We assume that char(k) = 0.

Theorem 0.1. (Cartan's criterion of solvability). A Lie algebra \mathfrak{g} is solvable iff $K([\mathfrak{g},\mathfrak{g}],\mathfrak{g}) \equiv 0$ where K is the Killing form.

Proof. I give a proof only for the case when $k = \mathbb{C}$. The general case is a part of the homework.

a) Suppose that \mathfrak{g} is solvable. By Lie's theorem there is a basis in \mathfrak{g} such that all matrices ad_x are upper-triangular. In this basis matrices ad_y and $ad_xad_y, x \in \mathfrak{g}, y \in [\mathfrak{g}, \mathfrak{g}]$ are strictly upper-triangular. So $K([\mathfrak{g}, \mathfrak{g}], \mathfrak{g}) \equiv 0$.

To prove the implication $K([\mathfrak{g},\mathfrak{g}],\mathfrak{g})\equiv 0\Rightarrow \mathfrak{g}$ is solvable we prove the following result.

Lemma 0.2. Let V be a \mathbb{C} -vector space, $\mathfrak{g} \subset End(V)$ a Lie algebra such that

$$Tr_V(xy) = 0, \forall x \in [\mathfrak{g}, \mathfrak{g}], y \in \mathfrak{g}$$

Then g is solvable.

Proof. If $s \in End(V)$ is a semisimple element there exists a basis $v_i, 1 \le i \le d$ of V such that $sv_i = \lambda_i v_i, \lambda_i \in \mathbb{C}, 1 \le i \le d$. We define $\bar{s} \in End(V)$ as a linear operator such that $\bar{s}v_i = \lambda_i v_i, \bar{\lambda}_i \in \mathbb{C}, 1 \le i \le d$ where $\bar{\lambda}$ is the complex conjugate of λ .

Let $x \in [\mathfrak{g}, \mathfrak{g}]$. Using the Jordan decomposition we can write x = s + n where s is semisimple, n nilpotent and [s, n] = 0. When can choose a basis such that s diagonal and n is strictly upper-triangular. So

$$Tr_V(x\bar{s}) = \sum_{i=1}^d \lambda_i \bar{\lambda}_i$$

On the hand $x = \sum_k [y_k, z_k], y_k, z_k \in \mathfrak{g}$. So $Tr_V(x\bar{s}) = \sum_k Tr_V([y_k, z_k]\bar{s}) = \sum_k Tr_V(y_k[z_k], \bar{s}])$. As follows from Theorem 5.59 there exists a polynomial $Q[t] \in t\mathbb{C}[t]$ such that $\bar{s} = Q(x)$. So $Tr_V(x\bar{s}) = -\sum_k Tr_V y_k Q(ad_x) z_k$. Since for any r > 0 and any $z \in \mathfrak{g}$ we have $ad_x^r(z) \in [\mathfrak{g}, \mathfrak{g}]$ we see that $Tr_V(x\bar{s}) = 0$. Since on the other hand $Tr_V(x\bar{s}) = \sum_{i=1}^d \lambda_i \bar{\lambda}_i$ we see that $\lambda_i = 0, \forall i, 1 \leq i \leq d$. Therefore every $x \in [\mathfrak{g}, \mathfrak{g}]$ is nilpotent and it follows from the Engel's theorem that $[\mathfrak{g}, \mathfrak{g}]$ is nilpotent. So \mathfrak{g} is solvable.

Now is is easy to prove Theorem 1. If $K([\mathfrak{g},\mathfrak{g}],\mathfrak{g}) \equiv 0$ then it follows from Lemma 2 that $ad(\mathfrak{g}) \subset End(\mathfrak{g})$ is solvable. But $ad(\mathfrak{g}) = \mathfrak{g}/Z(\mathfrak{g})$. So \mathfrak{g} is solvable.

Problem 0.3. Show that for any Lie algebra \mathfrak{g} and an ideal $J \subset \mathfrak{g}$ we have

$$Tr_{\mathfrak{a}}ad(x)ad(y) = Tr_{J}ad(x)ad(y), \forall x, y \in J$$

Lemma 0.4. Let \mathfrak{g} be a semisimple Lie algebra, $I \subset \mathfrak{g}$ an ideal and $I^{\vee} := \{x \in \mathfrak{g} | K(x,y) = 0, \forall y \in I\}$. Then I^{\vee} is an ideal and $\mathfrak{g} = I \oplus I^{\vee}$.

Proof. I^{\vee} is an ideal since K is an invariant form [Lemma 5.45]. Therefore $J:I\cap I^{\vee}$ is also an ideal and

$$Tr_{\mathfrak{g}}ad(x)ad(y) = Tr_{J}ad(x)ad(y), \forall x, y \in J$$

Since

$$K(x,y) = 0, \forall x \in I^{\vee}, y \in I$$

we see that

$$Tr_J ad(x) ad(y) = 0, \forall x, y \in J$$

It follows then from the Cartan's criterion that J is solvable. Since \mathfrak{g} is semisimple we see that $J = \{0\}$.

Problem 0.5. Prove the following

Corollary. a) Any ideal in a semisimple Lie algebra is a semisimple Lie algebra.

b) If \mathfrak{g} is semisimple then $[\mathfrak{g},\mathfrak{g}] = \mathfrak{g}$.

Definition 0.6. Let $\rho: \mathfrak{g} \to End(V)$ be a representation of a Lie algebra such that the form $B_{\rho}(x,y) := Tr_{V}(\rho(x)\rho(y))$ on \mathfrak{g} is non-degenerate. Choose a basis $e_{i} \in \mathfrak{g}, 1 \leq i \leq d$, denote by $f_{i}, 1 \leq i \leq d$ the dual basis in respect to the form B_{ρ} and define $\Delta_{\rho} := \sum_{i=1}^{d} e_{i}f_{i} \in U(\mathfrak{g})$. We say that Δ_{ρ} is the Casimir element corresponding to B_{ρ} .

Problem 0.7. Δ_{ρ} is well define [that is Δ_{ρ} does not depend on a choice of a basis $e_i \in \mathfrak{g}$] and $\Delta_{\rho} \in Z(U(\mathfrak{g}))$.

Theorem 0.8. Any finite-dimensional representation of a semi-simple algebra \mathfrak{g} is completely reducible.

Proof. As we have seen in Lecture 4 it is sufficient to show that any exact sequence

$$\{0\} \to V \to V' \to k \to \{0\}$$

 \mathfrak{g} -representation such that $\rho:\mathfrak{g}\to End(V)$ is irreducible splits.

a) Consider first the case when the map $\rho: \mathfrak{g} \to End(V)$ is an imbedding. In this case the bilinear form $B_{\rho}(x,y) := Tr_{V}(\rho(x)\rho(y))$ on \mathfrak{g} is non-degenerate. Really let $I := \{x \in \mathfrak{g} | B_{\rho}(x,y) = 0, \forall y \in \mathfrak{g}\}$. I is an ideal since the form B_{ρ} is invariant. By the Cartan's criterion, I is solvable. Since \mathfrak{g} is semi-simple we see that $I = \{0\}$.

Since the representation $\rho: \mathfrak{g} \to End(V)$ is irreducible and $\Delta_{\rho} \in Z(U(\mathfrak{g}))$ we see that $\rho(\Delta_{\rho}) = cId_V$. I claim that $c = dim(\mathfrak{g})/dim(V)$. To prove it is sufficient to show that $Tr_V(\rho(\Delta_{\rho})) = d := dim(\mathfrak{g})$. But

$$Tr_V(\rho(\Delta_\rho)) = \sum_{i=1}^d Tr_V(e_i f_i) = \sum_{i=1}^d B_\rho(e_i, f_i) = \sum_{i=1}^d 1 = d$$

Now the we can find the splitting of the exact sequence

$$\{0\} \rightarrow V \rightarrow V' \rightarrow k \rightarrow \{0\}$$

as in the proof of the part a") of Lemma 7 in the Lecture 4.

b) Consider now the general case. Let $I := Ker\rho$. By corollary to lemma 4 we know that I is semisimple and therefore [I,I] = I. So the same arguments as in the case of the part a') of Lemma 7 in the Lecture 4 show that I acts trivially on V'. So we can consider $\rho' : \mathfrak{g} \to End(V')$ as a representation of a Lie algebra \mathfrak{g}/I . Since the Lie algebra \mathfrak{g}/I is semisimple and $\rho : \mathfrak{g}/I \to End(V)$ is an imbedding we know from a) that the exact sequence

$$\{0\} \rightarrow V \rightarrow V' \rightarrow k \rightarrow \{0\}$$

splits. \Box

Definition 0.9. a) Let Σ_n the the symmetric group. For any $\sigma \in \Sigma_n$ we define

$$l(\sigma) := |\{(i < j), 1 \le i < j \le n | \sigma(i) > \sigma(j)\}|, \epsilon(\sigma) := (-1)^{l(\sigma)}$$

b) If V is a vector space we define the action of Σ_n on $V^{\otimes n}$ by

$$\sigma(v_1 \otimes ... \otimes v_n) = v_{\sigma(1)} \otimes ... \otimes v_{\sigma(n)}, \sigma \in \Sigma_n, v_i \in V, 1 \le i \le n$$

c) We define

$$S^{n}(V) = \{ t \in V^{\otimes n} | \sigma(t) = t, \sigma \in \Sigma_{n} \}$$

$$\Lambda^{n}(V) = \{ t \in V^{\otimes n} | \sigma(t) = \epsilon(\sigma)t, \sigma \in \Sigma_{n} \}$$

Problem 0.10. a) Show that

- a) $\epsilon(\sigma\sigma') = \epsilon(\sigma)\epsilon(\sigma'), \forall \sigma, \sigma' \in \Sigma_n$.
- b) $S^n(V), \Lambda^n(V)$ are gl(V)-invariant subspaces of $V^{\otimes n}$.

Definition 0.11. If \mathfrak{g} is a Lie algebra, $\rho: \mathfrak{g} \to gl(V)$ a representation we denote by $\rho^{\otimes n}$ the representation of \mathfrak{g} on $V^{\otimes n}$, by $S^n(\rho)$ the restriction of $\rho^{\otimes n}$ to the subspace $S^n(V) \subset V^{\otimes n}$ of symmetric tensors and by $\Lambda^n(\rho)$ the restriction of $\rho^{\otimes n}$ to the subspace $\Lambda^n(V) \subset V^{\otimes n}$ [of anti-symmetric tensors].

Problem 0.12. a) Show that

- a) Let $\rho_n: sl_2(k) \to gl(V_n), n \geq 0$ be the irreducible n+1-dimensional representation. Then $V_n \otimes V_1 \sim V_{n+1} \oplus V_{n-1}$. [That is the tensor product $V_n \otimes V_1$ is equivalent to direct sum $V_{n+1} \oplus V_{n-1}$.]
- b) For any $n \geq 0$ there exists unique [up to a multiplication by a non-zero scalar] $sl_2(k)$ -invariant non-zero bilinear form Q_n on V_n . It is non-degenerate and symmetric for even n and anti-symmetric for odd n.
- c) The representation $S^n(\rho_1)$ of $sl_2(k)$ is equivalent to the representation ρ_n .
- d) For any nilpotent matrix $X \in gl_n(k)$ there exist matrices $H, Y \in gl_n(k)$ such that

$$[H, X] = 2X, [H, Y] = -2Y, [X, Y] = H$$

(in other words, there exists a representation $\rho: sl_2(k) \to gl_n(k)$ such that $\rho(e) = X$).

A hint. Bring X to the Jordan normal form.

e) Let $H', Y' \in gl_n(k)$ be another pair of elements such that

$$[H', X] = 2X, [H', Y'] = -2Y', [X, Y'] = H'$$

Then there exists an invertible $n \times n$ -matrix A such that

$$A^{-1}XA = X, A^{-1}YA = Y', A^{-1}HA = H'$$

- f) Let $\mathfrak{b} \subset sl_2(k)$ be the subalgebra of upper-triangular matrices, ρ : $sl_2(k) \to gl(V)$ a finite-dimensional representation and $v \in V$ is such that $\rho(x)v = 0$ for all $x \in \mathfrak{b}$. Show that $\rho(x)v = 0$ for all $x \in \mathfrak{g}$.
 - g^*) find $c_i, i \geq 0$ such that $V_n \otimes V_m \sim \oplus c_i \rho_i$.

A hint. Use the classification of representations of $sl_2(k)$

- **Problem 0.13.** Let $sl_r(k) \subset gl(k^r)$, r > 1 be the Lie algebra of $r \times r$ matrices A such that tr(A) = 0. We denote by $\rho_{st} : sl_r(k) \to gl(k^r)$ the representation $\rho_{st}(A) := A, A \in sl_r(k)$. Show that
 - a) $sl_r(k)$ is a simple Lie algebra.
- b) the representations $S^n(\rho_{st})$ of the Lie algebra $sl_r(k)$ are irreducible for all $n \geq 0$.
- c) the representations $\Lambda^i(\rho_{st})$, $1 \leq i \leq r$ of the Lie algebra $sl_r(k)$ are irreducible and that the representation $\Lambda^r(\rho_{st})$ is equal to the trivial representation ρ_{tr} .

d) the representation $\Lambda^{r-i}(\rho_{st})$ is equivalent to the representation $\Lambda^i(\rho_{st})^{\vee}$ dual to $\Lambda^i(\rho_{st})$.