
Problem 0.1. Let A, B be associative unital k-algebras. Consider a
4-linear form µ : A × B × A × B → A ⊗ B gien by

µ(a′, b′, a′′, b′′) := a′a′′ ⊗ b′b′′

a) Explain why the 4-linear form µ defines a bilinear map

m : (A ⊗ B) × (A ⊗ B) → A ⊗ B

(A hint). As we know the 4-linear form µ defines a linear map

f̃ : A ⊗ B ⊗ A ⊗ B → A ⊗ B which we can consider as a linear
map f̃ : (A ⊗ B) ⊗ (A ⊗ B) → A ⊗ B. Now we can define m :

(A ⊗ B) × (A ⊗ B) → A ⊗ B by m(x, y) := f̃(x ⊗ y).

b) Show that m defines a structure of an associative unital k-algebra
on the vector space A ⊗ B and the maps

iA : A → A ⊗ B, iB : B → A ⊗ B, iA(a) := a ⊗ 1B, iB(b) := 1A ⊗ b

are algebra homomorphisms.

c) Show that for any associative k-algebra C and algebra homomor-
phisms fA : A → C, fB : B → C such that

fA(a)fB(b) = fB(b)fA(a), ∀a ∈ A, b ∈ B

there exists unique algebra homomorphism f : A ⊗ B → C such that
f ◦ iA ≡ fA, f ◦ iB ≡ fB

Problem 0.2. a) Let g be a Lie algebra, ρ : g → gl(V ) be a represen-
tation. We denote by ρ∨ : g → gl(V ∨) the linear map

ρ∨(x) := −(ρ(x))∨x ∈ g

Show that ρ∨ : g → gl(V ∨) is a representation of g.

b) Let ρ′ : g → gl(V ′), ρ′′ : g → gl(V ′′) be representations of g. We
denote by ρ′ ⊗ ρ′′ : g → gl(V ′ ⊗ V ′′) the linear map

ρ′ ⊗ ρ′′(x) := ρ′(x) ⊗ IdV ′′ + IdV ′ ⊗ ρ′′(x)

Show that ρ′ ⊗ ρ′′ : g → gl(V ′ ⊗ V ′′) is a representation of g.

Let Hom(V ′, V ′′) be the space of linear maps from V ′ to V ′′. We
denote by Hom(ρ′, ρ′′) : g → gl(Homk(V

′, V ′′)) the linear map

Hom(ρ′, ρ′′)(x)(T ) := −Tρ′(x) + ρ′′(x)T, T ∈ Hom(V ′, V ′′)

Show that Hom(ρ′, ρ′′) : g → gl(Hom(V ′, V ′′)) is a representation of
g.

d) Construct an isomorphism of Lie-algebra representations

Hom(ρ′, ρ′′) ⇆ ρ′∨ ⊗ ρ′′
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Definition 0.3. a) Let g be a Lie algebra, ρ : g → gl(V ) be a rep-
resentation. The representation ρ∨ is called the representation dual to
ρ.

b) Let g be a Lie algebra, ρ : g → gl(V ) be a representation. We
denote by V g ⊂ V the subspace of v ∈ V such that ρ(x)v = 0 for all
x ∈ g.

c) Let ρ′ : g → gl(V ′), ρ′′ : g → gl(V ′′) be representations of g. The
representation ρ′ ⊗ ρ′′(x) is called the tensor product of ρ′ and ρ′′.

d) We denote by Homg(ρ
′, ρ′′) the space of linear maps T : V ′ →

V ′′ such that Tρ′(x) = ρ′′(x)T . We call elements of Homg(ρ
′, ρ′′)

morphsims of g-representations.

e) Let V ′, V ′′, V be vector spaces and S : V ′ → V, T : V → V ′′

be linear maps. We say that the sequence V ′ → V → V ′′ is exact if
Im(S) = Ker(T ). If V ′, V ′′, V are representations of g and S, T are
morphisms of g-representations we say that V ′ → V → V ′′ is an exact
sequence of representations if V ′ → V → V ′′ is an exact sequence of
vector spaces.

f) A representation ρ : g → gl(V ) is completely reducible if V can be
written in the form V = ⊕Vi where Vi are irreducible subrepresentations
of V .

Problem 0.4. Show that

a)
Hom(ρ′, ρ′′) = (Hom(ρ′, ρ′′))g

b) Let {0} → V ′ → V → V ′′ be an exact sequence of representations
of g-representations. Then the sequence

{0} → V ′g → V g → V ′′g

is exact.
c) Give an example of an exact sequence

{0} → V ′ → V → V ′′ → {0}

of g-representations such that the sequence

{0} → V ′g → V g → V ′′g → {0}

is not exact.

d) Show that for any exact sequence

{0} → V ′ → V → V ′′
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of g-representations such that (ρ, V ) is completely reducible then the
sequence

{0} → V ′g → V g → V ′′g → {0}

exact.

Let Hn := Cn × Cn × C as a vector space and define

[, ] : Hn × Hn → Hn

by
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e) Show that Hn is a Lie algebra and describe it’s center.

f) describe the Lie algebra D(H1) [see the problem 4 in the first
home-work].

g∗) describe the Lie algebra D(Hn).

h) Let g be Lie algebra, a ⊳ g an ideal. Is it always possible to find a
subalgebra h ⊂ g such that g = h⊕ a as a vector space? Let h, a be Lie
algebras and φ : h → D(a) a Lie algebra homomorphism. Let g = h⊕a

as a vector space and [, ] : g × g → g is given by

[(h′, a′), (h′′, a′′)] = ([h′, h′′] + φ(a′)(h′′) − φ(a′′)(h′), [a′, a′′])

i) Show that (g, [, ]) is a Lie algebra.

A hint for a solution of g∗). Let Z = {0} × {0} × C be the center of
the Lie algebra D(Hn). Since for d ∈ D(Hn) we have d(Z) ⊂ Z [ why
] we obtain a Lie algebra homomorphism φ : D(Hn) → End(Z) = C.
Let Dn := Kerφ.

Let V := D(Hn)/Z[= Cn × Cn]. For any d ∈ D(Hn) we denote
by d̄ ∈ End(V ) the induced linear trasfornation of the quotient space
V := D(Hn)/Z. The map v → (v, 0) defines an imbedding r : V →֒ Hn

of vector spaces. Let H = {d ∈ Dn|d(r(V )) ⊂ r(V )}.

The bracket [, ] : Hn ×Hn → Hn defines a skew-symmetric bilinear
form B : V × V → Z[= C] by B(v′, v′′) := [h′, h′′] where h′, h′′ ∈ Hn

are preimages of v′, v′′ ∈ V . It is easy to see [please check] that for any
d ∈ Dn we have d̄ ∈ spB. Show that

a) the homomorphism f : Dn → spB, d → d̄ is onto.

b) Ker(f) = ImadHn
= v

c) H is a Lie subalgebra of D and the restriction of f on H defines
an isomorphism f : H → spB.
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d) Dn = spB ⋉ V .

e) D(Hn) = gspB ⋉ V where gspB = {A ∈ End(V )|∃c ∈ k such that
B(Av′, v′′) + B(v′, Av′′) = c(v′, v′′), ∀v′, v′′ ∈ V .

Remark. If n = 1 then spB = sl2

Definition 0.5. The Lie algebra g described in i) is called the semi-
direct product of Lie algebras h and a. We will denote it by g = h ⋉ h


