
There two topics I want to discuss- the construction of root systems
and the proof of the Serre’s theorem.

The construction of root systems.As you know [Theorem 6.6]
any finite-dimensional semi-simple Lie algebra g defines a [reduced]
root system which is irreducible if the Lie algebra is simple. You have
checked already that root systems corresponding to simple Lie algebras
of types An, Bn, Cn, Dn are root systems of types An, Bn, Cn, Dn. It
is also clear that for a root system R with the Dynkin diagram D
[remember that vertices of D ↔ simple roots] and any subset D′ of
the set D of simple roots there is a roots system R′ with the Dynkin
diagram D′ [here we consider D′ as a subset of D]. So the construction
of a root system of the type E8 gives as immediately constructions of
a root systems of the types E6 and E7.

There are different ways to construct a root system of the type E8.
One can take the corresponding Cartan matrix A and check that it is
positive definite. If so A defines a positive definite quadratic form on
E = R

8. Since the entries of A are integers the reflections si, 1 ≤ t ≤ 8
preserve the lattice Λ [a span of a basis over Z] of linear combinations
of the standard basis ∆ = {e1, . . . , e8} with integral coefficients. It
is easy to see now [please check] the that the subgroup W ⊂ Aut(E)
generated by reflection si, 1 ≤ t ≤ 8 is finite and the set R := W∆ ⊂ E
is a root system of the type E8.

On the other hand one can construct explicitly a root system R ⊂ R
8

of the type E8 where we consider the standard Euclidean structure on
R

8. This is done in Problem 1g) of the homework 10.

The Serre’s theorem. We have seen [Theorem 6.6] that any finite-
dimensional semi-simple Lie algebra g defines a [reduced] root system.
Let ∆ = {αi}, i ∈ I be the corresponding system of simple roots and
A = (aij), aij =< α∨

i , αj > be the corresponding Cartan matrix. Then
there exist elements ei, hi, fi ∈ g such that

[hi, hj] = 0, [hi, ej ] = aijej, [hi, fj] = −aijfj and [ei, fj] = δijhi.

Moreover it is easy to see [Theorem 7.52] that

ad1−aij

ei
(ej) = ad

1−aij

fi
(fj) = 0

Let now A = (aij) be Cartan matrix of a reduced root system. We

denote by LA the Lie algebra with generators xi, h̃i, yi, i ∈ I and rela-
tions

{S(1)} [h̃i, h̃j ] = 0
1
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{S(2)} [xi, yi] = hi and [xi, yj] = 0 if i 6= j

{S(3)} [h̃i, xj ] = aijxj , [h̃i, yj] = −aijyj

{S+
ij} ad

1−aij
xi xj = 0 and

{S−
ij} ad

1−aij
yi yj = 0

Let g be a finite-dimensional semi-simple Lie algebra with A as the
Cartan matrix. As follows from Theorem 7.52 there is a surjective
Lie algebra homomorphism f : LA → g such that f(xi) = ei, f(h̃i) =
hi, f(yi) = fi. Serre proved that f : LA → g is an isomorphism.
Moreover he proved the following result.

Theorem 0.1. For any Cartan matrix A of a reduced root system the

Lie algebra LA is a finite-dimensional semi-simple Lie algebra with the

root system corresponding to A.

This is an extremely important result leading to the theory of Kac-
Moody algebras which is central for many areas of mathematics.

I posted the proof of the Theorem 1 which is presented in the book of
Humphreys “Introduction to Lie algebras and representation theory”.
The proof consists in a large number of simple steps. I think that it
could be helpful to outline the general idea of the proof. To simplify
notations I’ll write L instead of LA and hi instead of h̃i.

Step 1.

Let L0 be the Lie algebra with generators xi, hi, yi, i ∈ I and relations

S(1) [hi, hj] = 0

S(2) [xi, yi] = hi and [xi, yj] = 0 if i 6= j

S(3) [hi, xj] = aijxj , [hi, yj] = −aijyj

We denote by X, Y ⊂ L0 the Lie algebras generated by xi and yi and
denote by H ⊂ L0 the span of hi.

Claim 1.1 a) L0 = X ⊕H ⊕Y, [H, X] ⊂ X, [H, Y ] ⊂ Y, [X, Y ] ⊂ H .

b) The elements xi, hi, yi ∈ L0, i ∈ I are linearly independent.

The proof of a) is not difficult and could be left as an exercise. The
proof of b) is based on a construction of an explicit representation
ρ : L0 → End(V ) of the Lie algebra L0.

To construct such a representation we observe [guess] that the re-
lations S(1), S(2), S(3) do not contain any relations between xi of be-
tween yi. So [we could expect that] X is the free Lie algebra on the
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vector space M+ = ⊕i∈Ikxi and Y is the free Lie algebra on the vector
space M− = ⊕i∈Ikyi. As follows from the PBV theorem and the part
a) the natural map [ the product] U(Y ) ⊗ U(H) ⊗ U(X) → U(L0)
is a bijection [see the Problem 4 b) in homework 10] and the compo-
sition U(Y ) → U(L0) → V := U(L0)/U(L0)(H ⊕ X) is also bijec-
tion. Since [we expect that] Y is the free Lie algebra on the vector
space M− = ⊕i∈Ikyi we can identify V = U(Y ) with T (M−). So
V = ⊕n≥0Vn := T n(M−) where Vn has a basis consisting of vi1,...,vn

=

vi1 ⊗ · · · ⊗ vin [V0 = k]. For any l ∈ L0 we write l̂ ∈ End(V ) instead of
ρ(l). By the construction

ŷjvi1,...,vn
= vj,i1,...,vn

, x̂i1 = ĥi1 = 0

These equalities and the relations S(1), S(2), S(3) uniquely define uniquely

the operators x̂i, ĥi ∈ End(V ).

Now we can turn the table around, define V as the space with
a basis vi1,...,vn

, n ≥ 0 and write expected formulas from operators

x̂i, ĥi, ŷi ∈ End(V ). One checks the relations S(1), S(2), S(3) [it is
easy] and obtains a representations ρ : L0 → End(V ).

For any λ ∈ H∨ we define (L0)λ := {l ∈ L0|ad(h)l = λ(h)l, ∀h ∈ H}.
We define Φ := {λ ∈ H∨|(L0)λ 6= {0}}.

Claim 1.2 a) L0 = ⊕λ∈Φ(L0)λ.

b) (L0)0 = H .

c) If λ ∈ Φ − {0} then λ =
∑

i∈I kiαi, ki ∈ Z and either all ki are
non-negative or all ki are non-positive.

d) dim((L0)±αi
) = 1 and dim((L0)kαi

) = 0 if |k| > 1.

The proof of Claim 1.2 is easy.

Claim 1.3 The elements [ykS
+
ij ] = [xk, S

−
ij ] = 0, ∀i, j, k ∈ I.

The proof of Claim 1.3 is also not difficult-[it follows from Problem
3 c) in the homework. [The non-trivial part was to have a right guess].

Step 2.

Let I ⊂ X, J ⊂ Y be ideals in X and Y generated by the relations
S+

ij and S−
ij correspondingly and K ⊂ L0 be the ideal generated by the

relations S+
ij and S−

ij .

Claim 2.1 a) K = I ⊕ J .

b) Elements xi, hi, yi ∈ L, i ∈ I are linearly independent.
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The proof of Claim 2.1 is not difficult to derive from Claim 1.3.

Claim 2.2 The operators adxi
, adyi

∈ End(L), i ∈ I are locally
nilpotent [ see the definition in the homework 10].

The proof of Claim 2.2 follows immediately from the problem 3 a)
in the homework 10.

Now comes the central construction. Since adxi
, adyi

∈ End(L), i ∈ I
are locally nilpotent are locally nilpotent we can define

τi := exp(xi) exp(−yi) exp(xi) ∈ Aut(L)

Claim 2.2 τi((L0)λ) = (L0)si(λ).

The proof of Claim 2.3 follows immediately from the problem 3 e)
in the homework 10.

Claim 2.3 If λ 6= 0 and (L0)λ 6= {0} then λ ∈ R and dim((L0)λ) = 1.

The proof of Claim 2.3 follows immediately from Claim 1.2 c) and
d) and the problem 1d) in the homework 10.


