
1. L-functions

Let N be a positive number, Z/NZ the ring of residues mod N and
G = Z/NZ⋆ ⊂ Z/NZ the multiplicative group of invertible elements
of the ring Z/NZ. We write elements of G ⊂ Z/NZ as ā where a ∈ Z

is a number prime to N and ā ∈ Z/NZ is the residue of a mod N .

Definition 1.1. a) A character of G is a function χ̃ : G → C⋆ such
that χ̃(1̄) = 1 and χ̃(gh) = χ̃(g)χ̃(h) for all g, h ∈ G.

b) We denote by G∨ the set of characters of the group G and by
1 ∈ G∨ the trivial character 1(ā) ≡ 1.

c) For any character χ̃ ∈ G∨ we denote by χ : Z → C the corre-
sponding primitive Dirichlet character which is the function such that
χ(n) := χ̃(n̄) if n is prime to N and χ(n) = 0 otherwise.

d) For any χ̃ ∈ G∨ we define the Dirichlet L-function Lχ(s) for
s ∈ C, Re(s) > 1 by the absolutely convergent series

Lχ(s) =
∑

n≥1

χ(n)/ns

Exercise 1.2. a)
∑

χ̃∈G∨ χ̃(ā) = 0 for any g ∈ G, g 6= 1̄ .

b) For any g, h ∈ G∨ we have
∑

χ̃∈G∨

χ̃−1(g)χ̃(h) = 0

if g 6= h and ∑

χ̃∈G∨

χ̃−1(ā)χ̃(b̄) = |G|

if g = h.

c) |G| = N
∏

p∈PN
(1 − 1/p) where PN is the set of primes dividing

N .

It is clear that L1(s) = ζ(s). The understanding of the analytic
behavior of functions Lχ(s) is central for Number theory.

1.1. The Dirichlet theorem. Let N be a positive number and a a
positive number prime to N .

Theorem 1.3. For any number a prime to N the arithmetic progres-

sion a, a + N, a + 2N, . . . contains an infinite numbers of primes.

In the case when N = 1 or N = 2 the result was know to Euclead
but for general N the theorem was proven by Lejeune Dirichlet in 1837.
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We denote by P the set of prime numbers.

Lemma 1.4. For any χ̃ ∈ G∨, χ̃ 6= 1 the series Lχ(s) =
∑

n≥1 χ(n)/ns

is convergent for any s ∈ C with Re(s) > 0.

Proof. The result follows from Exercise 1.2 and the following result
from Calculus

Exercise 1.5. Let an, n ≥ 1 a decreasing sequence of positive numbers
such that limn→∞ an = 0 and bn, n ≥ 1 a sequence of complex numbers
such that the sequence Bn :=

∑
k=1n bn is bounded. Then the series∑

n≥1 anbn is convergent.

�

The following proposition is an analogue of the Theorem 4.3 in in
Lecture 1.

Proposition 1.6. Lχ(1) 6= 0 for any χ̃ ∈ G∨, χ̃ 6= 1

The proof of Proposition 1.6 is not too difficult [ see for example the
book of Ram Murty “Problems in Analytic Number Theory” pp.24-29]
but it would take us away from out theme.

We start the proof of the Dirichlet theorem with the following obser-
vation which follows immediately from the uniqueness of the decom-
position to prime factors [see the proof of Lemma 1.1 in in Lecture
1].

Exercise 1.7. For any s > 1 and χ̃ ∈ G∨ we have

Lχ(s) =
∏

p/∈PN

(1 − χ(p)/ps)

Consider now the function ln(Lχ(s)), χ̃ ∈ G∨. For s > 1 we have

−ln(Lχ(s) =
∑

p/∈PN

−ln(1−χ(p)/ps) =
∑

p/∈PN

(χ(p)/ps+1/2χ2(p)/p2s+. . . ) =

∑

p∈PN

(χ(p)/ps) + Fχ(s)

Exercise 1.8. The series for Fχ(s) is absolutely convergent for s > 1/2.

Corollary 1.9. For any χ 6= 1 ∈ G∨ the sum
∑

p∈P(χ(p)/ps) is con-

vergent for s > 1/2.

Let Pa ⊂ P be the set of primes congruent to a mod N . To show
tha the set Pa is infinite it is sufficient to show that

lim
s→1+

(s − 1)fā(s) 6= 0
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where the function fā(s) is defined for s > 1 by the absolutely con-
vergent series fa(s) :=

∑
p∈Pa p−s. But it follows from Exercise 1.2 b)

that

fa(s) =
1

|G|

∑

χ̃∈G∨

χ−1(a)Lχ(s)

for any s, Re(s) > 1. Therefore

lim
s→1+

(s − 1)fā(s) =
1

|G|

∑

χ̃∈G∨

lim
s→1+

(s − 1)χ−1(a)Lχ(s)

Since, by Corollary 1.9, for any non-trivial character χ̃ ∈ G∨ the∑
p∈P(χ(p)/ps) is absolutely convergent for all s > 1/2 lims→1+(s −

1)χ̃−1(a)Lχ(s) = 0 for all χ 6= 1. It follows now from Claim 1.2 in
Lecture 1 that

lim
s→1+

(s − 1)fā(s) = 1/N 6= 0.�

Exercise 1.10. a) Fill details in the proof of Theorem 1.1.1 in “Bump”.

b) Prove exercises 1.1.1-1.1.3 in “Bump”

1.2. The functional equation. The formulation and a proof of tThe
functional equation for L-functions is in “Bump”. The proof uses some
properties of the Fourier transform which I formulate now. As be-
fore we denote by S(R) the space of smooth functions f(x) such that
limx→±∞ xaf (b)(x) = 0 for all a, b ≥ 0. For any f ∈ S(R) we define the

Fourier transform f̂(y), y ∈ R by

f̂(y) =

∫ ∞

−∞

f(x)e−2πixydx

Exercise 1.11. Let S(R) be the space of functions as in section 3 of
the Lecture 1 and F : .S(R) → S(R) be the Fourier transform. Then

x̂f =
i

2π

∂

∂y
(f̂),

∂̂

∂x
f = 2πiy(f̂)

for any f ∈ S(R)


