
Definition 0.1. a) A torus is a connected diagonalizable group [see
Definition 4.4].

b) For any two tori T , T ′ we denote by Hom(T , T ′) the abelian group
of algebraic homomorphisms from T to T ′.

c) For any torus T we define

X⋆(T ) := Hom(Gm, T ), X⋆(T ) := Hom(T , Gm)

and denote by <, > the pairing

X⋆(T ) × X⋆(T ) → Hom(Gm, Gm), (χ, φ) → χ ◦ φ

Problem 0.2. a) The map

a : Z → Hom(Gm, Gm), a(n)(x) := xn, x ∈ k⋆

is a bijection. We will identify the group Hom(Gm, Gm) with Z.

b) For any torus T the groups X⋆(T ), X⋆(T ) are finitely generated
free abelian group and the pairing

<, >: X⋆(T ) × X⋆(T ) → Hom(Gm, Gm) = Z

is perfect [that is the induced homomorphism X⋆(T ) → Hom(X⋆(T ), Z)
is an isomorphism].

c) Any representation of ∈ T is a direct sum of characters [one-
dimensional representations].

d) Let S ⊂ T be a torus. There exists a nonempty open subset U in
S such that ZG(S) = ZG(s) for all s ∈ U . [A hint. Consider first the
case when G = GLn].

Lemma 0.3 (Rigidity of tori). .

Let T, T ′ be tori, X an irreducible algebraic variety and f : T ×X →
T ′ a morphism such that for any x ∈ X the map fx : T → T ′, fx(t) :=
f(t, x) is a group homomorphism. Then the homomorphism fx does
not depend on x ∈ X.

Proof. It is sufficient to show that for any χ ∈ X(T ′) the homo-
morphism χ ◦ fx : T → Gm does not depend on x ∈ X. So we can
assume that T ′ = Gm and consider f as a regular function on X × T .
As follows from Lemma 4.2 we can write f as a finite sum

f(t, x) =
∑

χ∈X(T )

χ(t)fχ(x), fχ ∈ k[X]

Since fx is a character of T it follows from Problem 4.5 that for any
x ∈ X there exists χx ∈ X(T ) such that fχ(x) = 0 if χ 6= χx and
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fχx
(x) = 1. For any χ ∈ X(T ) we define Xχ := {x ∈ X|χx = χ}. It is

clear (?) that Xχ ⊂ X is closed and also open. Since X is irreducible
we see that either Xχ = X or X is empty. Since X = ∪χ∈X(T )Xχ we
see that f(t, x) ≡ χ(t) for some χ ∈ X(T ).�

Definition 0.4. Let G be a connected algebraic group. A Cartan
subgroup C of G is a group of the form C = Z0

G(T ) where T is a
maximal torus of G.

Remark. As follows from Corollary 6.17 all Cartan subgroups of G
are conjugate.

Lemma 0.5. Let G be a connected algebraic group and C = Z0
G(T ) a

Cartan subgroup of G. Then

a) C is nilpotent.

b) C = N0
G(C)

Proof of a). Let B be a Borel subgroup of C = N0
G(T ) where T is a

maximal torus of G. It follows from Theorem 6.14 that B is nilpotent.
But then by Lemma 5.19 C = B.�

Proof of b). As follows Corollary 6.17 T is the unique maximal
torus of C. Therefore the group from NG(C) normalizes T . and we
obtain the homomorphism f : NG(C) → Aut(T ). But it follows from
Lemma 3 that any homomorphism from a connected group to the group
of automorphism of a torus is trivial. So N0

G(C) ⊂ Z0
G(T ) = C.�

Proposition 0.6. Let G be a connected algebraic group and S ⊂ G be
a torus. Then

a) The centralizer ZG(S) is connected.

b) If B is a Borel subgroup of G containing S then B ∩ ZG(S) is a
Borel subgroup of ZG(S).

c) Any Borel subgroup of ZG(S) has a form B ∩ ZG(S) where B is
a Borel subgroup of G.

Proof of a).

Claim 0.7. For any x ∈ ZG(S) there exists a Borel subgroup containing
x and S.

Proof of Claim. Let B := G/B, X := {gB|xgB = gB} ⊂ B. Then
(?) X is closed in B and therefore complete. So (?) there is a point
x = gB fixed by S. But then gBg−1 contains both x and S.�

Now the part a) follows from Corollary 6.16.
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Proof of b). Let B be a Borel subgroup of G containing S. Then
B∩ZG(S) is a connected solvable subgroup of a connected group ZG(S).
To show that B∩ZG(S) is a Borel subgroup of ZG(S) we have to show
that the quotient ZG(S)/B ∩ ZG(S) is complete. Since the action of
ZG(S) on B induces a bijection from ZG(S)/B ∩ ZG(S) to the orbit
Y := ZG(S)B ⊂ B it is sufficient (?) to show that the orbit Y ⊂ B is
equal to the closure Ȳ ⊂ B.

Claim 0.8. ȳSȳg−1 ⊂ SBu for any ȳ ∈ Ȳ .

Proof of Claim. For any y ∈ Y we have ySy−1 ⊂ B. By continuity
we have ȳSȳ−1 ⊂ B. Consider the morphism Ȳ × S → B/Bu sending
s to ysy−1Bu. Since Ȳ is irreducible it follows from Lemma 3 (?) that
ȳsȳ−1 ⊂ sBu for all s ∈ S, ȳ ∈ Ȳ .�

It is clear then that for any ȳ ∈ Ȳ ȳSȳ−1 ⊂ SBu is a maximal torus
on SBu and therefore there exists u ∈ Bu such that ȳSȳ−1 = uSu. So
ȳ ∈ ZG(S)B�

The part c) follows from the conjugacy of Borel subgroups in ZG(S)B.�

Theorem 0.9. Let G be a connected algebraic group. Then

a) The union of Cartan subgroups contains the dense open subset of
G.

b) Every element of G lies in a Borel subgroup.

c) Every semi-simple element of G lies in a maximal torus.

d) NG(B) = B for any Borel subgroup B of G.

Proof of a). Let T ⊂ G be a maximal torus, U ⊂ T an open subset
as in Problem 2.

Claim 0.10. For any t ∈ U, u ∈ Cu the only conjugate of C containing
tu is C.

Proof of Claim. Since t× u is the Jordan decomposition of tu any
conjugate of C containing tu contains t. So it is sufficient to prove
Claim in the case u = e.

Assume that t ∈ xCx−1, x ∈ G. Then t lies in the unique maximal
torus xTx−1 of xCx−1. So we have x−1tx ∈ T . Since ZG(t) = ZG(T )
we have

C = Z0
G(T ) ⊂ Z0

G(x−1tx) = x−1Z0
G(t)x = x−1Z0

G(T )x = C�

Since the set UCu is open and dense in C the part a) follows from
Lemma 5.24.
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Proof of b). Since C is nilpotent [Lemma 5] and connected it lies
in some Borel subgroup B. Therefore the union

∪g∈GgBg−1 ⊃ ∪g∈GgCg−1

is dense in G. But them b) follows from Problem 5.23 c).

The part c) follows now from Corollary 6.16.�

Proof of d). We prove the equality NG(B) = B by the induction in
dim(G). Choose a maximal torus T of B. Since xTx−1 is a maximal
torus of B for any x ∈ NG(B) there exists b ∈ B such that xTx−1 =
bT b−1. So it is sufficient to prove that any x ∈ NG(B)∩NG(T ) belongs
to B.

Consider the group homomorphism φ : T → T, φ(t) := xtx−1t−1. We
consider separately the case when φ is onto and the case when φ is not
surjective.

a) Assume that φ is not surjective. Then dim(Ker(φ)) > 0. There-
fore S := Ker0(φ) is a non-trivial subtorus in G and x ∈ ZG(S). If
G 6= ZG(S) we can by Proposition (?) apply the inductive assumption
to B∩ZG(S) ⊂ ZG(S). On the other hand it G = ZG(S) we can apply
the inductive assumption to B/S ⊂ G/S.

b) Assume that φ is surjective. Let ρ : G → GL(V ) be a representa-
tion and L ⊂ V a line such that NG(B) = StG(L). Since BL = L and
the group Bu doe snot have non-trivial unipotent characters we have
Bul = l for all l ∈ L. We also have t′l = l for any t′ ∈ T . To see this
we write t′ = φ(t) = xtx−1t−1 and observe that both t and x preserve
L. So Bl = l for all l ∈ L. Therefore the map f : G → V, g → gl
factorizes through the map f̄ : G/B → V . Since G/B is complete the
maps f̄ and f are constant. So gl = l for all g ∈ G and therefore
NG(B) = G.�

Problem 0.11. a) Let G be a connected algebraic group. Then NG(P ) =
P for any parabolic subgroup P of G.

b) For any g ∈ GLn the centralizer ZGLn
(g) is connected.

c) For any semisimple s ∈ Sp(2n) the centralizer ZSp(2n)(s) is con-
nected.

d) Find a unipotent element u ∈ SL2 such that the centralizer
ZSL2

(u) is disconnected.

e) Find a semisimple s ∈ SO(3) such that the centralizer ZSO(3)(s)
is disconnected.
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Definition 0.12. Often one defines an object X of a category C in two
steps:

i) One introduces some set A of of choices and for any a ∈ A defines
an object Xa ∈ Ob(C) whose construction depends on a choice of a ∈ A.

ii) For any pair a, a′ ∈ A one defines an isomorphism αa,a′ : Xa′

→
Xa in such a way that for any triple a, a′, a′′ ∈ A one has the equality

αa,a′ ◦ αa′,a′′ = αa,a′′

Problem 0.13. a) Let X be a smooth n-dimensional manifold, x ∈
X, C be the category of R-vector spaces and A be the set of charts
a : U →֒ Rn, a(0) = x where U is an open neighborhood of x in
X. For any a ∈ A we define Xa := Rn and for any pair a′ : U ′ →֒
Rn, a′′ : U ′′ →֒ Rn we define αa,a′ ∈ Aut(Rn) as the differential of

the map a ◦ a′−1 : V → Rn at 0 where V ⊂ Rn is a [sufficiently small]
neighborhood of 0. Show that the isomorphisms αa,a′ ∈ Aut(Rn) satisfy
the condition ii). The resulting object of C [a vector space] is denoted
TX(x) and is called the tangent space to X at x.

b) Let X be an irreducible algebraic variety, C be the category of
fields and A be the set of open non-empty open affine subsets Ua ⊂ X.
We define Aa as the ring of regular functions on Ua and ka as the field
of fractions of Aa. Construct isomorphisms αa,a′ : ka′ → ka for any
pair of non-empty open affine subsets Ua, Ua′ ⊂ X of and check the
condition ii). The resulting field is denoted k(X) and is called the field
of rational functions on X.

Definition 0.14. a) Let G be a connected affine algebraic group. We
define the Cartan torus T of G as follows. We take A to be the set of
Borel subgroups of G, for any B ∈ A we define TB := B/Bu. Given
a pair B, B′ ∈ A we choose g ∈ G such that B = gB′g−1 and define
αB,B′ : TB′

→ TB as the isomorphism induced by the isomorphism
Ag : B′ → B, Ag(b

′) := gb′g−1.

b) As in a) we take A to be the set of Borel subgroups of G, For any
B ∈ A we define an algebraic variety BB with a transitive action of G
by BB := G/B. Given a pair B, B′ ∈ A we choose g ∈ G such that
B = gB′g−1 and define an isomorphism

α̃B,B′ : G/B → G/B′, α̃B,B′(xB) := xB′g−1 = x′g−1B

We denote the corresponding algebraic homogeneous G-variety by B.
It is clear that points of B are Borel subgroups of G and the group G
acts on points of B [= Borel subgroups of G] by conjugation.
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c) Fix a Borel subgroup B of G, a maximal torus T ⊂ B. The
composition of the imbedding T →֒ B and the natural projection B →
B/Bu = T defines an isomorphism κT : T → T and therefore and
imbedding NG(T )/ZG(T ) → Aut(T). The image W B

G ⊂ Aut(T) is
called the Weyl group of G.

Problem 0.15. a) Show that the isomorphisms αB,B′ : T
B′

→ T
B and

α̃B,B′ : G/B → G/B′ do not depend on a choice of g ∈ G such that
B = gB′g−1 and

αB,B′ ◦ αB′,B′′ = αB,B′′ , α̃B,B′ ◦ α̃B′,B′′ = α̃B,B′′

b) Show that the subgroup W B
G ⊂ Aut(T) does not depend on a

choice of a Borel subgroup B. We will denote this group by WG.

c) For any pair B, B′ ∈ B we choose maximal tori T ⊂ B, T ′ ⊂
B′ and choose g ∈ G such that B = gB′g−1, T = gT ′g−1. Then
automorphisms

wB′,B ∈ WG, wB′,B := κT ◦ Ag ◦ κ−1
T ′

does not depend on a choice of tori T, T ′ and a choice of g.

d) The map B × B → WG, (B, B′) → wB′,B defines a bijection be-
tween G-orbits on B × B and the group WG.

e) Show that WGLn
= Sn where Sn is the symmetric group

f) Describe the group by WG for G = Sp(2n) and G = SO(n).

[A hint]. In the case G = SO(n) consider separately the cases of
even and odd n.

g) For any w ∈ Sn = WGLn
we denote by l(w) the number of pairs

1 ≤ i < j ≤ n such that w(i) > w(j). We fix a Borel subgroup B of
GLn and define

Xw := {B′ ∈ B|wB′,B = w}

Then l(σ) = dim(Xw).

h) Fix a maximal tori T of G. The group NG(T ) acts naturally on
the subset BT ⊂ B of T -fixed points. Show that this action is simply
transitive.


