Problem 0.1. Let A, B be associative unital k-algebras. Consider a 4-linear form $\mu: A \times B \times A \times B \to A \otimes B$ gien by

$$\mu(a',b',a'',b'') := a'a'' \otimes b'b''$$

a) Explain why the 4-linear form μ defines a bilinear map

$$m: (A \otimes B) \times (A \otimes B) \to A \otimes B$$

- (A hint). As we know the 4-linear form μ defines a linear map $\tilde{f}: A \otimes B \otimes A \otimes B \to A \otimes B$ which we can consider as a linear map $\tilde{f}: (A \otimes B) \otimes (A \otimes B) \to A \otimes B$. Now we can define $m: (A \otimes B) \times (A \otimes B) \to A \otimes B$ by $m(x,y) := \tilde{f}(x \otimes y)$.
- b) Show that m defines a structure of an associative unital k-algebra on the vector space $A \otimes B$ and the maps
- $i_A:A\to A\otimes B, i_B:B\to A\otimes B, i_A(a):=a\otimes 1_B, i_B(b):=1_A\otimes b$ are algebra homomorphisms.
- c) Show that for any associative k-algebra C and algebra homomorphisms $f_A: A \to C$, $f_B: B \to C$ such that

$$f_A(a)f_B(b) = f_B(b)f_A(a), \forall a \in A, b \in B$$

there exists unique algebra homomorphism $f: A \otimes B \to C$ such that $f \circ i_A \equiv f_A, f \circ i_B \equiv f_B$

Problem 0.2. a) Let \mathfrak{g} be a Lie algebra, $\rho : \mathfrak{g} \to gl(V)$ be a representation. We denote by $\rho^{\vee} : \mathfrak{g} \to gl(V^{\vee})$ the linear map

$$\rho^{\vee}(x) := -(\rho(x))^{\vee} x \in \mathfrak{g}$$

Show that $\rho^{\vee}: \mathfrak{g} \to gl(V^{\vee})$ is a representation of \mathfrak{g} .

b) Let $\rho': \mathfrak{g} \to gl(V'), \rho'': \mathfrak{g} \to gl(V'')$ be representations of \mathfrak{g} . We denote by $\rho' \otimes \rho'': \mathfrak{g} \to gl(V' \otimes V'')$ the linear map

$$\rho' \otimes \rho''(x) := \rho'(x) \otimes Id_{V''} + Id_{V'} \otimes \rho''(x)$$

Show that $\rho' \otimes \rho'' : \mathfrak{g} \to gl(V' \otimes V'')$ is a representation of \mathfrak{g} .

Let Hom(V', V'') be the space of linear maps from V' to V''. We denote by $\underline{Hom}(\rho', \rho'') : \mathfrak{g} \to gl(Hom_k(V', V''))$ the linear map

$$\underline{Hom}(\rho', \rho'')(x)(T) := -T\rho'(x) + \rho''(x)T, T \in Hom(V', V'')$$

Show that $\underline{Hom}(\rho', \rho'') : \mathfrak{g} \to gl(Hom(V', V''))$ is a representation of \mathfrak{g} .

d) Construct an isomorphism of Lie-algebra representations

$$\underline{Hom}(\rho', \rho'') \leftrightarrows \rho'^{\vee} \otimes \rho''$$

Definition 0.3. a) Let \mathfrak{g} be a Lie algebra, $\rho: \mathfrak{g} \to gl(V)$ be a representation. The representation ρ^{\vee} is called the representation dual to ρ .

- b) Let \mathfrak{g} be a Lie algebra, $\rho: \mathfrak{g} \to gl(V)$ be a representation. We denote by $V^{\mathfrak{g}} \subset V$ the subspace of $v \in V$ such that $\rho(x)v = 0$ for all $x \in \mathfrak{g}$.
- c) Let $\rho': \mathfrak{g} \to gl(V'), \rho'': \mathfrak{g} \to gl(V'')$ be representations of \mathfrak{g} . The representation $\rho' \otimes \rho''(x)$ is called the tensor product of ρ' and ρ'' .
- d) We denote by $Hom_{\mathfrak{g}}(\rho', \rho'')$ the space of linear maps $T: V' \to V''$ such that $T\rho'(x) = \rho''(x)T$. We call elements of $Hom_{\mathfrak{g}}(\rho', \rho'')$ morphsims of \mathfrak{g} -representations.
- e) Let V', V'', V be vector spaces and $S: V' \to V, T: V \to V''$ be linear maps. We say that the sequence $V' \to V \to V''$ is exact if Im(S) = Ker(T). If V', V'', V are representations of $\mathfrak g$ and S, T are morphisms of $\mathfrak g$ -representations we say that $V' \to V \to V''$ is an exact sequence of representations if $V' \to V \to V''$ is an exact sequence of vector spaces.
- f) A representation $\rho: \mathfrak{g} \to gl(V)$ is completely reducible if V can be written in the form $V = \oplus V_i$ where V_i are irreducible subrepresentations of V.

Problem 0.4. Show that

a) $Hom(\rho', \rho'') = (\underline{Hom}(\rho', \rho''))^{\mathfrak{g}}$

b) Let $\{0\} \to V' \to V \to V''$ be an exact sequence of representations of \mathfrak{g} -representations. Then the sequence

$$\{0\} \to V'^{\mathfrak{g}} \to V^{\mathfrak{g}} \to V''^{\mathfrak{g}}$$

is exact.

c) Give an example of an exact sequence

$$\{0\} \to V' \to V \to V'' \to \{0\}$$

of \mathfrak{g} -representations such that the sequence

$$\{0\} \to V'^{\mathfrak{g}} \to V^{\mathfrak{g}} \to V''^{\mathfrak{g}} \to \{0\}$$

is not exact.

d) Show that for any exact sequence

$$\{0\} \to V' \to V \to V''$$

of \mathfrak{g} -representations such that (ρ, V) is completely reducible then the sequence

$$\{0\} \to V'^{\mathfrak{g}} \to V^{\mathfrak{g}} \to V''^{\mathfrak{g}} \to \{0\}$$

exact.

Let $\mathcal{H}_n := \mathbb{C}^n \times \mathbb{C}^n \times \mathbb{C}$ as a vector space and define

$$[,]: H_n \times H_n \to H_n$$

by

$$\begin{aligned} &[(x_1',...,x_n';y_1',...,y_n',t'),(x_1'',...,x_n'';y_1'',...,y_n'',t'') = (0,...,0;0,...,0,t)\\ &where \ t := \sum_{i=1}^n x_i'y_i'' - x_i''y_i' \end{aligned}$$

- e) Show that \mathcal{H}_n is a Lie algebra and describe it's center.
- f) describe the Lie algebra $\mathcal{D}(\mathcal{H}_1)$ [see the problem 4 in the first home-work].
 - g^*) describe the Lie algebra $\mathcal{D}(\mathcal{H}_n)$.
- h) Let \mathfrak{g} be Lie algebra, $\mathfrak{a} \triangleleft \mathfrak{g}$ an ideal. Is it always possible to find a subalgebra $\mathfrak{h} \subseteq \mathfrak{g}$ such that $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{a}$ as a vector space? Let \mathfrak{h} , \mathfrak{a} be Lie algebras and $\phi : \mathfrak{h} \to \mathcal{D}(\mathfrak{a})$ a Lie algebra homomorphism. Let $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{a}$ as a vector space and $[,] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ is given by

$$[(h', a'), (h'', a'')] = ([h', h''] + \phi(a')(h'') - \phi(a'')(h'), [a', a''])$$

i) Show that $(\mathfrak{g}, [,])$ is a Lie algebra.

A hint for a solution of g^*). Let $Z = \{0\} \times \{0\} \times \mathbb{C}$ be the center of the Lie algebra $\mathcal{D}(\mathcal{H}_n)$. Since for $d \in \mathcal{D}(\mathcal{H}_n)$ we have $d(Z) \subset Z$ [why] we obtain a Lie algebra homomorphism $\phi : \mathcal{D}(\mathcal{H}_n) \to End(Z) = \mathbb{C}$. Let $\mathcal{D}_n := Ker\phi$.

Let $V := \mathcal{D}(\mathcal{H}_n)/Z[=\mathbb{C}^n \times \mathbb{C}^n]$. For any $d \in \mathcal{D}(\mathcal{H}_n)$ we denote by $\bar{d} \in End(V)$ the induced linear transformation of the quotient space $V := \mathcal{D}(\mathcal{H}_n)/Z$. The map $v \to (v,0)$ defines an imbedding $r : V \hookrightarrow H_n$ of vector spaces. Let $H = \{d \in \mathcal{D}_n | d(r(V)) \subset r(V)\}$.

The bracket $[,]: \mathcal{H}_n \times \mathcal{H}_n \to \mathcal{H}_n$ defines a skew-symmetric bilinear form $B: V \times V \to Z[=\mathbb{C}]$ by B(v', v'') := [h', h''] where $h', h'' \in \mathcal{H}_n$ are preimages of $v', v'' \in V$. It is easy to see [please check] that for any $d \in \mathcal{D}_n$ we have $\bar{d} \in sp_B$. Show that

- a) the homomorphism $f: \mathcal{D}_n \to sp_B, d \to \bar{d}$ is onto.
- b) $Ker(f) = Imad_{H_n} = v$
- c) H is a Lie subalgebra of \mathcal{D} and the restriction of f on H defines an isomorphism $f: H \to sp_B$.

- d) $\mathcal{D}_n = sp_B \ltimes V$.
- e) $\mathcal{D}(\mathcal{H}_n) = gsp_B \ltimes V$ where $gsp_B = \{A \in End(V) | \exists c \in k \text{ such that } B(Av', v'') + B(v', Av'') = c(v', v''), \forall v', v'' \in V.$

Remark. If n = 1 then $sp_B = sl_2$

Definition 0.5. The Lie algebra \mathfrak{g} described in i) is called the semi-direct product of Lie algebras \mathfrak{h} and \mathfrak{a} . We will denote it by $\mathfrak{g} = \mathfrak{h} \ltimes \mathfrak{h}$