
Definition 0.1. a) A continuous map p : X → Y is closed if for any
closed subset Z of X the image p(Z) ⊂ Y is closed.

b) A continuous map p : X → Y is proper if for any algebraic variety
Z the projection pZ : X × Z → Y × Z is closed.

c) An algebraic variety X is complete the map from X to a point
is proper. In other words X is complete if the map for any algebraic
variety Y the projection pY : X × Y → Y is closed.

Example 0.2. The variety A1 is not complete. to see this take Y = A1

and Z = {(x, y)|xy = 1} ⊂ X × Y = A2. Then Z is a closed subset of
X × Y but pY (Z) is not a closed subset of Y .

Problem 0.3. a) Let X be an algebraic variety such that the projection
pY : X × Y → Y is closed for all affine algebraic varieties Y . Then X
is complete.

Assume that X is complete. Then

b) Any closed subset of X is complete.

c) For any complete Y the product X × Y is complete.

d) For any morphism f : X → Y the image f(X) ⊂ Y is closed and
complete.

e) If X is connected then any regular function on X is constant.

Theorem 0.4. P n is a complete variety.

Proof. Let Z ⊂ P n × Y be a closed subset. We want to show that
the image p(Z) ⊂ Y is closed. As follows from the Problem 3 we can
assume that Y = (Y, A) is an affine algebraic variety and we can also
assume that Z is irreducible (?). If the image p(Z) ⊂ Y is not dense we

can replace A by the quotient A/I where I = I(p(Z)). So we assume

from now on that Y = p(Z).

Consider the graded ring S = A[x0, ..., xn] = ⊕n=0Sn where Sn is the
A-module of homogeneous polynomials of degree n. Let

qY : (kn+1 − {0}) × Y → P n × Y

be the projection induced by the natural projection q : kn+1 − {0} →
P n. For any closed subset M of P n × Y we denote by M⋆ a closed
subset

M⋆ = q−1
Y (M) ∪ 0 × Y ⊂ kn+1 × Y

and by I⋆(M) ⊂ S the corresponding ideal. Conversely for any homo-
geneous ideal I⋆ ⊂ S such that I ∩ S0 = 0 we denote by V(I⋆) the set
of line L ∈ P n such that f|L = 0 for all f ∈ I⋆.
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Problem 0.5. a) The map M → I⋆(M) defines a bijection between
closed irreducible subsets Z of P n × Y such that p(Z) is dense in Y
and homogeneous prime ideals I⋆ ⊂ S such that I ∩ S0 = 0. Moreover
the inverse map is given by I⋆ → V(I⋆).

b) Let I⋆ ⊂ S be a homogeneous ideal such that I⋆∩S0 = {0}. Then
V(I⋆) = ∅ iff there exists n such that Sn ⊂ I.

Now we can finish the proof the Theorem. Fix y ∈ Y . We want to
show that p−1

Y (y) ∩ Z 6= ∅. Let m ⊂ A be the maximal ideal corre-
sponding to y. Then p−1

Y (y) ∩ Z = V(I⋆ + mS+)(?). So to show that
y ∈ pY (Z) it is sufficient to show that p−1

Y (y) ∩ Z 6= ∅ or [see Problem
5 b)] that So we have to show that Sn * I⋆ + mS+. Therefore it is
sufficient to prove the following result.

Claim 0.6. Let I⋆ ⊂ S be a homogeneous ideal such that I ∩ S0 = 0
and Sn ⊂ I⋆ + mS+ for some n > 0. Then Sn ⊂ I⋆.

Proof of Claim. Consider N := Sn/I
⋆∩Sn. Since Sn ⊂ I⋆+mS+ we

have mN = N . The same arguments as in the proof of the Nakayama’s
lemma show the existence of a ∈ A − {0} such that aN = 0. On
the other hand since Z is irreducible the ring S/I⋆ is integral and
[since I⋆ ∩ S0 = 0] the map A = S0 → S/I⋆ is an imbedding. So the
multiplication â : S/I⋆ → S/I⋆, s̄ → as̄ is an imbedding. So N = {0}
and Sn ⊂ I⋆

�

Corollary 0.7. Let X ⊂ Pn be a closed subset and Y ⊂ Pn a hyper-
plane such that X ∩ Y = ∅. Then X is finite.

Proof. We can assume that X is irreducible and Y = Pn−U0 where
U0 ⊂ Pn is the open set as in the Definition 4.16 (?). Since X ∩ Y = ∅
we have X ⊂ U0. By Problem 3 e) the restriction the regular function
xi/x0, 1 ≤ i ≤ n on X is constant. But this implies that X is a point.�

Problem 0.8. a) Prove the variant of the Nakayama’s lemma used
above.

b) Let f : X → Y be a continuous map of topological spaces. Then

f(Ū) ⊂ f(U) for any U ⊂ X where Ū is the closure of U in X and

f(U) is the closure of f(U) in Y .

Definition 0.9. a) Let G be an affine algebraic group, X an algebraic
variety. An action of G on X is a morphism

G × X → X, (g, x) → gx such (g′g′′)(x) = g′(g′′(x)), ex = x, g′, g′′ ∈
G, x ∈ X.
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b) for any x ∈ X we denote by Ω(x) the subset {gx} ⊂ X, g ∈ G
and call it the orbit of x.

Remark. As follows from Lemma 3.4 Ω(x) is a constructive subset
of X.

c) We denote by Ω̄(x) the closure of Ω(x) in X.

Lemma 0.10. a) The orbit Ω(x) is an open subset of Ω̄(x).

b) Let x ∈ X be such that dim(Ω(x)) ≤ dim(Ω(y)), ∀y ∈ X. Then
Ω(x) is a closed subset of X.

Proof. Let G0 be the connected component of G. Since the quotient
G/G0 is finite [see Problem 3.5] it is sufficient (?) to prove the result
in the case when the group G is connected.

a) Since Ω(x) is a dense constructive subset of Ω̄(x) it contains a
subset U which is dense and open in Ω̄(x). But then gUΩ̄(x) is an
open subset for all g ∈ G. Since Ω(x) = ∪g∈GgU we see that Ω(x) is
open in Ω̄(x).�

b) Observe first that the closure Ω̄(x) ⊂ X is G-invariant. For this
consider the action map a : G × X → X and apply the Problem 8 b)
to the subset G × Ω(x) ⊂ G × X.

Since, by our assumption, G is connected and therefore irreducible
[see Problem 3.5] the set Ω̄(x) is irreducible. Therefore

dim(Ω̄(x) − Ω(x)) < dim(Ω(x))

So dim(Ω(x)) > (Ω(y))∀y ∈ X for any y ∈ Ω̄(x) − Ω(x). This would
contradict the assumption of the Lemma. So Ω̄(x) − Ω(x) = ∅.�

Problem 0.11. a) Introduce the structure of an algebraic variety on
Ω(x) such that the imbeddings Ω(x) →֒ X is an algebraic morphism.

b) Show that the map φx : G → Ω(x), g → gx defines an algebraic
morphism φ

x
: G → Ω(x).

c) Show that the map φx : G → Ω(x), g → gx defines a bijection
φ̄x : G/Stx → Ω(x) where Stx := {g ∈ G|gx = x}.

d)⋆. Construct an example of an action of G on X such that the
algebraic morphism φ

x
: G → Ω(x) is not an isomorphism for all x ∈ X.

Definition 0.12. Let G be a linear algebraic group. A Borel subgroup
B of G is a maximal connected solvable subgroup of G.

Theorem 0.13. Any two Borel subgroups of G are conjugate.

Proof. We start the proof with the following result.
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Proposition 0.14. Let ρ : G →֒ GL(V ) be a connected solvable group
and X ⊂ P (V ) a nonempty irreducible closed G-invariant subset. Then
X contains a G-invariant point.

We prove the Proposition by induction in dim(X). If dim(X) = 0
then X is a point and there is nothing to prove. So we assume that
dim(X) > 0. Using the induction in dim(V ) we reduce the proof to
the case when there is no proper G-invariant subspace W ⊂ V such
that P (W ) contains X (?).

Let ρ∨ : G → GL(V ∨) be the dual representation given by

< ρ∨(g)(l), v >:=< l, ρ(g−1)(v) >, v ∈ V, l ∈ V ∨, g ∈ G

Since G is a connected solvable group there exists [by the Lie-Kolchin
theorem] a non-zero vector l ∈ V ∨ such that the line L∨ through l is
ρ∨(G)-invariant. Let

W := {v ∈ V | < l.v >= 0}

Then W ⊂ V is a proper G-invariant subspace.Since we assume that
there is no proper G-invariant subspace W ⊂ V such that P (W ) con-
tains X the intersection Y := X ∩W is a proper non-empty [by Corol-
lary 7] G-invariant subset of a P (V ). Since X is irreducible we have
dim(Y ) < dim(X) and therefore [by the induction assumption] Y con-
tains a G-invariant point y ∈ Y ⊂ X.�

Now we can prove the Theorem. Let B.B′ be two Borel subgroups
of G. By Theorem 2.1 we may assume that G is a closed subgroup of
GL(W ) where W is a finite-dimensional k-vector space. Then G acts
on B(W ). Choose a G-orbit Z ⊂ B(W ) of the minimal dimension.
Then [see Lemma 2] Z is a closed not-empty subset of B(W ). Using
the imbedding κ : B(W ) → P(V ) [see the Lecture 4] we can consider Z
is closed not-empty subset of P(V ). By the Proposition 13 there exist
points z, z′ ∈ Z such that Bz = z, B′z′ = z′.

Consider the stationary subgroup Stz of z.

Stz := {g ∈ G|gz = z} ⊂ G

and denote by St0z the connected component of Stz. Since B is con-
nected and Bz = z we have B ⊂ St0z. To show that B = St0z consider
the flag

b ∈ B(W ), b = W1 ⊂ W2 ⊂ ... ⊂ W

such that z = κ(b). Then gb = b for any g ∈ Stz. Then gWi =
Wi, 1 ≤ i ≤ dim(W ). So (?) the group St0z is a subgroup of the group
of upper-triangular matrices and therefore it is solvable . Since[ by
the definitions of Borel subgroups] B is a maximal connected solvable
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algebraic subgroup of G we see that B = St0z and analogously that
B′ = St0z′.

Since[ by the construction] Z is a G-orbit there exists g ∈ G such
that gz = z′. But then gSt0zg

−1 = St0z′. So gB−1 = B′.�

Definition 0.15. Let V be a finite-dimensional k vector space.

a) Given a non-degenerate quadratic form Q on V we define

OQ := {g ∈ GL(V )|Q(gv) = Q(v)∀v ∈ V }

b) Given a non-degenerate symmetric bilinear form F (v′, v”) on V
we define

OF := {g ∈ GL(V )|F (gv′, gv′′) = Q(v′, v′′)∀v′, v′′ ∈ V }

c) Given a non-degenerate skew-symmetric bilinear form F (v′, v”)
on V we define

SpF := {g ∈ GL(V )|F (gv′, gv′′) = Q(v′, v′′)∀v′, v′′ ∈ V }

d) If F (v′, v”) is a non-degenerate symmetric bilinear form on V we
define a quadratic form Q(F ) on V by Q(F )(V ) := F (v, v).

e) Let G be a connected affine algebraic group, P ⊂ G an algebraic
subgroup. We say that P is a parabolic subgroup of G if it contains a
Borel subgroup.

Problem 0.16. a) Show that OQ, OF , SpF are closed subgroups of
GL(V ) .

b)⋆ When OF = OQ(F )?.

c) For any non-degenerate bilinear form F (v′, v”) on V which is either
symmetric or skew-symmetric there exists subspace W of V such that
dim(W ) = [dim(V )/2] and F (w′, w”) = 0 for all w′, w” ∈ W [here [a]
is the integral part of a] .

d) Formulate and prove the analog of c) for quadratic forms.

e) Describe Borel subgroups of groups GL(n, k).

f) Describe Borel subgroups of groups OQ, OF , SpF

A hint. Use the results of c) and d).

g) Describe all subgroups of GL(n, k) which contain the group Tn of
upper-triangular matrices [that is describe all parabolic subgroups of
GL(n, k)].

h) Let V be a finite-dimensional k vector space, W ⊂ V, d :=
dim(W ). For any g ∈ GL(V ) we denote by Λd(g) ∈ GL(Λd(V )) the
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induced automorphism of the space Λd(V ). Let LW ⊂ Λd(V ) be a line
as in Definition 4.18. Show that g(W ) = W iff Λd(g)(LW ) = LW .

Theorem 0.17. (Chevalley) Let G = (G, A) be an affine algebraic
group, H ⊂ G a closed subgroup. Then there exists a finitely -dimensional
representation ρ : G → GL(V ) and a line L ⊂ V such that

H = {h ∈ G|ρ(g)L = L}

Proof. Let I := I(H). Since the ring k[G] is Noetherian the ideal I
is finitely generated. As follows from Lemma 2.2 there exists a finite-
dimensional subspace V ⊂ A such that r(g)(V ) = V, ∀g ∈ G and the
intersection W := I ∩ V generates I as an ideal. It is clear then that
H = {h ∈ G|r(g)(W ) = W}. Therefore H is the stabilizer of the line
φm(W ) ⊂ Λm(V ), m = dim(W ).�

Remark. Let’s write G/H(ρ, L) := Ω(L). Then [see Problem 11]

we have an algebraic morphism φ
L

: G → G/H(ρ, L). If char(k) = 0

then quotient φ
L

: G → G/H(ρ, L) does not depend on a choice of a

representation ρ : G → GL(V ) and a line L ⊂ V . But his is not true if
char(k) > 0.

Problem 0.18. a) Let X = (X, A), Y = (B, Y ) be irreducible affine
algebraic varieties f : X → Y be a morphism such that the map
f : X → Y is a bijection. Then f ⋆ : B → A is an imbedding. Moreover
f : X → Y is an isomorphism if chark = 0 and there exists r > 0 such

that apr

∈ B for all a ∈ A where p = chark.

b)⋆ Let f
i

: X i → X i−1, i > 0 be a sequence of morphism of irre-
ducible algebraic varieties such that all the maps fi : Xi → Xi−1 are
bijections, g

i
: Y → X i a sequence of morphisms such that f

i
◦ g

i
=

g
i−1

, i > 0 and g0 : Y → X0 is surjective. Then there exists i0 such

that all the morphisms f
i
: X i → X i−1, i > i0 are isomorphisms.

c) Show the existence of a representation ρ0 : G → GL(V0) and a line
L0 ⊂ V0, StG(L0) = H such that for any representation ρ : G → GL(V )
and a line L ⊂ V there exists a morphism

f : G/H(ρ0, L0) → G/H(ρ, L) such that f ◦ φ
L0

= φ
L
.

Lemma 0.19. Let G = (G, A) be an affine algebraic group and H ⊂ G
a closed normal subgroup. Then there exists a finitely -dimensional
representation τ : G → GL(W ) such that H = Ker(τ).

Proof. Let ρ : G → GL(V ), L ⊂ V be as in the Chevalley theorem
and let χ

0
: H → Gm the character such that
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hl = χ0(h)l for l ∈ L, h ∈ H

Remark Let x ∈ P(V ) be the point corresponding to the line L.
One can show that existence of a finitely -dimensional representation
ρ : G → GL(V ) and a line L ⊂ V such that H = {h ∈ G|gL = L} such
that the map φ

x
: G → Ω(x) is the quotient G/H . In other words for

any action of G on Y and a point y ∈ Y such that H ⊂ Sty(G) there
exists a G-equivariant morphism f : Ω(x) → Ω(y) such that f(x) = y.

For any character χ : H → Gm of H we define

Vχ := {v ∈ V |hv = χ(h)v} for all h ∈ H

Since H is normal subgroup of G we have

ρ(g)(Vχ) = Vχg where χg(h) := χ(g−1hg)

Therefore the subspace ⊕χ∈X(G)Vχ ⊂ V is G-invariant and we can
replace V by ⊕χVχ ⊂ V . From now we assume that V = ⊕χVχ.

Let W := {A ∈ End(V )|A(Vχ) for all χ ∈ X(G)} and ρ : G →
Aut(W ) be given by ρ(g)(A) := gAg−1. I claim that H = Ker(τ).

It is clear (?) that H ⊂ Ker(τ). Conversely fix any g ∈ Ker(τ).
Since ρ(g) commutes with all A ∈ W it is clear (?) that ρ(g)(Vχ) = Vχ

and the restriction of ρ(g) on Vχ is a scalar for all χ ∈ X(H). Therefore
ρ(g)(L) = L. So g ∈ H.�

Problem 0.20. a) Show that τ defines a morphism of algebraic groups
from G onto the image Im(τ) ⊂ GL(V ).

b)⋆ Show the existence of a representation τ0 : G → GL(V0, Ker(τ0) =
H such that for any representation τ0 : G → GL(V ), Ker(τ) = H there
exists a morphism of algebraic groups f : Im(τ0) → Im(τ) such that
f ◦ τ0 = τ .

Definition 0.21. We denote the algebraic group Im(τ0) by G/H.

Lemma 0.22. Let H ⊂ G be a closed subgroup.


