From now on we will always assume that k is a field of characteristic
Zero.

Definition 0.1. a) A grading on a vector space V' is a choice of sub-
spaces V" C V,0 <n < oo such that V = &, V™. In this case we say
that elements of V™ are homogeneous elements of degree n. If v € V
is homogeneous denote by |v| € N the number such that v € VI
We say that a subspace W C 'V is graded if W = &, W™ where
Wnm .= W NnV™ In this case the quotient space V/W = @2 V" /W™
1s also graded.

b) For a graded vector space V = @5 V" we denote by V the com-
pletion V- = T2, V™. In other words elements of V are sequences
0 = (Vg, U1y evvy Upy --0), Uy € V.

c) We consider the topology on V' such for any v € V the sets
Uo(0) == 0+ 72, V" constitute the fundamental set of open neigh-
borhoods of v. It is easy to see that V is dense in V and that the
operations of the addition and the scalar multiplication on V' extend to
a continuous operations on V./Please check]

d) We say that a Lie algebra g is graded if g is graded as a vector
space [ so g = &5 ,9"/, go = {0} and [g", g™] C ¢g""",Vm,n > 0. It is
easy to see that for any graded Lie algebra g the operation [,] : gxg — @
extends to a continuous operation [,] : § X @ — g which defines a Lie
algebra structure on §.

e) We say that a algebra A is graded if A is graded as a vector space
in such a way that A™A™ C A™™ ¥Ym.,n > 0. We say that an ideal
I C Aif I is graded subspace of A. In this case the quotient algebra
A/l is also graded. [Please check]

f) If V = @2, V" is a graded vector space we define a grading on
T (V) in such a way for any homogeneous elements vy, ...,v, € V the
tensor product vy ® ... ® v, € T(V)is homogeneous and [v; ® ... @ v,| =
|v1| + ... + |v.|. [Please check that T(V') has a structure of a graded
algebra.

Problem 0.2. a) Let V. = @&, V" be a graded vector space, W =
@ W™ a graded subspace. Show that V/W = @2 V" /W™ [so VW
is a graded vector space] and that for any homogeneous v € V.— W we
have |v| = |v| where v is the image of v in V/W.
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b) Let A be a graded algebra. Show that the multzplzcatzon m: A X
A — A, (a,b) — ab extends to a continuous operation m: A x A — A
which defines an algebra structure on A.

c) Let g = ®2,¢" be a graded Lie algebra. Show that the kernel I
of the natural homomorphism T(g) — U(g) is a graded ideal of T(g)
and that the imbedding i : g — U(g) preserves the grading. Moreover
the imbedding i : g — U(g) extends to a continuous imbedding i = § —

U(g)-
d) For any homogeneous v',u” € U(g) the product v’ @ u" € U(g) ®
U(g) is homogeneous and |u' @ u"| = |u'| + |[u”].

e) Let A be a graded algebra, M C A the set of elements of the form
= (0,u1, ..., Up, ..), u, € A™. Show that the maps

exp: M — 1+ M, exp(z Zx"/n'

In:14+M— M,In(1+2):= Z(—l)”_lx"/n
n=1

are well defined and expoln = Idyn,Inocexp = Idyy.

f) Define an algebra homomorphism U(§) — U(g) and check whether
it 1s always an isomorphism.

Example Let V = k[t], V™ = kt". In this case V is the ring k[[t]] of
Taylor power series.

Let g = &5°,¢" be a graded Lie algebra, U(g)" C U(g) the grading
as in Problems 2 ¢). The isomorphism U(g)®U(g) = U(g®g) provides
the definition of a grading U(g & g)" C U(g & g).

Lemma 0.3. A(U(g)") C U(g ® g)"

Proof. Since the graded algebra U(g) is generated as a graded algebra
by the graded subspace g C U(g) it is sufficient to check that |A(z)| =
|z| for any homogeneous element x € g. But this follows from the part
d) of the previous problem and the equality A(z) =z®1+1®@z. O

Let g = @22 ,¢" be a graded Lie algebra. As follows from the Lemma
3 the diagonal map A : U(g) — U(g) ® U(g) extends to a continuous
map A : U(g) — Ulg) @ U(g)-

Definition 0.4. We say that an element 4 € U(g) is primitive if
A(t) =1®14+1® 4 and we say that G is of a group if A(4) = ® .
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Lemma 0.5. The set of primitive elements of U(g) coincides with
gCcU(g)

Proof. Let u = (tg, t1, ..., tn,...), tn € U(g)"(X) be a primitive element.
Since

~

A(Ug, Uty ooy Upy ) = (Awg), Aur), oy Aluy), -..)
where [by Lemma 3] A(u,) € U(g)"(X) we have A(u,) €= u, ® 1 +
1 ® uy,. So @ is primitive iff all elements u,, € U(g) are primitive. It
follows from Theorem 5.4 in Serre that u, € g"(X). So u € g. O

Lemma 0.6. The map exp : M — 1+ M defines a bijection between
primitive elements in M and group elements in 1 + M

Proof. a) Let & € M an element such that A(d) =u® 1+ 1® 4. We
have to show that A(exp(u)) = exp(@) ® exp(a). Since A is an algebra
isomorphism we have to show

A(exp(t)) = exp(A(a)) = exp(t ®@ 1+ 1 ® @)
Since the elements @ ® 1,1 ® @ € U(g) commute we have
exp(t®1+1®u)=exp(u®1)exp(l® u) =exp(t) ® exp()

b) Let & € 1 + M a group element. We have to show that In(a) is
primitive. I leave for you to finish the proof. O

Corollary 0.7. (Campbell-Hausdorff) For any z,y € g there ezists
z € g such exp(z) exp(y) = exp(z)

Proof. By Lemma 6 we exp(z),exp(y) are group elements. Since A
is an algebra isomorphism we see that exp(x)exp(y) is also a group
element. So by Lemma 5 there exists z € g such exp(x)exp(y) =
exp(z). O

To show that there exists a universal formula for z(x, y) we introduce
the notion of a free Lie algebra.

Definition 0.8. a) Let X be a set.

a) A free Lie algebra on X is a pair (i, L(X)) where L(X) is a Lie
algebra and 1 : X — L(X) is a map such that for any Lie algebra g
and any map j : X — g there exists unique Lie algebra homomorphism
f:L(X)— g such that j = f oi.

b) Let Vx be the space with a basis e,,x € X, Vx — Assx :=T(Vy)
be the tensor algebra and i : X — Assx be the imbedding i(x) :=
ex,x € X. We denote by [:(X) C Assx the Lie subalgebra generated
by e, v € X. (That is L(X) C Assx is the subspace spanned by the
commutators of ez, x € X.)
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Lemma 0.9. (i, L(X)) is a free Lie algebra on X.

Proof. We have to show that for any Lie algebragandamap j: X — g
there exists unique Lie algebra homomorphism f : E(V) — g such that
fles) = j(x),Yz € X. Since the Lie algebra L(V) is generated by
by e,,r € X the uniqueness of f is obvious. To prove the existence
of f consider the algebra homomorphism f : Assx — U(g) such that
fles) = j(z) € g € U(g) [ see Lemma 4 in the Lecture 2]. It is
clear that the restriction f of f on E(X) C Assy is a Lie algebra
homomorphism and f(e,) = j(z), Vo € X. O

By the definition of U(L(X)) the imbedding L(X) — Assx extends
uniquely to an algebra homomorphism ¢ : U(L(X)) — Assx. On the
other hand the linear map Vy — L(X) C U(L(X)) extends uniquely
to an algebra homomorphism ¢ : Assx — U(L(X)).

Lemma 0.10. Homomorphisms ¢ and 1 provide an isomorphism be-
tween associative algebras U(L(X)) and Assx.

Proof. 1t is sufficient to show that ¢pot) = Id s, 0 = Idy(x)). By
the construction ¢ oy : Assx — Assx is an algebra homomorphism
such that pot(e,) = e,,Vx € X. Since the set e,, z € X generates the
algebra Assx we see that ¢ o ¢ = Idass,. The analogous arguments
show that 1D ©) gb = IdU(L(X)) ]

We will identify the algebras U(L(X)) and Assx. In particular we
consider the diagonal map A : U(L(X)) — U(L(X)) @ U(L(X)) as a
algebra homomorphism A : Assy — Assy ® Assx.

Definition 0.11. a) A Lie polynomial in two variables is a element
Pe L(X),X = (z,y). For any Lie algebra, a Lie polynomial P in two
variables and elements a,b € g we define the evaluation P(a,b) € g
as follows. By the definition of a free Lie algebra L(X) there exists
unique homomorphism fa.p : L(X) — g of graded Lie algebras such
that fop(x) = a, fap(y) = b. For any Lie polynomial P in two variables
we define P(a,b) := fop(P).

b) A formal Lie polynomial in two variables is a element P € L(X), X
(x,y). For any graded Lie algebra g, a formal Lie polynomial P(x,y)
in two variables and any elements a,b € g, |a| = |b| =1 we can define
the evaluation P(a,b) € g [ please give a definition/

Theorem 0.12. There ezists a a formal Lie polynomial Q(x,y) such
that for any graded Lie algebra g and any homogeneous elements a,b €

g we have exp(a) exp(b) = exp(z), z = Q(a,b)
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Proof. Follows from Corollary 7 0

On can write explicitly a formula for Q(z,y).An algorithm for the
computation of Q(z,y) is in the end of portion of the Serre’s book
which I posted.

Problem 0.13. Show that

a) Q(z,y) = v +y+ 1/2[x,y] + 1/12[z, [z, y]] + 1/12]y, [y, x]] + ...
where we omit terms of degree bigger then three. [ You can prove this
equality without looking in the Serre’s book.

b) L'(X) is the span of ez, x € X and L"(X) = [L}(X), L" 1 (X)].
c¢) The center of L(X) is equal to {0} if Card(X) > 1.
d) Let g be a graded Lie algebra, v, u" € U(g) group elements. Then
uu” € U(g) is also a group element.
e) Let g be the graded Lie algebra with a basis x,y, z such that
[2,0] = 2 [, 2] = [2,] = 0,2l = y| = 1,]| = 2
Using the part a) describe the subgroup G C U(g) of group elements.

). Let X be a finite set, d = |X|. Show that dimL(X)" =
1/n Zm‘n,u(m)d”/m where the function p is defined as follows

(n) = 1if n is a square-free positive integer with an even number of
distinct prime factors.

(n) = -1 if n is a square-free positive integer with an odd number of
distinct prime factors.

(n) = 0if n is not square-free.



