for (ii): with the notation of 1.5, we have

$$\chi_1(s) = \sum_{i_1} \eta_{i_1}(s), \quad \chi_2(s) = \sum_{i_2} \eta_{i_2}(s),$$

$$\psi(s) = \sum_{i_1, i_2} \eta_{i_1}(s)\eta_{i_2}(s) = \chi_1(s) \cdot \chi_2(s). \hfill \Box$$

Proposition 3. Let $\rho: G \to \text{GL}(V)$ be a linear representation of G, and let χ be its character. Let χ_s^2 be the character of the symmetric square $\text{Sym}^2(V)$ of V (cf. 1.6), and let χ_s^2 be that of $\text{Alt}^2(V)$. For each $s \in G$, we have

$$\chi_s^2(s) = \frac{1}{2}(\chi(s)^2 + \chi(s^2))$$

$$\chi_s^2(s) = \frac{1}{2}(\chi(s)^2 - \chi(s^2))$$

and $\chi_s^2 + \chi_s^2 = \chi^2$.

11
Chapter 2: Character theory

Let \(s \in G \). A basis \((e_i)\) of \(V \) can be chosen consisting of eigenvectors for \(\rho_s \); this follows for example from the fact that \(\rho_s \) can be represented by a unitary matrix, cf. 1.3. We have then \(\rho_s e_i = \lambda_i e_i \) with \(\lambda_i \in \mathbb{C} \), and so

\[
\chi(s) = \sum \lambda_i, \quad \chi(x^2) = \sum \lambda_i^2.
\]

On the other hand, we have

\[
(\rho_s \otimes \rho_s)(e_i \cdot e_j + e_j \cdot e_i) = \lambda_i \lambda_j \cdot (e_i \cdot e_j + e_j \cdot e_i),
\]

\[
(\rho_s \otimes \rho_s)(e_i \cdot e_j - e_j \cdot e_i) = \lambda_i \lambda_j \cdot (e_i \cdot e_j - e_j \cdot e_i),
\]

hence

\[
\chi^2(s) = \sum_{i,j} \lambda_i \lambda_j = \sum \lambda_i^2 + \sum \lambda_i \lambda_j = \frac{1}{2} (\sum \lambda_i)^2 + \frac{1}{2} \sum \lambda_i^2
\]

\[
\chi^2(x^2) = \sum_{i,j} \lambda_i \lambda_j = \frac{1}{2} (\sum \lambda_i)^2 - \frac{1}{2} \sum \lambda_i^2.
\]

The proposition follows.

(Observable the equality \(\chi^2_0 + \chi^2_n = \chi^2 \), which reflects the fact that \(V \otimes V \) is the direct sum of \(\text{Sym}^2(V) \) and \(\text{Alt}^2(V) \)).

\[\square\]

Exercises

2.1. Let \(\chi \) and \(\chi' \) be the characters of two representations. Prove the formulas:

\[
(x + x')^2 = x^2 + x'^2 + xx'.
\]

\[
(x + x')^2 = x^2 + x'^2 +xx'.
\]

2.2. Let \(X \) be a finite set on which \(G \) acts, let \(\rho \) be the corresponding permutation representation [cf. 1.2, example (c)], and \(\chi_X \) be the character of \(\rho \). Let \(s \in G \); show that \(\chi_X(s) \) is the number of elements of \(X \) fixed by \(s \).

2.3. Let \(\rho : G \to \text{GL}(V) \) be a linear representation with character \(\chi \) and let \(V' \) be the dual of \(V \), i.e., the space of linear forms on \(V \). For \(x \in V \), \(x' \in V' \) let \(\langle x, x' \rangle \) denote the value of the linear form \(x' \) at \(x \). Show that there exists a unique linear representation \(\rho' : G \to \text{GL}(V') \), such that

\[
\langle \rho_s x, \rho'_s x' \rangle = \langle x, x' \rangle \quad \text{for} \ s \in G, \ x \in V, \ x' \in V'.
\]

This is called the contragredient (or dual) representation of \(\rho \); its character is \(\chi^* \).

2.4. Let \(\rho_1 : G \to \text{GL}(V_1) \) and \(\rho_2 : G \to \text{GL}(V_2) \) be two linear representations with characters \(\chi_1 \) and \(\chi_2 \). Let \(W = \text{Hom}(V_1, V_2) \), the vector space of linear mappings \(f : V_1 \to V_2 \). For \(s \in G \) and \(f \in W \) let \(\rho_s f = \rho_s \circ f \circ \rho_s^{-1} \); so \(\rho_s f \in W \). Show that this defines a linear representation \(\rho : G \to \text{GL}(W) \), and that its character is \(\chi^*_1 \cdot \chi_2 \). This representation is isomorphic to \(\rho_1 \otimes \rho_2 \).
where \(\rho_j \) is the contragredient of \(\rho_i \), cf. ex. 2.3.

2.2 Schur's lemma; basic applications

Proposition 4 (Schur's lemma). Let \(\rho^1 : G \to \text{GL}(V_1) \) and \(\rho^2 : G \to \text{GL}(V_2) \) be two irreducible representations of \(G \), and let \(f \) be a linear mapping of \(V_1 \) into \(V_2 \) such that \(\rho^2_s \circ f = f \circ \rho^1_s \) for all \(s \in G \). Then:

1. If \(\rho^1 \) and \(\rho^2 \) are not isomorphic, we have \(f = 0 \).
2. If \(V_1 = V_2 \) and \(\rho^1 = \rho^2 \), \(f \) is a homothety (i.e., a scalar multiple of the identity).

The case \(f = 0 \) is trivial. Suppose now \(f \neq 0 \) and let \(W_1 \) be its kernel (that is, the set of \(x \in V_1 \) such that \(fx = 0 \)). For \(x \in W_1 \) we have \(f\rho^1_s x = \rho^2_s fx = 0 \), whence \(\rho^1_s x \in W_1 \), and \(W_1 \) is stable under \(G \). Since \(V_1 \) is irreducible, \(W_1 \) is equal to \(V_1 \) or \(0 \); the first case is excluded, as it implies \(f = 0 \). The same argument shows that the image \(W_2 \) of \(f \) (the set of \(fx \), for \(x \in V_1 \)) is equal to \(V_2 \). The two properties \(W_1 = 0 \) and \(W_2 = V_2 \) show that \(f \) is an isomorphism of \(V_1 \) onto \(V_2 \), which proves assertion (1).

Suppose now that \(V_1 = V_2 \), \(\rho^1 = \rho^2 \), and let \(\lambda \) be an eigenvalue of \(f \); there exists at least one, since the field of scalars is the field of complex numbers. Put \(f' = f - \lambda \). Since \(\lambda \) is an eigenvalue of \(f \), the kernel of \(f' \) is \(\neq 0 \); on the other hand, we have \(\rho^2_s \circ f' = f' \circ \rho^1_s \). The first part of the proof shows that these properties are possible only if \(f' = 0 \), that is, if \(f \) is equal to \(\lambda \).

Let us keep the hypothesis that \(V_1 \) and \(V_2 \) are irreducible, and denote by \(g \) the order of the group \(G \).

Corollary 1. Let \(h \) be a linear mapping of \(V_1 \) into \(V_2 \); and put:

\[
h^0 = \frac{1}{g} \sum_{s \in G} (\rho^2_s)^{-1} h \rho^1_s.
\]

Then:

1. If \(\rho^1 \) and \(\rho^2 \) are not isomorphic, we have \(h^0 = 0 \).
2. If \(V_1 = V_2 \) and \(\rho^1 = \rho^2 \), \(h^0 \) is a homothety of ratio \((1/n)\text{Tr}(h)\), with \(n = \dim(V_1) \).

We have \(\rho^2_s h^0 = h^0 \rho^1_s \). Indeed:

\[
(\rho^2_s)^{-1} h^0 \rho^1_s = \frac{1}{g} \sum_{t \in G} (\rho^2_t)^{-1} (\rho^1_t)^{-1} h \rho^1_t \rho^1_s
\]

\[
= \frac{1}{g} \sum_{t \in G} (\rho^2_t)^{-1} h \rho^1_t = h^0.
\]

Applying prop. 4 to \(f = h^0 \), we see in case (1) that \(h^0 = 0 \), and in case (2) that \(h^0 \) is equal to a scalar \(\lambda \). Moreover, in the latter case, we have:
Chapter 2: Character theory

\[\text{Tr}(h^0) = \frac{1}{g} \sum_{r \in G} \text{Tr}((\rho^0_r)^{-1} h \rho^0_r) = \text{Tr}(h), \]

and since \(\text{Tr}(\lambda) = n \cdot \lambda \), we get \(\lambda = (1/n) \text{Tr}(h) \).

Now we rewrite corollary 1 assuming that \(\rho^1 \) and \(\rho^2 \) are given in matrix form:

\[\rho^1 = (\eta_{i_h}(t)), \quad \rho^2 = (\eta_{j_h}(t)). \]

The linear mapping \(h \) is defined by a matrix \((x_{i'h}) \) and likewise \(h^0 \) is defined by \((x_{j'h}^0) \). We have by definition of \(h^0 \):

\[x_{i'h}^0 = \frac{1}{g} \sum_{i,j,j_2} \eta_{i,j_2}(t^{-1}) \delta_{j_1 h} \delta_{j_1 h} \eta_{i}(t). \]

The right hand side is a linear form with respect to \(x_{i'h}^0 \); in case (1) this form vanishes for all systems of values of the \(x_{i'h}^0 \); thus its coefficients are zero. Whence:

Corollary 2. In case (1), we have:

\[\frac{1}{g} \sum_{i \in G} \eta_{i,j_2}(t^{-1}) \delta_{j_1 h} \eta_{i}(t) = 0 \]

for arbitrary \(i_1, j_2, j_1, j_2 \).

In case (2) we have similarly \(h^0 = \lambda \), i.e., \(x_{i'h}^0 = \lambda \delta_{i'h} \) (\(\delta_{i'h} \) denotes the Kronecker symbol, equal to 1 if \(i_1 = i_2 \) and 0 otherwise), with \(\lambda = (1/n) \text{Tr}(h) \), that is, \(\lambda = (1/n) \sum \delta_{j_1 h} x_{j'h} \). Hence the equality:

\[\frac{1}{g} \sum_{i \in G} \eta_{i,j_2}(t^{-1}) x_{j_2 h} \delta_{j_1 h} \delta_{j_1 h} \eta_{i}(t) = \frac{1}{n} \sum_{j_1,j_2} \delta_{i_1 h} \delta_{j_2 h} x_{j_2 h}. \]

Equating coefficients of the \(x_{j_2 h} \), we obtain as above:

Corollary 3. In case (2) we have:

\[\frac{1}{g} \sum_{i \in G} \eta_{i,j_2}(t^{-1}) \delta_{j_1 h} \delta_{j_2 h} \eta_{i}(t) = \begin{cases} \frac{1}{n}, & \text{if } i_1 = i_2 \text{ and } j_1 = j_2 \\ 0, & \text{otherwise}. \end{cases} \]

Remarks

1. If \(\phi \) and \(\psi \) are functions on \(G \), set

\[\langle \phi, \psi \rangle = \frac{1}{g} \sum_{r \in G} \phi(r^{-1}) \psi(r) = \frac{1}{g} \sum_{r \in G} \phi(r) \psi(r^{-1}). \]

We have \(\langle \phi, \psi \rangle = \langle \psi, \phi \rangle \). Moreover \(\langle \phi, \psi \rangle \) is linear in \(\phi \) and in \(\psi \). With this notation, corollaries 2 and 3 become, respectively

\[\langle \eta_{i,j_2} \delta_{j_1 h}, \delta_{j_2 h} \rangle = 0 \quad \text{and} \quad \langle \eta_{i,j_2} \delta_{j_1 h}, \delta_{j_2 h} \rangle = \frac{1}{n} \delta_{i_1 h} \delta_{j_2 h}. \]
2.3: Orthogonality relations for characters

(2) Suppose that the matrices \(g_j(t) \) are unitary (this can be realized by a suitable choice of basis, cf. 1.3). We have then \(g_j(t^{-1}) = g_j(t)^* \) and corollaries 2 and 3 are just orthogonality relations for the scalar product \(\langle \phi, \psi \rangle \) defined in the following section.

2.3 Orthogonality relations for characters

We begin with a notation. If \(\phi \) and \(\psi \) are two complex-valued functions on \(G \), put

\[
\langle \phi, \psi \rangle = \frac{1}{g} \sum_{t \in G} \phi(t) \overline{\psi(t)}, \quad g \text{ being the order of } G.
\]

This is a scalar product: it is linear in \(\phi \), semilinear in \(\psi \), and we have \(\langle \phi, \phi \rangle > 0 \) for all \(\phi \neq 0 \).

If \(\tilde{\psi} \) is the function defined by the formula \(\tilde{\psi}(t) = \psi(t^{-1})^* \), we have

\[
\langle \phi, \tilde{\psi} \rangle = \frac{1}{g} \sum_{t \in G} \phi(t) \overline{\psi(t^{-1})} = \langle \phi, \psi \rangle,
\]

cf. 2.2, remark 1. In particular, if \(\chi \) is the character of a representation of \(G \), we have \(\tilde{\chi} = \chi \) (prop. 1), so that \(\langle \phi, \chi \rangle = \langle \phi, \tilde{\chi} \rangle \) for all functions \(\phi \) on \(G \). So we can use at will \(\langle \phi, \chi \rangle \) or \(\langle \phi, \tilde{\chi} \rangle \), so long as we are concerned with characters.

Theorem 3

(i) If \(\chi \) is the character of an irreducible representation, we have \(\langle \chi, \chi \rangle = 1 \) (i.e., \(\chi \) is "of norm 1").

(ii) If \(\chi \) and \(\chi' \) are the characters of two nonisomorphic irreducible representations, we have \(\langle \chi, \chi' \rangle = 0 \) (i.e. \(\chi \) and \(\chi' \) are orthogonal).

Let \(\rho \) be an irreducible representation with character \(\chi \), given in matrix form \(\rho_i = (g_j(t)) \). We have \(\chi(t) = \sum g_j(t) \), hence

\[
\langle \chi, \chi \rangle = \langle \chi, \chi \rangle = \sum_{i,j} \langle g_i, g_j \rangle.
\]

But according to cor. 3 to prop. 4, we have \(\langle g_i, g_j \rangle = \delta_{ij}/n \), where \(n \) is the degree of \(\rho \). Thus

\[
\langle \chi, \chi \rangle = \left(\sum_{i,j} \delta_{ij} \right)/n = n/n = 1,
\]

since the indices \(i,j \) each take \(n \) values. (ii) is proved in the same way, by applying cor. 2 instead of cor. 3.

\[\square \]

Remark. A character of an irreducible representation is called an irreducible character. Theorem 3 shows that the irreducible characters form an orthonormal system; this result will be completed later (2.5, th. 6).
Chapter 2: Character theory

Theorem 4. Let V be a linear representation of G, with character ϕ, and suppose V decomposes into a direct sum of irreducible representations:

$$V = W_1 \oplus \cdots \oplus W_k.$$

Then, if W is an irreducible representation with character χ, the number of W_i isomorphic to W is equal to the scalar product $(\phi|\chi) = \langle \phi, \chi \rangle$.

Let χ_i be the character of W_i. By prop. 2, we have

$$\phi = \chi_1 + \cdots + \chi_k.$$

Thus $(\phi|\chi) = (\chi_1|\chi) + \cdots + (\chi_k|\chi)$. But, according to the preceding theorem, $(\chi_i|\chi)$ is equal to 1 or 0, depending on whether W_i is, or is not, isomorphic to W. The result follows. \qed

Corollary 1. The number of W_i isomorphic to W does not depend on the chosen decomposition.

(This number is called the "number of times that W occurs in V", or the "number of times that W is contained in V."

Indeed, $(\phi|\chi)$ does not depend on the decomposition. \qed

Remark. It is in this sense that one can say that there is uniqueness in the decomposition of a representation into irreducible representations. We shall return to this in 2.6.

Corollary 2. Two representations with the same character are isomorphic.

Indeed, cor. 1 shows that they contain each given irreducible representation the same number of times.

The above results reduce the study of representations to that of their characters. If χ_1, \ldots, χ_k are the distinct irreducible characters of G, and if W_1, \ldots, W_k denote corresponding representations, each representation V is isomorphic to a direct sum

$$V = m_1 W_1 \oplus \cdots \oplus m_k W_k \quad m_i \text{ integers } \geq 0.$$

The character ϕ of V is equal to $m_1 \chi_1 + \cdots + m_k \chi_k$, and we have $m_i = (\phi|\chi_i)$. [This applies notably to the tensor product $W_i \otimes W_j$ of two irreducible representations, and shows that the product $\chi_i \cdot \chi_j$ decomposes into $\chi_i \chi_j = \sum m_h^i \chi_h$, the m_h^i being integers ≥ 0.] The orthogonality relations among the χ_i imply in addition:

$$(\phi|\phi) = \sum_{i=1}^{i=h} m_i^2,$$

whence:

16
Theorem 5. If \(\phi \) is the character of a representation \(V \), \((\phi, \phi) \) is a positive integer and we have \((\phi, \phi) = 1 \) if and only if \(V \) is irreducible.

Indeed, \(\sum m_i^2 \) is only equal to 1 if one of the \(m_i \)'s is equal to 1 and the others to 0, that is, if \(V \) is isomorphic to one of the \(W_r \).

We obtain thus a very convenient irreducibility criterion.

EXERCISES

2.5. Let \(\rho \) be a linear representation with character \(\chi \). Show that the number of times that \(\rho \) contains the unit representation is equal to \((\chi|1) = (1/|G|) \sum_{x \in G} \chi(x) \).

2.6. Let \(X \) be a finite set on which \(G \) acts, let \(\rho \) be the corresponding permutation representation (1.2) and let \(\chi \) be its character.

(a) The set \(G \times X \) of images under \(G \) of an element \(x \in X \) is called an orbit.

Let \(e \) be the number of distinct orbits. Show that \(e \) is equal to the number of times that \(\rho \) contains the unit representation 1; deduce from this that \((\chi|1) = e \). In particular, if \(G \) is transitive (i.e., if \(e = 1 \)), \(\rho \) can be decomposed into \(1 \oplus \theta \) and \(\theta \) does not contain the unit representation.

If \(\psi \) is the character of \(\theta \), we have \(\chi = 1 + \psi \) and \((\psi|1) = 0 \).

(b) Let \(G \) act on the product \(X \times X \) of \(X \) by itself by means of the formula \(g(x, y) = (gx, gy) \). Show that the character of the corresponding permutation representation is equal to \(\chi^2 \).

(c) Suppose that \(G \) is transitive on \(X \) and that \(X \) has at least two elements.

We say that \(G \) is doubly transitive if, for all \(x, y, x', y' \in X \) with \(x \neq y \) and \(x' \neq y' \), there exists \(s \in G \) such that \(x' = sx \) and \(y' = sy \). Prove the equivalence of the following properties:

(i) \(G \) is doubly transitive.

(ii) The action of \(G \) on \(X \times X \) has two orbits, the diagonal and its complement.

(iii) \((\chi^2|1) = 2 \).

(iv) The representation \(\theta \) defined in (a) is irreducible.

[The equivalence (i) \(\iff \) (ii) is immediate; (ii) \(\iff \) (iii) follows from (a) and (b). If \(\psi \) is the character of \(\theta \), we have \(1 + \psi = \chi \) and \((1|1) = 1 \), \((\psi|1) = 0 \), which shows that (iii) is equivalent to \((\psi^2|1) = 1 \), i.e., \((1/|G|) \sum_{x \in G} \psi(x) = 1 \); since \(\psi \) is real-valued, this indeed means that \(\theta \) is irreducible, cf. th. 5.]

2.4 Decomposition of the regular representation

Notation. For the rest of Ch. 2, the irreducible characters of \(G \) are denoted \(\chi_1, \ldots, \chi_n \); their degrees are written \(n_1, \ldots, n_n \); we have \(n_i = \chi_i(1) \), cf. prop. 1.

Let \(R \) be the regular representation of \(G \). Recall (cf. 1.2) that it has a basis \((e_i)_{i \in G} \) such that \(\rho_s e_t = e_{st} \). If \(s \neq 1 \), we have \(st \neq t \) for all \(t \), which
Chapter 2: Character theory

shows that the diagonal terms of the matrix of \(\rho_s \) are zero; in particular we have \(\text{Tr}(\rho_s) = 0 \). On the other hand, for \(s = 1 \), we have

\[
\text{Tr}(\rho_1) = \text{Tr}(1) = \dim(R) = g.
\]

Whence:

Proposition 5. The character \(r_G \) of the regular representation is given by the formulas:

\[
\begin{align*}
r_G(1) &= g, & \text{order of } G, \\
r_G(s) &= 0 & \text{if } s \neq 1.
\end{align*}
\]

Corollary 1. Every irreducible representation \(\mathcal{W}_i \) is contained in the regular representation with multiplicity equal to its degree \(n_i \).

According to th. 4, this number is equal to \(\langle r_G, \chi_i \rangle \), and we have

\[
\langle r_G, \chi_i \rangle = \frac{1}{g} \sum_{s \in G} r_G(s^{-1}) \chi_i(s) = \frac{1}{g} g \cdot \chi_i(1) = \chi_i(1) = n_i.
\]

Corollary 2.

(a) The degrees \(n_i \) satisfy the relation \(\sum_{i=1}^{m} n_i^2 = g \).

(b) If \(s \in G \) is different from \(1 \), we have \(\sum_{i=1}^{m} n_i \chi_i(s) = 0 \).

By cor. 1, we have \(r_G(s) = \sum n_i \chi_i(s) \) for all \(s \in G \). Taking \(s = 1 \) we obtain (a), and taking \(s \neq 1 \), we obtain (b).

Remarks

(1) The above result can be used in determining the irreducible representations of a group \(G \): suppose we have constructed some mutually nonisomorphic irreducible representations of degrees \(n_1, \ldots, n_k \); in order that they be all the irreducible representations of \(G \) (up to isomorphism), it is necessary and sufficient that \(n_1^2 + \cdots + n_k^2 = g \).

(2) We will see later (Part II, 6.5) another property of the degrees \(n_i \); they divide the order \(g \) of \(G \).

EXERCISE

2.7. Show that each character of \(G \) which is zero for all \(s \neq 1 \) is an integral multiple of the character \(r_G \) of the regular representation.

2.5 Number of irreducible representations

Recall (cf. 2.1) that a function \(f \) on \(G \) is called a class function if \(f(st^{-1}) = f(s) \) for all \(s, t \in G \).
Proposition 6. Let f be a class function on G, and let $\rho: G \to \text{GL}(V)$ be a linear representation of G. Let ρ_f be the linear mapping of V into itself defined by:

$$\rho_f = \sum_{t \in G} f(t)\rho_t.$$

If V is irreducible of degree n and character χ, then ρ_f is a homothety of ratio λ given by:

$$\lambda = \frac{1}{n} \sum_{t \in G} f(t)\chi(t) = \frac{g}{n} \langle f|\chi^* \rangle.$$

Let us compute $\rho_s^{-1}\rho_f\rho_s$. We have:

$$\rho_s^{-1}\rho_f\rho_s = \sum_{t \in G} f(t)\rho_s^{-1}\rho_t\rho_s = \sum_{t \in G} f(t)\rho_{s^{-1}ts}.$$

Putting $u = s^{-1}ts$, this becomes:

$$\rho_s^{-1}\rho_f\rho_s = \sum_{u \in G} f(sus^{-1})\rho_u = \sum_{u \in G} f(u)\rho_u = \rho_f.$$

So we have $\rho_f\rho_s = \rho_s\rho_f$. By the second part of prop. 4, this shows that ρ_f is a homothety λ. The trace of λ is $n\lambda$; that of ρ_f is $\sum_{t \in G} f(t)\text{Tr}(\rho_t) = \sum_{t \in G} f(t)\chi(t)$. Hence $\lambda = (1/n) \sum_{t \in G} f(t)\chi(t) = \langle g/n \rangle \langle f|\chi^* \rangle$.

We introduce now the space H of class functions on G; the irreducible characters χ_1, \ldots, χ_h belong to H.

Theorem 6. The characters χ_1, \ldots, χ_h form an orthonormal basis of H.

Theorem 3 shows that the χ_t form an orthonormal system in H. It remains to prove that they generate H, and for this it is enough to show that every element of H orthogonal to the χ_t^* is zero. Let f be such an element. For each representation ρ of G, put $\rho_f = \sum_{t \in G} f(t)\rho_t$. Since f is orthogonal to the χ_t^*, prop. 6 above shows that ρ_f is zero so long as ρ is irreducible; from the direct sum decomposition we conclude that ρ_f is always zero. Applying this to the regular representation R (cf. 2.4) and computing the image of the basis vector e_1 under ρ_f, we have

$$\rho_f e_1 = \sum_{t \in G} f(t)\rho_t e_1 = \sum_{t \in G} f(t) e_t.$$

Since ρ_f is zero, we have $\rho_f e_1 = 0$ and the above formula shows that $f(t) = 0$ for all $t \in G$; hence $f = 0$, and the proof is complete.

Recall that two elements t and t' of G are said to be conjugate if there exists $s \in G$ such that $t' = sts^{-1}$; this is an equivalence relation, which partitions G into classes (also called conjugacy classes).

Theorem 7. The number of irreducible representations of G (up to isomorphism) is equal to the number of classes of G.

19
Chapter 2: Character theory

Let C_1, \ldots, C_k be the distinct classes of G. To say that a function f on G is a class function is equivalent to saying that it is constant on each of C_1, \ldots, C_k; it is thus determined by its values λ_i on the C_i, and these can be chosen arbitrarily. Consequently, the dimension of the space H of class functions is equal to k. On the other hand, this dimension is, by th. 6, equal to the number of irreducible representations of G (up to isomorphism). The result follows.

Here is another consequence of th. 6:

Proposition 7. Let $s \in G$, and let $c(s)$ be the number of elements in the conjugacy class of s.

(a) We have $\sum_{i=1}^{\text{dim} H} \chi_i(s)^* \chi_i(s) = g/c(s)$.

(b) For $t \in G$ not conjugate to s, we have $\sum_{i=1}^{\text{dim} H} \chi_i(s)^* \chi_i(t) = 0$.
(For $s = 1$, this yields cor. 2 to prop. 5.)

Let f_s be the function equal to 1 on the class of s and equal to 0 elsewhere. Since it is a class function, it can, by th. 6, be written

$$f_s = \sum_{i=1}^{\text{dim} H} \lambda_i \chi_i,$$
with $\lambda_i = (f_s | \chi_i) = \frac{c(s)}{g} \chi_i(s)^*$.

We have then, for each $t \in G$,

$$f_s(t) = \frac{c(s)}{g} \sum_{i=1}^{\text{dim} H} \chi_i(s)^* \chi_i(t).$$

This gives (a) if $t = s$, and (b) if t is not conjugate to s.

Example. Take for G the group of permutations of three letters. We have $g = 6$, and there are three classes: the element 1, the three transpositions, and the two cyclic permutations. Let t be a transposition and c a cyclic permutation. We have $t^2 = 1$, $c^3 = 1$, $tc = c^2 t$; whence there are just two characters of degree 1: the unit character χ_1 and the character χ_2 giving the signature of a permutation. Theorem 7 shows that there exists one other irreducible character θ; if n is its degree we must have $1 + 1 + n^2 = 6$, hence $n = 2$. The values of θ can be deduced from the fact that $\chi_1 + \chi_2 + 2\theta$ is the character of the regular representation of G (cf. prop. 5). We thus get the character table of G:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>t</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>χ_2</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>θ</td>
<td>2</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>
We obtain an irreducible representation with character \(\theta \) by having \(G \) permute the coordinates of elements of \(\mathbb{C}^3 \) satisfying the equation \(x + y + z = 0 \) (cf. ex. 2.6c)).

2.6 Canonical decomposition of a representation

Let \(\rho: G \to \text{GL}(V) \) be a linear representation of \(G \). We are going to define a direct sum decomposition of \(V \) which is “coarser” than the decomposition into irreducible representations, but which has the advantage of being unique. It is obtained as follows:

Let \(\chi_1, \ldots, \chi_h \) be the distinct characters of the irreducible representations \(W_1, \ldots, W_h \) of \(G \) and \(n_1, \ldots, n_h \) their degrees. Let \(V = U_1 \oplus \cdots \oplus U_m \) be a decomposition of \(V \) into a direct sum of irreducible representations. For \(i = 1, \ldots, h \) denote by \(V_i \) the direct sum of those of the \(U_1, \ldots, U_m \) which are isomorphic to \(W_i \). Clearly we have:

\[
V = V_1 \oplus \cdots \oplus V_h.
\]

(In other words, we have decomposed \(V \) into a direct sum of irreducible representations and collected together the isomorphic representations.)

This is the canonical decomposition we had in mind. Its properties are as follows:

Theorem 8

(i) The decomposition \(V = V_1 \oplus \cdots \oplus V_h \) does not depend on the initially chosen decomposition of \(V \) into irreducible representations.

(ii) The projection \(p_i \) of \(V \) onto \(V_i \) associated with this decomposition is given by the formula:

\[
p_i = \frac{n_i}{g} \sum_{\alpha \in G} \chi_i(\alpha)^* \rho_i.
\]

We prove (ii). Assertion (i) will follow because the projections \(p_i \) determine the \(V_i \). Put

\[
q_i = \frac{n_i}{g} \sum_{\alpha \in G} \chi_i(\alpha)^* \rho_i.
\]

Proposition 6 shows that the restriction of \(q_i \) to an irreducible representation \(W \) with character \(\chi \) and of degree \(\nu \) is a homothety of ratio \((n_i/\nu)(\chi_i/\chi)\); it is thus 0 if \(\chi \neq \chi_i \) and 1 if \(\chi = \chi_i \). In other words \(q_i \) is the identity on an irreducible representation isomorphic to \(W_i \) and is zero on the others. In view of the definition of the \(V_i \), it follows that \(q_i \) is the identity on \(V_i \) and is 0 on \(V_j \) for \(j \neq i \). If we decompose an element \(x \in V \) into its components \(x_i \in V_i \):

\[
x = x_1 + \cdots + x_h,
\]

we have then \(q_i(x) = q_i(x_1) + \cdots + q_i(x_h) = x_i \). This means that \(q_i \) is equal to the projection \(p_i \) of \(V \) onto \(V_i \).

\(\square \)
Thus the decomposition of a representation V can be done in two stages. First the canonical decomposition $V_1 \oplus \cdots \oplus V_n$ is determined; this can be done easily using the formulas giving the projections p_i. Next, if needed, one chooses a decomposition of V_i into a direct sum of irreducible representations each isomorphic to W_j:

$$V_i = W_j \oplus \cdots \oplus W_j.$$

This last decomposition can in general be done in an infinity of ways (cf. section 2.7, as well as ex. 2.8 below); it is just as arbitrary as the choice of a basis in a vector space.

Example. Take for G the group of two elements \{1, s\} with $s^2 = 1$. This group has two irreducible representations of degree 1, W^+ and W^-, corresponding to $\rho_1 = +1$ and $\rho_s = -1$. The canonical decomposition of a representation V is $V = V^+ \oplus V^-$, where V^+ (resp. V^-) consists of the elements $x \in V$ which are symmetric (resp. antisymmetric), i.e., which satisfy $\rho_1 x = x$ (resp. $\rho_s x = -x$). The corresponding projections are:

$$p^+ x = \frac{1}{2} (x + \rho_s x), \quad p^- x = \frac{1}{2} (x - \rho_s x).$$

To decompose V^+ and V^- into irreducible components means simply to decompose these spaces into a direct sum of lines.

Exercise

2.8. Let H_i be the vector space of linear mappings $h: W_i \to V$ such that $\rho_s h = h \rho_s$ for all $s \in G$. Each $h \in H_i$ maps W_j into V_j.

(a) Show that the dimension of H_i is equal to the number of times that W_j appears in V, i.e., $\dim V / \dim W_j$. [Reduce to the case where $V = W_j$ and use Schur’s lemma].

(b) Let G act on $H_i \otimes W_j$ through the tensor product of the trivial representation of G on H_i and the given representation on W_j. Show that the map

$$F: H_i \otimes W_j \to V_i$$

defined by the formula

$$F(\sum h_n \cdot w_n) = \sum h_n (w_n)$$

is an isomorphism of $H_i \otimes W_j$ onto V_i. [Same method].

(c) Let (h_1, \ldots, h_k) be a basis of H_i and form the direct sum $W_j \oplus \cdots \oplus W_j$ of k copies of W_j. The system (h_1, \ldots, h_k) defines in an obvious way a linear mapping h of $W_j \oplus \cdots \oplus W_j$ into V_i; show that it is an isomorphism of representations and that each isomorphism is thus obtainable [apply (b), or argue directly]. In particular, to decompose V_i into a direct sum of representations isomorphic to W_j amounts to choosing a basis for H_i.

22
2.7 Explicit decomposition of a representation

Keep the notation of the preceding section, and let

\[V = V_1 \oplus \cdots \oplus V_n \]

be the canonical decomposition of the given representation. We have seen how one can determine the \(i \)th component \(V_i \) by means of the corresponding projection (th. 8). We now give a method for explicitly constructing a decomposition of \(V \) into a direct sum of subrepresentations isomorphic to \(W_\gamma \). Let \(W_\gamma \) be given in matrix form \((\rho_{\alpha\beta}(s))\) with respect to a basis \((e_1, \ldots, e_n)\); we have \(\chi_\gamma(s) = \sum_\alpha \rho_{\alpha\gamma}(s) \) and \(n = n_\gamma = \dim W_\gamma \). For each pair of integers \(\alpha, \beta \) taken from 1 to \(n \), let \(p_{\alpha\beta} \) denote the linear map of \(V \) into \(V \) defined by

\[p_{\alpha\beta} = \frac{1}{n} \sum_{t \in G} \rho_{\alpha\beta}(t^{-1}) \rho_t. \]

Proposition 8

(a) The map \(p_{\alpha\beta} \) is a projection; it is zero on the \(V_j, j \neq i \). Its image \(V_{i\alpha\beta} \) is contained in \(V_i \) and \(V_i \) is the direct sum of the \(V_{i\alpha\beta} \) for \(1 \leq \alpha \leq n \).

We have \(p_i = \sum_\alpha p_{\alpha\alpha} \).

(b) The linear map \(p_{\alpha\beta} \) is zero on the \(V_j, j \neq i \), as well as on the \(V_{i\gamma} \) for \(\gamma \neq \beta \); it defines an isomorphism from \(V_{i\beta} \) onto \(V_{i\beta} \).

(c) Let \(x_\gamma \) be an element \(\neq 0 \) of \(V_{i1} \) and let \(x_\alpha = p_{\alpha1}(x_\gamma) \in V_{i\alpha} \). The \(x_\alpha \) are linearly independent and generate a vector subspace \(W(x_\gamma) \) stable under \(G \) and of dimension \(n \). For each \(s \in G \), we have

\[\rho_s(x_\alpha) = \sum_\beta \rho_{\alpha\beta}(s) x_\beta \]

(in particular, \(W(x_\gamma) \) is isomorphic to \(W_\gamma \)).

(d) If \(\{ x_1^{(m)} \} \) is a basis of \(V_{i1} \), the representation \(V_i \) is the direct sum of the subrepresentations \(W(x_1^{(1)}), \ldots, W(x_1^{(m)}) \) defined in \(c \).

(Thus the choice of a basis of \(V_{i1} \) gives a decomposition of \(V_i \) into a direct sum of representations isomorphic to \(W_\gamma \)).

We observe first that the formula \((*) \) above allows us to define the \(p_{\alpha\beta} \) in arbitrary representations of \(G \), and in particular in the irreducible representations \(W_\gamma \). For \(W_\gamma \), we have

\[p_{\alpha\beta}(e_\gamma) = \frac{n}{\beta} \sum_{t \in G} \rho_{\alpha\beta}(t^{-1}) \rho_t(e_\gamma) = \frac{n}{\beta} \sum_{t \in G} \rho_{\alpha\beta}(t^{-1}) e_\gamma(t) e_\beta. \]

By cor. 3 to prop. 4 we have then

\[p_{\alpha\beta}(e_\gamma) = \begin{cases} e_\alpha & \text{if } \gamma = \beta \\ 0 & \text{otherwise} \end{cases} \]

23
Chapter 2: Character theory

We get from this the fact that \(\sum_a \rho_{aa} \) is the identity map of \(W_i \), and the formulas

\[
\rho_{\alpha\beta} \circ \rho_{\gamma\delta} = \begin{cases}
\rho_{\alpha\delta} & \text{if } \beta = \gamma \\
0 & \text{otherwise}
\end{cases}
\]

\[
\rho_\gamma \circ \rho_{\alpha\gamma} = \sum_{\beta} \eta_{\alpha\beta}(s) \rho_{\beta\gamma}.
\]

For \(W_j \) with \(j \neq i \), we use cor. 2 to prop. 4 and the same argument to show that all the \(\rho_{\alpha\beta} \) are zero.

Having done this, we decompose \(V \) into a direct sum of subrepresentations isomorphic to \(W_j \) and apply the preceding to each of these representations. Assertions (a) and (b) follow; moreover, the above formulas remain valid in \(V \). Under the hypothesis of (c), we have then

\[
\rho_\delta(x_\alpha) = \rho_\alpha \circ \rho_{\alpha\delta}(x_\lambda) = \sum_{\beta} \eta_{\alpha\beta}(s) \rho_{\delta\beta}(x_\lambda) = \sum_{\beta} \eta_{\alpha\beta}(s) x_\beta,
\]

which proves (c). Finally (d) follows from (a), (b), and (c). \(\square \)

EXERCISES

2.9. Let \(H_i \) be the space of linear maps \(h : W_i \to V \) such that \(h \circ \rho_{ij} = \rho_{ij} \circ h \), cf. ex. 2.8. Show that the map \(h \mapsto h(e_\alpha) \) is an isomorphism of \(H_i \) onto \(V_{\alpha i} \).

2.10. Let \(x \in V_i \) and let \(V(x) \) be the smallest subrepresentation of \(V \) containing \(x \). Let \(\chi^\alpha \) be the image of \(x \) under \(\rho_{\alpha i} \); show that \(V(x) \) is the sum of the representations \(W(\chi^\alpha) \), \(\alpha = 1, \ldots, n \). Deduce from this that \(V(x) \) is the direct sum of at most \(n \) subrepresentations isomorphic to \(W_i \).