**Problem 0.1.** Let  $\mathfrak{g} = sl_n, n > 1$ . Show that

a) The set h of diagonal matrices

$$\begin{array}{ccccc}
\lambda_1 & 0 & \dots & 0 \\
0 & \lambda_2 & \dots & 0
\end{array}$$

$$\begin{array}{ccccc}
0 & 0 \dots & \lambda_n
\end{array}$$

with trace zero is a Cartan subalgebra of g. We will write this matrix as  $\{\lambda_i\}$ .

0

- b) The set  $\alpha_{ab} \in \mathfrak{h}^{\vee}$ ,  $\alpha_{ab}(\{\lambda_i\}) := \lambda_a \lambda_b, 1 \leq a \neq b \leq n$  is the set of roots of  $\mathfrak{q}$ .
  - c) An element  $t = \{\lambda_i\} \in \mathfrak{h}$  is regular iff  $\lambda_a \neq \lambda_b$  for  $1 \leq a \neq b \leq n$ .
- d) For any regular  $t = \{\lambda_i\} \in \mathfrak{h}$  there exists unique permutation  $\sigma_t \in S_n \text{ such that } \sigma_t(a) < \sigma_t(b) \leftrightarrow \lambda_a < \lambda_b.$
- e) Two regular elements  $t, t' \in \mathfrak{h}$  belong to the same Weyl chamber iff  $\sigma_t = \sigma_{t'}$ .

Let  $t_0 = (\frac{-n}{2}, \frac{-n+2}{2}, \dots, \frac{n}{2}) \in \mathfrak{h}$ . We denote by  $C_+$  the Weyl chamber corresponding to  $t_0$  and for any  $\sigma_t \in S_n$  denote by  $C_{\sigma}$  the Weyl chamber corresponding to  $\sigma(t_0)$ .

- f) The set  $\alpha_{ab}, 1 \leq a < b \leq n$  is the set  $R^+$  of positive roots and  $\alpha_a := \alpha_{a,a+1}, 1 \leq a < n \text{ is the set } \Sigma \text{ of simple roots.}$
- g) The Weyl group W is equal to the symmetric group  $S_n$  and simple reflections  $s_{\alpha_a}$  corresponds to simple transpositions  $(a, a+1) \in S_n$ .

h)
$$l(\sigma) = |\{(a,b)| 1 \le a < b \le n, \sigma(a) > \sigma(b)\}| \forall \sigma \in S_n$$

**Definition 0.2.** Let G, H be groups and G acts on G,

$$h \to h^g, h \in H, g \in G$$

by automorphisms [that is we have a morphism  $G \to Aut(H)$ ]. We denote by  $G \ltimes H$  the group which as a set is equal to the set  $G \times H$  of pairs  $(g,h), h \in H, g \in G \text{ and } (g,h)(g',h') := (gg',h^{g'}h')$ 

**Problem 0.3.** a) Show that the Weyl group of  $C_n$  and  $B_n$  is isomorphic to the semidirect product  $S_n \ltimes \mathbb{Z}_2^n$  and the Weyl group of  $D_n$  is isomorphic to the semidirect product  $S_n \ltimes \tilde{\mathbb{Z}}_2^n$  where  $\tilde{\mathbb{Z}}_2^n \subset \mathbb{Z}_2^n$  is the kernel of the summation morphism  $\mathbb{Z}_2^n \to \mathbb{Z}_2$ .

b) Carry out the analysis as in the Problem 1 for classical Lie algebras.

The rest of the homework is from the Kirillov's book

 $Homeworks: 7.7 \hbox{-} 7.11$