In this lecture we assume that $k = \mathbb{R}$ [or \mathbb{C}]. The results are true if k is any field of characteristic but the statements and proofs require the knowledge of basics of Algebraic Geometry.

Definition 0.1. a) For any finite-dimensional vector space V we define $GL(V) := \{g \in End(V) | det(g) \neq 0\}$. It is clear that GL(V) is a group.

b) Let $Q: V \to \mathbb{R}$ be a positive definite quadratic form [=Euclidean structure on V]. For any $A \in End(V)$ we define

$$||A|| := max\{Q(Av)/Q(v)\}|v \in V - \{0\}$$

- c) Let W be a real vector space and X a subset of W. We say that X is is smooth at $x \in X$ if there exists an open subset B of a vector space $L, 0 \in B$ and a smooth $[=\infty$ -differentiable] map $f: B \to W$ of such that
 - α) f(0) = x
 - β) The differential $df_0: L \to W$ is an imbedding and
- γ) there exists an open neighborhood $U \subset W$ of x in W such that $U \cap X \subset f(B)$.
- d) We say that X is a submanifold of W if every point $x \in X$ is smooth.

Problem 0.2. a) For any $A \in End(V)$ the series $\exp(A) := \sum_{i=0} A^i/i!$ is convergent and $\exp(A) \exp(-A) = Id_V$.

- b) Any $g \in End(V)$ such that $||g Id_V|| < 1$ belongs to GL(V). Moreover $g^{-1} = \sum_{i=0} (-1)^i A^i$ where $A := g - Id_V$.
- c) For any $g \in End(V)$ such that $||g Id_V|| < 1$ the series $\ln(g) := -\sum_{i=1}^{n} (-A)^i/i$ is convergent and $\exp(\ln(g)) = g$

Definition 0.3. Let $\mathfrak g$ be a Lie algebra. We define

$$Aut(\mathfrak{g}) := \{ g \in GL(\mathfrak{g}) | [g(x), g(y)] = g([x, y], \forall x, y \in \mathfrak{g} \}.$$

Lemma 0.4. Show that for any finite-dimensional Lie algebra \mathfrak{g} over \mathbb{R} and any $D \in \mathcal{D}(\mathfrak{g}) \subset [\text{see the definition 9 of Lecture 1}]$ we have $\exp(D) \in Aut(\mathfrak{g})$.

Proof. Since $D \in \mathcal{D}(\mathfrak{g})$ we have $D([x,y]) \equiv [Dx,y] + [x,Dy]$. Therefore $D^2([x,y])/2 \equiv D([Dx,y])/2 + D([x,Dy])/2 = [D^2x,y]/2 + [Dx,Dy] + [x,D^2y]/2$ By induction one shows that for any n.0 we have

$$D^{n}([x,y])/n! = \sum_{i+j=n} \binom{n}{i} [D^{i}(x), D^{j}(y)]/n! = \sum_{i+j=n} [D^{i}(x)/i!, D^{j}(y)/j!]$$

So $\exp(D)[x, y] = [\exp(D)x, \exp(D)y]$

Problem 0.5. Let Q be a Euclidean structure on \mathfrak{g} and $g \in Aut(\mathfrak{g})$ be such that ||A|| < 1, $A := g - Id_V$. Then $\ln(g) \in \mathcal{D}(\mathfrak{g})$

Theorem 0.6. $Aut(\mathfrak{g})$ is a submanifold of $End(\mathfrak{g})$.

Proof. It is clear that $e := Id_V \in Aut(\mathfrak{g})$. We first check that $Aut(\mathfrak{g})$ is smooth at e. Let $L := \mathcal{D}(\mathfrak{g}) \subset End(\mathfrak{g})$. We take B = L and define $f(D) = \exp(D), D \in L$. It is clear that the conditions α and β are satisfied. The validity of γ follows from Problem 5.

For arbitrary $g \in Aut(\mathfrak{g})$ we take $B = L := \mathcal{D}(\mathfrak{g})$ and define $f_g : B \to Aut(\mathfrak{g})$ by $f_g(D) = g \exp(D), D \in L$.

Problem 0.7. Let $G \subset Aut(\mathfrak{g})$ be the subgroup generated by $\exp(x), x \in \mathcal{D}(\mathfrak{g})$. Show that

- a) $Aut(\mathfrak{g})$ is closed in GL(V).
- b) G is an open subgroup of $Aut(\mathfrak{g})$.
- c) G is closed in $Aut(\mathfrak{g})$ [and therefore in GL(V)].

Definition 0.8. a) Let V be an \mathbb{R} -vector space, and $\mathfrak{h} \subset End(V)$ a Lie subalgebra. We denote by $G_{\mathfrak{h}}$ the subgroup of GL(V) generated by $\exp(x), x \in \mathfrak{h}$ and by $\bar{G}_{\mathfrak{h}}$ the closure of $G_{\mathfrak{h}}$ in GL(V).

b) We say that a Lie subalgebra $\mathfrak{h} \subset End(V)$ is algebraic if $\bar{G}_{\mathfrak{h}} = G_{\mathfrak{h}}$ [that is if $G_{\mathfrak{h}}$ is closed in GL(V)].

Remark As follows from Problem 7 that the answer is positive if $\mathfrak{h} = \mathcal{D}(\mathfrak{g}) \subset End(\mathfrak{g})$.

Problem 0.9. Show that

- a) If $\mathfrak{h} = \mathbb{R}x$ then the map $t \to exp(tx), t \in \mathbb{R}$ defines a surjection $\mathbb{R} \to G_{\mathfrak{h}}$.
- b) For any n > 1 there exists $x \in End(\mathbb{R}^n)$ such that $dim(\bar{G}_{\mathbb{R}x}) = n 1$. [So the Lie subalgebra $\mathfrak{h} = \mathbb{R}x$ is not algebraic].

Remark There exists a purely algebraic criterion for algebraicity of a Lie subalgebra $\mathfrak{h} \subset End(V)$. using this criterion one can show that any Lie subalgebra $\mathfrak{h} \subset End(V)$ such that $[\mathfrak{h}, \mathfrak{h}] = \mathfrak{h}$ is algebraic.