
We assume that char(k) = 0.

Theorem 0.1. (Cartan’s criterion of solvability). A Lie algebra g is
solvable iff K([g, g], g) ≡ 0 where K is the Killing form.

Proof. I give a proof only for the case when k = C. The general case
is a part of the homework.

a) Suppose that g is solvable. By Lie’s theorem there is a basis
in g such that all matrices adx are upper-triangular. In this basis
matrices ady and adxady, x ∈ g, y ∈ [g, g] are strictly upper-triangular.
So K([g, g], g) ≡ 0.

To prove the implication K([g, g], g) ≡ 0 ⇒ g is solvable we prove
the following result.

Lemma 0.2. Let V be a C-vector space, g ⊂ End(V ) a Lie algebra
such that

TrV (xy) = 0, ∀x ∈ [g, g], y ∈ g

Then g is solvable.

Proof. If s ∈ End(V ) is a semisimple element there exists a basis vi, 1 ≤
i ≤ d of V such that svi = λivi, λi ∈ C, 1 ≤ i ≤ d. We define
s̄ ∈ End(V ) as a linear operator such that s̄vi = λivi, λ̄i ∈ C, 1 ≤ i ≤ d
where λ̄ is the complex conjugate of λ.

Let x ∈ [g, g]. Using the Jordan decomposition we can write x = s+n
where s is semisimple, n nilpotent and [s, n] = 0. When can choose a
basis such that s diagonal and n is strictly upper-triangular. So

TrV (xs̄) =

d∑

i=1

λiλ̄i

On the hand x =
∑

k[yk, zk], yk, zk ∈ g. So TrV (xs̄) =
∑

k TrV ([yk, zk]s̄) =∑
k TrV (yk[zk], s̄]). As follows from Theorem 5.59 there exists a polyno-

mial Q[t] ∈ tC[t] such that s̄ = Q(x). So TrV (xs̄) = −
∑

k TrV ykQ(adx)zk.
Since for any r > 0 and any z ∈ g we have adr

x(z) ∈ [g, g] we see that

TrV (xs̄) = 0. Since on the other hand TrV (xs̄) =
∑d

i=1 λiλ̄i we see
that λi = 0, ∀i, 1 ≤ i ≤ d. Therefore every x ∈ [g, g] is nilpotent and
it follows from the Engel’s theorem that [g, g] is nilpotent. So g is
solvable. �

Now is is easy to prove Theorem 1. If K([g, g], g) ≡ 0 then it follows
from Lemma 2 that ad(g) ⊂ End(g) is solvable. But ad(g) = g/Z(g).
So g is solvable. �
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Problem 0.3. Show that for any Lie algebra g and an ideal J ⊂ g we
have

Trgad(x)ad(y) = TrJad(x)ad(y), ∀x, y ∈ J

Lemma 0.4. Let g be a semisimple Lie algebra, I ⊂ g an ideal and
I∨ := {x ∈ g|K(x, y) = 0, ∀y ∈ I}. Then I∨ is an ideal and g = I⊕I∨.

Proof. I∨ is an ideal since K is an invariant form [Lemma 5.45]. There-
fore J : I ∩ I∨ is also an ideal and

Trgad(x)ad(y) = TrJad(x)ad(y), ∀x, y ∈ J

Since
K(x, y) = 0, ∀x ∈ I∨, y ∈ I

we see that
TrJad(x)ad(y) = 0, ∀x, y ∈ J

It follows then from the Cartan’s criterion that J is solvable. Since g

is semisimple we see that J = {0}. �

Problem 0.5. Prove the following

Corollary. a) Any ideal in a semisimple Lie algebra is a semisimple
Lie algebra.

b) If g is semisimple then [g, g] = g.

Definition 0.6. Let ρ : g → End(V ) be a representation of a Lie
algebra such that the form Bρ(x, y) := TrV (ρ(x)ρ(y)) on g is non-
degenerate. Choose a basis ei ∈ g, 1 ≤ i ≤ d, denote by fi, 1 ≤ i ≤ d the
dual basis in respect to the form Bρ and define ∆ρ :=

∑d

i=1 eifi ∈ U(g).
We say that ∆ρ is the Casimir element corresponding to Bρ.

Problem 0.7. ∆ρ is well define [that is ∆ρ does not depend on a choice
of a basis ei ∈ g] and ∆ρ ∈ Z(U(g)).

Theorem 0.8. Any finite-dimensional representation of a semi-simple
algebra g is completely reducible.

Proof. As we have seen in Lecture 4 it is sufficient to show that any
exact sequence

{0} → V → V ′ → k → {0}

g-representation such that ρ : g → End(V ) is irreducible splits.

a) Consider first the case when the map ρ : g → End(V ) is an
imbedding. In this case the bilinear form Bρ(x, y) := TrV (ρ(x)ρ(y))
on g is non-degenerate. Really let I := {x ∈ g|Bρ(x, y) = 0, ∀y ∈ g}. I
is an ideal since the form Bρ is invariant. By the Cartan’s criterion, I
is solvable. Since g is semi-simple we see that I = {0}.
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Since the representation ρ : g → End(V ) is irreducible and ∆ρ ∈
Z(U(g)) we see that ρ(∆ρ) = cIdV . I claim that c = dim(g)/dim(V ).
To prove it is sufficient to show that TrV (ρ(∆ρ)) = d := dim(g). But

TrV (ρ(∆ρ)) =

d∑

i=1

TrV (eifi) =

d∑

i=1

Bρ(ei, fi) =

d∑

i=1

1 = d

Now the we can find the splitting of the exact sequence

{0} → V → V ′ → k → {0}

as in the proof of the part a”) of Lemma 7 in the Lecture 4.

b) Consider now the general case. Let I := Kerρ. By corollary to
lemma 4 we know that I is semisimple and therefore [I, I] = I. So the
same arguments as in the case of the part a’) of Lemma 7 in the Lecture
4 show that I acts trivially on V ′. So we can consider ρ′ : g → End(V ′)
as a representation of a Lie algebra g/I. Since the Lie algebra g/I is
semisimple and ρ : g/I → End(V ) is an imbedding we know from a)
that the exact sequence

{0} → V → V ′ → k → {0}

splits. �

Definition 0.9. a) Let Σn the the symmetric group. For any σ ∈ Σn

we define

l(σ) := |{(i < j), 1 ≤ i < j ≤ n|σ(i) > σ(j)}|, ǫ(σ) := (−1)l(σ)

b) If V is a vector space we define the action of Σn on V ⊗n by

σ(v1 ⊗ ... ⊗ vn) = vσ(1) ⊗ ... ⊗ vσ(n), σ ∈ Σn, vi ∈ V, 1 ≤ i ≤ n

c) We define

Sn(V ) = {t ∈ V ⊗n|σ(t) = t, σ ∈ Σn}

Λn(V ) = {t ∈ V ⊗n|σ(t) = ǫ(σ)t, σ ∈ Σn}

Problem 0.10. a) Show that

a) ǫ(σσ′) = ǫ(σ)ǫ(σ′), ∀σ, σ′ ∈ Σn.

b) Sn(V ), Λn(V ) are gl(V )-invariant subspaces of V ⊗n.

Definition 0.11. If g is a Lie algebra, ρ : g → gl(V ) a representa-
tion we denote by ρ⊗n the representation of g on V ⊗n, by Sn(ρ) the
restriction of ρ⊗n to the subspace Sn(V ) ⊂ V ⊗n of symmetric tensors
and by Λn(ρ) the restriction of ρ⊗n to the subspace Λn(V ) ⊂ V ⊗n [of
anti-symmetric tensors].
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Problem 0.12. a) Show that

a) Let ρn : sl2(k) → gl(Vn), n ≥ 0 be the irreducible n+1-dimensional
representation. Then Vn⊗V1 ∼ Vn+1⊕Vn−1. [That is the tensor product
Vn ⊗ V1 is equivalent to direct sum Vn+1 ⊕ Vn−1.]

b) For any n ≥ 0 there exists unique [up to a multiplication by a
non-zero scalar] sl2(k)-invariant non-zero bilinear form Qn on Vn. It
is non-degenerate and symmetric for even n and anti-symmetric for
odd n.

c) The representation Sn(ρ1) of sl2(k) is equivalent to the represen-
tation ρn.

d) For any nilpotent matrix X ∈ gln(k) there exist matrices H, Y ∈
gln(k) such that

[H, X] = 2X, [H, Y ] = −2Y, [X, Y ] = H

(in other words, there exists a representation ρ : sl2(k) → gln(k) such
that ρ(e) = X).

A hint. Bring X to the Jordan normal form.

e) Let H ′, Y ′ ∈ gln(k) be another pair of elements such that

[H ′, X] = 2X, [H ′, Y ′] = −2Y ′, [X, Y ′] = H ′

Then there exists an invertible n × n-matrix A such that

A−1XA = X, A−1Y A = Y ′, A−1HA = H ′

f) Let b ⊂ sl2(k) be the subalgebra of upper-triangular matrices,ρ :
sl2(k) → gl(V ) a finite-dimensional representation and v ∈ V is such
that ρ(x)v = 0 for all x ∈ b. Show that ρ(x)v = 0 for all x ∈ g.

g⋆) find ci, i ≥ 0 such that Vn ⊗ Vm ∼ ⊕ciρi.

A hint. Use the classification of representations of sl2(k)

Problem 0.13. Let slr(k) ⊂ gl(kr), r > 1 be the Lie algebra of r × r-
matrices A such that tr(A) = 0. We denote by ρst : slr(k) → gl(kr)
the representation ρst(A) := A, A ∈ slr(k).Show that

a) slr(k) is a simple Lie algebra.

b) the representations Sn(ρst) of the Lie algebra slr(k) are irreducible
for all n ≥ 0.

c) the representations Λi(ρst), 1 ≤ i ≤ r of the Lie algebra slr(k)
are irreducible and that the representation Λr(ρst) is equal to the trivial
representation ρtr.
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d) the representation Λr−i(ρst) is equivalent to the representation
Λi(ρst)

∨ dual to Λi(ρst).


