Definition 0.1. a) Let V be a finite-dimensional vector space and
W C V a linear subspace. We denote by P(W) — P(V) the natural
inclusion.

b) If T C W is an affine subspace we define P(T") := P(T") C P(V)
where 7" C V is the linear subspace parallel to T'.

c) Let W C V be a subspace of codimension 1 and v € V — W.
We denote by &, : W — P(V) — P(W) the map which associates with
w € W the line through v + w.

d) For any affine subspace T C W we denote by T the closure of
Ko(T) in P(V).

Problem 0.2. a) Let V,W,v be as in Definition 1 ¢) and 7" C W be
an affine subspace. Then TNP(W) = P(T).

b) The map k, : W — P(V) — P(W) defines an isomorphism of
algebraic varieties.

¢) For any d < dim(W) define the structure of an algebraic variety on
the set Grop (W, d) of d-dimensional affine subspaces of W and moreover

K, defines an isomorphism of Gr,s(W,d) with an open subset of the
Grassmanian of d + 1-dimensional linear subspaces of V.

d) Let R C P(V) be a finite set and f : W — k? a linear surjection
map. Then the set Ag s of affine lines L C k2 such that P(f~'(L))NR =
() is a non-zero open subset of Gr,;(k?,1).

e) Let p: G,, — GL(V) be a representation. Then for

i) Any z € P(V) the map f : G,, — P(V),a — ax can be extended
to a morphism f : P! — P(V).

ii) The points f(0), f(c0) in P(V') are G,,-invariant.

iii) If f(0) = f(o0) then z is a G,,-invariant point.

f) Let T be a torus, p : T — GL(V) be a representation , e;,1 <
i < d a basis of V such that p(t)e; = xi(t)es, xs € X*(T),t € T and
A € X, (T) such that < y;, A ># 0 for all 7,1 < ¢ < d. Then any point
x € P(V) such that po A(a)z = z for all a € k* is p(T)-invariant.

[A hint]. Let v € V' be a non-zero vector on the line z and V' C V
be the subspace spanned by p(t)v,t € k*. Choose a basis e;,1 < i < d
of V' such that

p(t)e, = t"e;, t € k*

where nqy < ny < ... < ny.



Let V be a finite-dimensional vector space W C V a subspace of
codimension 1, X C P(V) an irreducible closed subset of dimension d.

Proposition 0.3. dim(X NP(W)) >d—1

Proof. I'll prove the result only in the case when d =1 and d = 2
since we will need only these cases. Consider first the case d = 1. In

this case we want to show that X NP(W) # 0. But if X NP(W) =0
then X C W. Since X is complete we see that X is a point.

Consider the case d = 2 and assume that dim(XNP(W)) < d—1 = 1.
In other words assume that the set R := X N P(WW) is finite. Since
dim(U) = 2 the can find two linear functions A, v on W such that the
restrictions of A\, v on U are algebraically independent. Let f : U — k?
be the morphism given by v — (A(u), v(u)). Then the image Y C k? of
f contains a non-zero open subset U’ of k2. As follows from Problem 2
c) there exists a line L C k% such that LNU’ # @ and P(f~1(L))NR = 0.
Let Y be the closure of the intersection X N f~!(L). Since dim(Y) > 0
we see that Y NP(IW) # (). On the other hand by the construction we
have YN R = (). But this contradicts the assumption that X NP(W) =
R.O

Theorem 0.4. Let p : T — GL(V) be a representation of a torus
T,X C P(V) a closed T-invariant irreducible subset and Y C X the
subset of G,,-invariant points. Then

a) if dim(X) > 0 then |Y| > 2.
b) if dim(X) > 1 then |Y| > 3.

As follows from Problem 3 it is sufficient to prove the theorem in the
case T = G,,.

Proof of a). If Y = X then there is nothing to proof. On the
other hand if Y # X choose any x € X which is not G,,-invariant. By
Problem 2 d) the map f : G,, — P(V),a — A(a)x can be extended to
a morphism f : P — P(V) and f(0), f(occ) are distinct points of Y.0J

Proof of b). It is clear that we can assume that the line L, C V,z €
X span V. Choose a basis e;,1 <7 < d of V such that

)\(f)(?l = t”iei,t c k*

where nq; < ny < ... < ny and choose a point x € X such_that that for
v € Ly, — {0} we have v = 3% cies,¢; € kyeq #0. Let f: PL— P(V)

be the morphism such that f(t) = A(a)z for a € G, C P! and y, :=
f(0) € Y. To prove the result we have to construct two other points

inY.
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Let W C V be the span of ¢;,2 < ¢ < d. Consider Z :=Y NP(W).
As follows from Proposition 3 we have dim(Z) > 1. It is clear that Z is
Gy,-invariant. Since G,, is connected every irreducible component of Z

is also Gy,-invariant. It follows now from the part a) that [ZNY| > 1.
Since (?) yo ¢ P(W) we see that |Y| > 3.0

Problem 0.5. Let GG be a connected algebraic group, T' C G a maximal
torus, P C G a proper parabolic subgroup and G/PT C G/P the
subset of T-fixed points. Then

a) |G/PT| > 1 and |G/PT| > 2 if dim(G/P) > 1.
b) We = {e} iff G is solvable.
c) f W =7Z/27Z iff dim(B) = 1.

Lemma 0.6. Let G be a connected algebraic group, and T C G be
maximal torus G. Then is generated by Borel subgroups containing T .

Proof. We prove the Lemma by induction in dim(G). Let P be the
subgroup of G generated by Borel subgroups contains 7. Then (?) P
is a closed subgroup of GG containing a Borel subgroup. Therefore P is

a parabolic subgroup. If P # G then there exists x € Ng(T') such that

xPx~! # P [ see Problem 5 a)]. By inductive assumptions zPz~! is

generated by Borel subgroups containing 7. So zPx~! c P.0J

Problem 0.7. a) Let G be a connected algebraic group, Then there ex-
ists the maximal normal invariant solvable connected subgroup R(G) C
G and it is closed.

b)There exists the maximal connected normal invariant unipotent
connected subgroup R,(G) C G and it is closed.

¢) R(G) is equal to the connected component of the intersection of
all the Borel subgroups of G.
Definition 0.8. Let G be a connected algebraic group,

a) The subgroup R(G) C G is called the radical of G.

b) The subgroup R,(G) C G is called the unipotent radical of G.

¢) G is reductive if R,(G) = (e).

d) G is semisimple if R(G) = (e).

e) The rank r(G) of G is the dimension of a maximal torus of G.

f) The semisimple rank sr(G) of G is the dimension of a maximal
torus of G/R(G).
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Problem 0.9. a) The groups GL,,n > 0 are reductive.

b) The groups SL,,n > 1,Sp(2n)n > 0 and SO(n),n > 2 are
semisimple.

c) r(SL,) =n—1,r(Sp(2n)) = n,r(SO(n)) = [n/2].

d) Construct an isomorphism PGLy — SO(3) where PGLy :=
GLy/Z(GLs) where Z(GLy) = Gy, is the center of the group GLs.

a11(k) 012(*?)) c

e) If we write elements of the group G Ly as matrices Kk =
) 8 p 2 (&21(/{) GQQ(I{)

GL(2, k) we see that the functions

i, (k) = aij(r)ay (k) /det(k)
are regular functions of the group PG L. Prove that the ring k[PG L]
is generated by these functions.

Claim 0.10. If Let G is a connected algebraic semisimple group of
semisimple rank 1 then dim(B) =1 and |BT| = 2.

Proof of Claim. It is sufficient to prove the result for the group
G/R(G). So we can assume that G is semisimple. Let 7" be a maximal
torus of G and B be the variety of Borel subgroups of G. Since r(G) = 1
we have (7) dim(T) = 1. So T is isomorphic to G, and therefore
|[We| < |Aut(G,,)| = 2 and it follows from Problem 5 that dim(B) = 1
and |BT| = 2.0

Fix a point y € B — BT and consider the morphism
f:G,, - B—-B" f(a) :=ay,ack*

As follows from Problem 2 the morphism f extends to a morphism

f: P — B. We write zg := f(0), 74 := f(o0) and denote by
fO:]P)l_{OO}_)B_xooafoo:]P)l_{o}_)B_l’O
the restrictions of f on P! — {0} and P* — {oc}.

Problem 0.11. Let G be a connected algebraic semisimple group of
semisimple rank 1,Y := B — BT. Then
a) The action of the torus T'= G,, on Y is transitive.

b) Fix y € Y and define f : G,, — Y by f(a) = ay. Show that
existence of r > 0 such that f*(k[Y]) = k[a®r] (in other words f*(k[Y])
is the span of characters x,, : a — a"",n € Z.

[A hint] Use Lemma 4.3.
c¢) The field k(B) is isomorphic to the field k(t) of rational functions.
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d) Let Autg(k(t) be the group of automorphisms of the field k()

b) € GL(2,k)

which act trivially on k. For any 2 x 2-matrix x = <CCL d

we define
at+b
ct + d)
Show that the map 7 : GL(2,k) — Aut(k(t),k — «, which induces a
homomorphism 7 : PGLy — Aut(k(t).
e) Prove the surjectivity of 7 : PGLy — Aut(k(t)).

f) Let V C (PY)? be the subset of distinct triples. For any point
vg =€ V the map PGLy — V,k — K(vg) defines an isomorphism of of
affine algebraic varieties.

. € Auty(k(t), a(r(t) == r(

We see that the action of G on B induces a group homomorphism
f:G— PGLsy(k).

Theorem 0.12. The group homomorphism [ : G — PGLy(k) is alge-
braic.

Proof. As follows from Problem 9 e) the functions
air a2
i qeil = aj;ap i /det(k), k = € GLy(k
Gusg ) = agasy )= (101 012) € GLa(h
generate the ring k[PGLs]. So it is sufficient to show that functions
f(@igirgr) = G =k, [ (igiir i )(9) = bigiirir(f(9))
are regular. Since f is a homeomorphism and G is connected it is

sufficient to show the existence of a non-empty open subset U C G
such that the restriction of f*(¢; ;. ) on U are regular.

We denote by (g,z) — gx the natural action of the group G on B.
Let T' be a maximal torus of G. As follows from Problem 11 there
exists a regular function ¢ on B — B” such that

k(B) = k(t),t(azx) = a"t(x),a € k*,x € B — BT
allt + a2 a1 Q12
t = — =
() = 2L i) (10 02)

We denote by V' C B — BT® the subset of distinct triples, choose a
point vy = (z1, T2, x3) € V and define

U:={ge€Glgr;eB-B"i=1,23

U C G is an open subset containing {e} and the map 7: U — V,g —
(g1, gxa, gx3) is regular.



Consider
U':={y e PGLy|yz; € B—B",i=1,2,3

As follows from Problem 11 f) the map 6 : U' — V, kK — k(vg) defines
an isomorphism of of affine algebraic varieties. But it is clear that
fr =0t oT.square



