
Definition 0.1. a) Let V be a finite-dimensional vector space and
W ⊂ V a linear subspace. We denote by P(W ) →֒ P(V ) the natural
inclusion.

b) If T ⊂ W is an affine subspace we define P(T ) := P(T ′) ⊂ P(V )
where T ′ ⊂ V is the linear subspace parallel to T .

c) Let W ⊂ V be a subspace of codimension 1 and v ∈ V − W .
We denote by κv : W → P(V ) − P(W ) the map which associates with
w ∈ W the line through v + w.

d) For any affine subspace T ⊂ W we denote by T̃ the closure of
κv(T ) in P(V ).

Problem 0.2. a) Let V, W, v be as in Definition 1 c) and T ⊂ W be
an affine subspace. Then T̃ ∩ P(W ) = P(T ).

b) The map κv : W → P(V ) − P(W ) defines an isomorphism of
algebraic varieties.

c) For any d < dim(W ) define the structure of an algebraic variety on
the set Graf(W, d) of d-dimensional affine subspaces of W and moreover
κv defines an isomorphism of Graf (W, d) with an open subset of the
Grassmanian of d + 1–dimensional linear subspaces of V .

d) Let R ⊂ P(V ) be a finite set and f : W → k2 a linear surjection
map. Then the set ΛR,f of affine lines L ⊂ k2 such that P(f−1(L))∩R =
∅ is a non-zero open subset of Graf (k

2, 1).

e) Let ρ : Gm → GL(V ) be a representation. Then for

i) Any x ∈ P(V ) the map f : Gm → P(V ), a → ax can be extended
to a morphism f̄ : P1 → P(V ).

ii) The points f(0), f(∞) in P(V ) are Gm-invariant.

iii) If f(0) = f(∞) then x is a Gm-invariant point.

f) Let T be a torus, ρ : T → GL(V ) be a representation , ei, 1 ≤
i ≤ d a basis of V such that ρ(t)ei = χi(t)ei, χi ∈ X⋆(T ), t ∈ T and
λ ∈ X⋆(T ) such that < χi, λ > 6= 0 for all i, 1 ≤ i ≤ d. Then any point
x ∈ P(V ) such that ρ ◦ λ(a)x = x for all a ∈ k⋆ is ρ(T )-invariant.

[A hint]. Let v ∈ V be a non-zero vector on the line x and V ′ ⊂ V
be the subspace spanned by ρ(t)v, t ∈ k⋆. Choose a basis ei, 1 ≤ i ≤ d
of V ′ such that

ρ(t)ei = tniei, t ∈ k⋆

where n1 ≤ n2 ≤ ... ≤ nd.
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Let V be a finite-dimensional vector space W ⊂ V a subspace of
codimension 1, X ⊂ P(V ) an irreducible closed subset of dimension d.

Proposition 0.3. dim(X ∩ P(W )) ≥ d − 1

Proof. I’ll prove the result only in the case when d = 1 and d = 2
since we will need only these cases. Consider first the case d = 1. In
this case we want to show that X ∩ P(W ) 6= ∅. But if X ∩ P(W ) = ∅
then X ⊂ W . Since X is complete we see that X is a point.

Consider the case d = 2 and assume that dim(X∩P(W )) < d−1 = 1.
In other words assume that the set R := X ∩ P(W ) is finite. Since
dim(U) = 2 the can find two linear functions λ, ν on W such that the
restrictions of λ, ν on U are algebraically independent. Let f : U → k2

be the morphism given by u → (λ(u), ν(u)). Then the image Y ⊂ k2 of
f contains a non-zero open subset U ′ of k2. As follows from Problem 2
c) there exists a line L ⊂ k2 such that L∩U ′ 6= ∅ and P(f−1(L))∩R = ∅.
Let Y be the closure of the intersection X ∩ f−1(L). Since dim(Y ) > 0
we see that Y ∩ P(W ) 6= ∅. On the other hand by the construction we
have Y ∩R = ∅. But this contradicts the assumption that X∩P(W ) =
R.�

Theorem 0.4. Let ρ : T → GL(V ) be a representation of a torus
T, X ⊂ P(V ) a closed T -invariant irreducible subset and Y ⊂ X the
subset of Gm-invariant points. Then

a) if dim(X) > 0 then |Y | ≥ 2.

b) if dim(X) > 1 then |Y | ≥ 3.

As follows from Problem 3 it is sufficient to prove the theorem in the
case T = Gm.

Proof of a). If Y = X then there is nothing to proof. On the
other hand if Y 6= X choose any x ∈ X which is not Gm-invariant. By
Problem 2 d) the map f : Gm → P(V ), a → λ(a)x can be extended to
a morphism f̄ : P1 → P(V ) and f(0), f(∞) are distinct points of Y.�

Proof of b). It is clear that we can assume that the line Lx ⊂ V, x ∈
X span V . Choose a basis ei, 1 ≤ i ≤ d of V such that

λ(t)ei = tniei, t ∈ k⋆

where n1 ≤ n2 ≤ ... ≤ nd and choose a point x ∈ X such that that for
v ∈ Lx − {0} we have v =

∑d

i=1
ciei, ci ∈ k, c1 6= 0. Let f̄ : P1 → P(V )

be the morphism such that f̄(t) = λ(a)x for a ∈ Gm ⊂ P1 and y0 :=
f̄(0) ∈ Y . To prove the result we have to construct two other points
in Y .
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Let W ⊂ V be the span of ei, 2 ≤ i ≤ d. Consider Z := Y ∩ P(W ).
As follows from Proposition 3 we have dim(Z) ≥ 1. It is clear that Z is
Gm-invariant. Since Gm is connected every irreducible component of Z
is also Gm-invariant. It follows now from the part a) that |Z ∩ Y | > 1.
Since (?) y0 /∈ P(W ) we see that |Y | ≥ 3.�

Problem 0.5. Let G be a connected algebraic group, T ⊂ G a maximal
torus, P ⊂ G a proper parabolic subgroup and G/P T ⊂ G/P the
subset of T -fixed points. Then

a) |G/P T | > 1 and |G/P T | > 2 if dim(G/P ) > 1.

b) WG = {e} iff G is solvable.

c) If W = Z/2Z iff dim(B) = 1.

Lemma 0.6. Let G be a connected algebraic group, and T ⊂ G be
maximal torus G. Then is generated by Borel subgroups containing T .

Proof. We prove the Lemma by induction in dim(G). Let P be the
subgroup of G generated by Borel subgroups contains T . Then (?) P
is a closed subgroup of G containing a Borel subgroup. Therefore P is
a parabolic subgroup. If P 6= G then there exists x ∈ NG(T ) such that
xPx−1 6= P [ see Problem 5 a)]. By inductive assumptions xPx−1 is
generated by Borel subgroups containing T . So xPx−1 ⊂ P.�

Problem 0.7. a) Let G be a connected algebraic group, Then there ex-
ists the maximal normal invariant solvable connected subgroup R(G) ⊂
G and it is closed.

b)There exists the maximal connected normal invariant unipotent
connected subgroup Ru(G) ⊂ G and it is closed.

c) R(G) is equal to the connected component of the intersection of
all the Borel subgroups of G.

Definition 0.8. Let G be a connected algebraic group,

a) The subgroup R(G) ⊂ G is called the radical of G.

b) The subgroup Ru(G) ⊂ G is called the unipotent radical of G.

c) G is reductive if Ru(G) = (e).

d) G is semisimple if R(G) = (e).

e) The rank r(G) of G is the dimension of a maximal torus of G.

f) The semisimple rank sr(G) of G is the dimension of a maximal
torus of G/R(G).
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Problem 0.9. a) The groups GLn, n > 0 are reductive.

b) The groups SLn, n > 1, Sp(2n)n > 0 and SO(n), n > 2 are
semisimple.

c) r(SLn) = n − 1, r(Sp(2n)) = n, r(SO(n)) = [n/2].

d) Construct an isomorphism PGL2 → SO(3) where PGL2 :=
GL2/Z(GL2) where Z(GL2) = Gm is the center of the group GL2.

e) If we write elements of the group GL2 as matrices κ =

(

a11(κ) a12(κ)
a21(κ) a22(κ)

)

∈

GL(2, k) we see that the functions

φi,j;i′,j′(κ) := aij(κ)ai′j′(κ)/det(κ)

are regular functions of the group PGL2. Prove that the ring k[PGL2]
is generated by these functions.

Claim 0.10. If Let G is a connected algebraic semisimple group of
semisimple rank 1 then dim(B) = 1 and |BT | = 2.

Proof of Claim. It is sufficient to prove the result for the group
G/R(G). So we can assume that G is semisimple. Let T be a maximal
torus of G and B be the variety of Borel subgroups of G. Since r(G) = 1
we have (?) dim(T ) = 1. So T is isomorphic to Gm and therefore
|WG| ≤ |Aut(Gm)| = 2 and it follows from Problem 5 that dim(B) = 1
and |BT | = 2.�

Fix a point y ∈ B − BT and consider the morphism

f : Gm → B −BT , f(a) := ay, a ∈ k⋆

As follows from Problem 2 the morphism f extends to a morphism
f̄ : P1 → B. We write x0 := f̄(0), x∞ := f̄(∞) and denote by

f0 : P
1 − {∞} → B − x∞, f∞ : P

1 − {0} → B − x0

the restrictions of f̄ on P1 − {0} and P1 − {∞}.

Problem 0.11. Let G be a connected algebraic semisimple group of
semisimple rank 1, Y := B − BT . Then

a) The action of the torus T = Gm on Y is transitive.

b) Fix y ∈ Y and define f : Gm → Y by f(a) = ay. Show that
existence of r > 0 such that f ⋆(k[Y ]) = k[a±r] ( in other words f ⋆(k[Y ])
is the span of characters χnr : a → anr, n ∈ Z.

[A hint] Use Lemma 4.3.

c) The field k(B) is isomorphic to the field k(t) of rational functions.
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d) Let Autk(k(t) be the group of automorphisms of the field k(t)

which act trivially on k. For any 2× 2-matrix κ =

(

a b
c d

)

∈ GL(2, k)

we define

ακ ∈ Autk(k(t), ακ(r(t) := r(
at + b

ct + d
)

Show that the map τ̃ : GL(2, k) → Aut(k(t), κ → ακ which induces a
homomorphism τ : PGL2 → Aut(k(t).

e) Prove the surjectivity of τ : PGL2 → Aut(k(t)).

f) Let Ṽ ⊂ (P1)3 be the subset of distinct triples. For any point
v0 =∈ Ṽ the map PGL2 → Ṽ , κ → κ(v0) defines an isomorphism of of
affine algebraic varieties.

We see that the action of G on B induces a group homomorphism
f : G → PGL2(k).

Theorem 0.12. The group homomorphism f : G → PGL2(k) is alge-
braic.

Proof. As follows from Problem 9 e) the functions

φi,j;i′,j′(κ) := aijai′j′/det(κ), κ =

(

a11 a12

a21 a22

)

∈ GL2(k)

generate the ring k[PGL2]. So it is sufficient to show that functions

f ⋆(φi,j;i′,j′) : G → k, f ⋆(φi,j;i′,j′)(g) := φi,j;i′,j′(f(g))

are regular. Since f is a homeomorphism and G is connected it is
sufficient to show the existence of a non-empty open subset U ⊂ G
such that the restriction of f ⋆(φi,j;i′,j′) on U are regular.

We denote by (g, x) → gx the natural action of the group G on B.
Let T be a maximal torus of G. As follows from Problem 11 there
exists a regular function t on B − BT such that

k(B) = k(t), t(ax) = art(x), a ∈ k⋆, x ∈ B − BT

t(gx) =
a11t + a12

a21t + a22

, f(g) =

(

a11 a12

a21 a22

)

We denote by V ⊂ B − BT 3
the subset of distinct triples, choose a

point v0 = (x1, x2, x3) ∈ V and define

U := {g ∈ G|gxi ∈ B − BT , i = 1, 2, 3

U ⊂ G is an open subset containing {e} and the map τ : U → V, g →
(gx1, gx2, gx3) is regular.
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Consider

U ′ := {γ ∈ PGL2|γxi ∈ B − BT , i = 1, 2, 3

As follows from Problem 11 f) the map θ : U ′ → V, κ → κ(v0) defines
an isomorphism of of affine algebraic varieties. But it is clear that
fU = θ−1 ◦ τ.square


