Definition 0.1. a) A *torus* is a connected diagonalizable group [see Definition 4.4].

- b) For any two tori $\underline{T}, \underline{T}'$ we denote by $Hom(\underline{T}, \underline{T}')$ the abelian group of algebraic homomorphisms from T to T'.
 - c) For any torus \underline{T} we define

$$X_{\star}(\underline{T}) := Hom(\mathbb{G}_m, \underline{T}), X^{\star}(\underline{T}) := Hom(\underline{T}, \mathbb{G}_m)$$

and denote by <, > the pairing

$$X^{\star}(T) \times X_{\star}(T) \to Hom(\mathbb{G}_m, \mathbb{G}_m), (\chi, \phi) \to \chi \circ \phi$$

Problem 0.2. a) The map

$$a: \mathbb{Z} \to Hom(\mathbb{G}_m, \mathbb{G}_m), a(n)(x) := x^n, x \in k^*$$

is a bijection. We will identify the group $Hom(\mathbb{G}_m,\mathbb{G}_m)$ with \mathbb{Z} .

b) For any torus \underline{T} the groups $X_{\star}(\underline{T}), X^{\star}(\underline{T})$ are finitely generated free abelian group and the pairing

$$<,>: X^{\star}(\underline{T}) \times X_{\star}(\underline{T}) \to Hom(\mathbb{G}_m,\mathbb{G}_m) = \mathbb{Z}$$

is perfect [that is the induced homomorphism $X^*(\underline{T}) \to Hom(X_*(\underline{T}), \mathbb{Z})$ is an isomorphism].

- c) Any representation of $\in T$ is a direct sum of characters [one-dimensional representations].
- d) Let $S \subset T$ be a torus. There exists a nonempty open subset U in S such that $Z_G(S) = Z_G(s)$ for all $s \in U$. [A hint. Consider first the case when $G = GL_n$].

Lemma 0.3 (Rigidity of tori). .

Let T, T' be tori, X an irreducible algebraic variety and $f: T \times X \to T'$ a morphism such that for any $x \in X$ the map $f_x: T \to T', f_x(t) := f(t,x)$ is a group homomorphism. Then the homomorphism f_x does not depend on $x \in X$.

Proof. It is sufficient to show that for any $\chi \in X(T')$ the homomorphism $\chi \circ f_x : \underline{T} \to \mathbb{G}_m$ does not depend on $x \in X$. So we can assume that $\underline{T'} = \mathbb{G}_m$ and consider f as a regular function on $X \times T$. As follows from Lemma 4.2 we can write f as a finite sum

$$f(t,x) = \sum_{\chi \in X(T)} \chi(t) f_{\chi}(x), f_{\chi} \in k[X]$$

Since f_x is a character of T it follows from Problem 4.5 that for any $x \in X$ there exists $\chi_x \in X(T)$ such that $f_{\chi}(x) = 0$ if $\chi \neq \chi_x$ and

 $f_{\chi_x}(x) = 1$. For any $\chi \in X(T)$ we define $X_{\chi} := \{x \in X | \chi_x = \chi\}$. It is clear (?) that $X_{\chi} \subset X$ is closed and also open. Since X is irreducible we see that either $X_{\chi} = X$ or X is empty. Since $X = \bigcup_{\chi \in X(T)} X_{\chi}$ we see that $f(t, x) \equiv \chi(t)$ for some $\chi \in X(T)$. \square

Definition 0.4. Let G be a connected algebraic group. A Cartan subgroup C of G is a group of the form $C = Z_G^0(T)$ where T is a maximal torus of G.

Remark. As follows from Corollary 6.17 all Cartan subgroups of G are conjugate.

Lemma 0.5. Let G be a connected algebraic group and $C = Z_G^0(T)$ a Cartan subgroup of G. Then

- a) C is nilpotent.
- b) $C = N_G^0(C)$

Proof of a). Let B be a Borel subgroup of $C = N_G^0(T)$ where T is a maximal torus of G. It follows from Theorem 6.14 that B is nilpotent. But then by Lemma 5.19 C = B. \square

Proof of b). As follows Corollary 6.17 T is the unique maximal torus of C. Therefore the group from $N_G(C)$ normalizes T. and we obtain the homomorphism $f:N_G(C)\to Aut(T)$. But it follows from Lemma 3 that any homomorphism from a connected group to the group of automorphism of a torus is trivial. So $N_G^0(C) \subset Z_G^0(T) = C.\square$

Proposition 0.6. Let G be a connected algebraic group and $S \subset G$ be a torus. Then

- a) The centralizer $Z_G(S)$ is connected.
- b) If B is a Borel subgroup of G containing S then $B \cap Z_G(S)$ is a Borel subgroup of $Z_G(S)$.
- c) Any Borel subgroup of $Z_G(S)$ has a form $B \cap Z_G(S)$ where B is a Borel subgroup of G.

Proof of a).

Claim 0.7. For any $x \in Z_G(S)$ there exists a Borel subgroup containing x and S.

Proof of Claim. Let $\mathcal{B} := G/B, X := \{gB | xgB = gB\} \subset \mathcal{B}$. Then (?) X is closed in \mathcal{B} and therefore complete. So (?) there is a point x = gB fixed by S. But then gBg^{-1} contains both x and $S.\square$

Now the part a) follows from Corollary 6.16.

Proof of b). Let B be a Borel subgroup of G containing S. Then $B \cap Z_G(S)$ is a connected solvable subgroup of a connected group $Z_G(S)$. To show that $B \cap Z_G(S)$ is a Borel subgroup of $Z_G(S)$ we have to show that the quotient $Z_G(S)/B \cap Z_G(S)$ is complete. Since the action of $Z_G(S)$ on \mathcal{B} induces a bijection from $Z_G(S)/B \cap Z_G(S)$ to the orbit $Y := Z_G(S)B \subset \mathcal{B}$ it is sufficient (?) to show that the orbit $Y \subset \mathcal{B}$ is equal to the closure $\overline{Y} \subset \mathcal{B}$.

Claim 0.8. $\bar{y}S\bar{y}g^{-1} \subset SB_u$ for any $\bar{y} \in \bar{Y}$.

Proof of Claim. For any $y \in Y$ we have $ySy^{-1} \subset B$. By continuity we have $\bar{y}S\bar{y}^{-1} \subset B$. Consider the morphism $\bar{Y} \times S \to B/B_u$ sending s to $ysy^{-1}B_u$. Since \bar{Y} is irreducible it follows from Lemma 3 (?) that $\bar{y}s\bar{y}^{-1} \subset sB_u$ for all $s \in S, \bar{y} \in \bar{Y}$.

It is clear then that for any $\bar{y} \in \bar{Y}$ $\bar{y}S\bar{y}^{-1} \subset SB_u$ is a maximal torus on SB_u and therefore there exists $u \in B_u$ such that $\bar{y}S\bar{y}^{-1} = uSu$. So $\bar{y} \in Z_G(S)B\square$

The part c) follows from the conjugacy of Borel subgroups in $Z_G(S)B.\square$

Theorem 0.9. Let G be a connected algebraic group. Then

- a) The union of Cartan subgroups contains the dense open subset of G.
 - b) Every element of G lies in a Borel subgroup.
 - c) Every semi-simple element of G lies in a maximal torus.
 - d) $N_G(B) = B$ for any Borel subgroup B of G.

Proof of a). Let $T \subset G$ be a maximal torus, $U \subset T$ an open subset as in Problem 2.

Claim 0.10. For any $t \in U$, $u \in C_u$ the only conjugate of C containing tu is C.

Proof of Claim. Since $t \times u$ is the Jordan decomposition of tu any conjugate of C containing tu contains t. So it is sufficient to prove Claim in the case u = e.

Assume that $t \in xCx^{-1}, x \in G$. Then t lies in the unique maximal torus xTx^{-1} of xCx^{-1} . So we have $x^{-1}tx \in T$. Since $Z_G(t) = Z_G(T)$ we have

$$C = Z_G^0(T) \subset Z_G^0(x^{-1}tx) = x^{-1}Z_G^0(t)x = x^{-1}Z_G^0(T)x = C \square$$

Since the set UC_u is open and dense in C the part a) follows from Lemma 5.24.

Proof of b). Since C is nilpotent [Lemma 5] and connected it lies in some Borel subgroup B. Therefore the union

$$\bigcup_{g \in G} gBg^{-1} \supset \bigcup_{g \in G} gCg^{-1}$$

is dense in G. But them b) follows from Problem 5.23 c).

The part c) follows now from Corollary $6.16.\square$

Proof of d). We prove the equality $N_G(B) = B$ by the induction in dim(G). Choose a maximal torus T of B. Since xTx^{-1} is a maximal torus of B for any $x \in N_G(B)$ there exists $b \in B$ such that $xTx^{-1} = bTb^{-1}$. So it is sufficient to prove that any $x \in N_G(B) \cap N_G(T)$ belongs to B.

Consider the group homomorphism $\phi: T \to T, \phi(t) := xtx^{-1}t^{-1}$. We consider separately the case when ϕ is onto and the case when ϕ is not surjective.

- a) Assume that ϕ is not surjective. Then $dim(Ker(\phi)) > 0$. Therefore $S := Ker^0(\phi)$ is a non-trivial subtorus in G and $x \in Z_G(S)$. If $G \neq Z_G(S)$ we can by Proposition (?) apply the inductive assumption to $B \cap Z_G(S) \subset Z_G(S)$. On the other hand it $G = Z_G(S)$ we can apply the inductive assumption to $B/S \subset G/S$.
- b) Assume that ϕ is surjective. Let $\rho: G \to GL(V)$ be a representation and $L \subset V$ a line such that $N_G(B) = St_G(L)$. Since BL = L and the group B_u doe snot have non-trivial unipotent characters we have $B_u l = l$ for all $l \in L$. We also have t'l = l for any $t' \in T$. To see this we write $t' = \phi(t) = xtx^{-1}t^{-1}$ and observe that both t and x preserve L. So Bl = l for all $l \in L$. Therefore the map $f: G \to V, g \to gl$ factorizes through the map $\bar{f}: G/B \to V$. Since G/B is complete the maps \bar{f} and f are constant. So gl = l for all $g \in G$ and therefore $N_G(B) = G.\square$

Problem 0.11. a) Let G be a connected algebraic group. Then $N_G(P) = P$ for any parabolic subgroup P of G.

- b) For any $g \in GL_n$ the centralizer $Z_{GL_n}(g)$ is connected.
- c) For any semisimple $s \in Sp(2n)$ the centralizer $Z_{Sp(2n)}(s)$ is connected.
- d) Find a unipotent element $u \in SL_2$ such that the centralizer $Z_{SL_2}(u)$ is disconnected.
- e) Find a semisimple $s \in SO(3)$ such that the centralizer $Z_{SO(3)}(s)$ is disconnected.

Definition 0.12. Often one defines an object X of a category \mathcal{C} in two steps:

- i) One introduces some set A of of choices and for any $a \in A$ defines an object $X^a \in Ob(\mathcal{C})$ whose construction depends on a choice of $a \in A$.
- ii) For any pair $a, a' \in A$ one defines an isomorphism $\alpha_{a,a'}: X^{a'} \to X^a$ in such a way that for any triple $a, a', a'' \in A$ one has the equality

$$\alpha_{a,a'} \circ \alpha_{a',a''} = \alpha_{a,a''}$$

Problem 0.13. a) Let X be a smooth n-dimensional manifold, $x \in X, \mathcal{C}$ be the category of \mathbb{R} -vector spaces and A be the set of charts $a: U \hookrightarrow \mathbb{R}^n, a(0) = x$ where U is an open neighborhood of x in X. For any $a \in A$ we define $X^a := \mathbb{R}^n$ and for any pair $a': U' \hookrightarrow \mathbb{R}^n, a'': U'' \hookrightarrow \mathbb{R}^n$ we define $\alpha_{a,a'} \in Aut(\mathbb{R}^n)$ as the differential of the map $a \circ a'^{-1}: V \to \mathbb{R}^n$ at 0 where $V \subset \mathbb{R}^n$ is a [sufficiently small] neighborhood of 0. Show that the isomorphisms $\alpha_{a,a'} \in Aut(\mathbb{R}^n)$ satisfy the condition ii). The resulting object of \mathcal{C} [a vector space] is denoted $T_X(x)$ and is called the tangent space to X at x.

b) Let X be an irreducible algebraic variety, \mathbb{C} be the category of fields and A be the set of open non-empty open affine subsets $U_a \subset X$. We define A_a as the ring of regular functions on U_a and k_a as the field of fractions of A_a . Construct isomorphisms $\alpha_{a,a'}: k_{a'} \to k_a$ for any pair of non-empty open affine subsets $U_a, U_{a'} \subset X$ of and check the condition ii). The resulting field is denoted k(X) and is called the field of rational functions on X.

Definition 0.14. a) Let \underline{G} be a connected affine algebraic group. We define the *Cartan torus* \mathbb{T} of G as follows. We take A to be the set of Borel subgroups of G, for any $B \in A$ we define $\mathbb{T}^B := B/B_u$. Given a pair $B, B' \in A$ we choose $g \in G$ such that $B = gB'g^{-1}$ and define $\alpha_{B,B'}: \mathbb{T}^{B'} \to \mathbb{T}^B$ as the isomorphism induced by the isomorphism $A_q: B' \to B, A_q(b') := gb'g^{-1}$.

b) As in a) we take A to be the set of Borel subgroups of G, For any $B \in A$ we define an algebraic variety \mathcal{B}^B with a transitive action of G by $\mathcal{B}^B := G/B$. Given a pair $B, B' \in A$ we choose $g \in G$ such that $B = gB'g^{-1}$ and define an isomorphism

$$\tilde{\alpha}_{B,B'}: G/B \to G/B', \tilde{\alpha}_{B,B'}(xB) := xB'g^{-1} = x'g^{-1}B$$

We denote the corresponding algebraic homogeneous G-variety by $\underline{\mathcal{B}}$. It is clear that points of $\underline{\mathcal{B}}$ are Borel subgroups of G and the group G acts on points of $\underline{\mathcal{B}}$ [= Borel subgroups of G] by conjugation.

c) Fix a Borel subgroup B of G, a maximal torus $T \subset B$. The composition of the imbedding $T \hookrightarrow B$ and the natural projection $B \to B/B_u = \mathbb{T}$ defines an isomorphism $\kappa_T : T \to \mathbb{T}$ and therefore and imbedding $N_G(T)/Z_G(T) \to Aut(\mathbb{T})$. The image $W_G^B \subset Aut(\mathbb{T})$ is called the Weyl group of G.

Problem 0.15. a) Show that the isomorphisms $\alpha_{B,B'}: \mathbb{T}^{B'} \to \mathbb{T}^B$ and $\tilde{\alpha}_{B,B'}: G/B \to G/B'$ do not depend on a choice of $g \in G$ such that $B = gB'g^{-1}$ and

$$\alpha_{B,B'} \circ \alpha_{B',B''} = \alpha_{B,B''}, \tilde{\alpha}_{B,B'} \circ \tilde{\alpha}_{B',B''} = \tilde{\alpha}_{B,B''}$$

- b) Show that the subgroup $W_G^B \subset Aut(\mathbb{T})$ does not depend on a choice of a Borel subgroup B. We will denote this group by W_G .
- c) For any pair $B, B' \in \mathcal{B}$ we choose maximal tori $T \subset B, T' \subset B'$ and choose $g \in G$ such that $B = gB'g^{-1}, T = gT'g^{-1}$. Then automorphisms

$$w_{B',B} \in W_G, w_{B',B} := \kappa_T \circ A_g \circ \kappa_{T'}^{-1}$$

does not depend on a choice of tori T, T' and a choice of g.

- d) The map $\mathcal{B} \times \mathcal{B} \to W_G$, $(B, B') \to w_{B',B}$ defines a bijection between G-orbits on $\mathcal{B} \times \mathcal{B}$ and the group W_G .
 - e) Show that $W_{GL_n} = S_n$ where S_n is the symmetric group
 - f) Describe the group by W_G for G = Sp(2n) and G = SO(n).

[A hint]. In the case G = SO(n) consider separately the cases of even and odd n.

g) For any $w \in S_n = W_{GL_n}$ we denote by l(w) the number of pairs $1 \le i < j \le n$ such that w(i) > w(j). We fix a Borel subgroup B of GL_n and define

$$X_w := \{ B' \in \mathcal{B} | w_{B',B} = w \}$$

Then $l(\sigma) = dim(X_w)$.

h) Fix a maximal tori T of G. The group $N_G(T)$ acts naturally on the subset $\mathcal{B}^T \subset \mathcal{B}$ of T-fixed points. Show that this action is simply transitive.