Definition 0.1. a) A continuous map p : X — Y is closed if for any
closed subset Z of X the image p(Z) C Y is closed.

b) A continuous map p : X — Y is proper if for any algebraic variety
Z the projection py : X x Z — Y x Z is closed.

¢) An algebraic variety X is complete the map from X to a point
is proper. In other words X is complete if the map for any algebraic
variety Y the projection py : X XY — Y is closed.

Example 0.2. The variety A! is not complete. to see this take Y = A!
and Z = {(z,y)|zy =1} C X x Y = A% Then Z is a closed subset of
X XY but py(Z) is not a closed subset of Y.

Problem 0.3. a) Let X be an algebraic variety such that the projection
py : X XY — Y is closed for all affine algebraic varieties Y. Then X
is complete.

Assume that X is complete. Then
b) Any closed subset of X is complete.
¢) For any complete Y the product X x Y is complete.

d) For any morphism f : X — Y the image f(X) C Y is closed and
complete.

e) If X is connected then any regular function on X is constant.
Theorem 0.4. P" is a complete variety.

Proof. Let Z C P" x Y be a closed subset. We want to show that
the image p(Z) C Y is closed. As follows from the Problem 3 we can
assume that Y = (Y, A) is an affine algebraic variety and we can also
assume that 7 is irreducible (7). If the image p(Z) C Y is not dense we

can replace A by the quotient A/I where I = I(p(Z)). So we assume
from now on that Y = p(Z).

Consider the graded ring S = A[x, ..., x,] = Bn=05, where S, is the
A-module of homogeneous polynomials of degree n. Let

qy i (K" —{0}) xY — P"xY

be the projection induced by the natural projection ¢ : k"' — {0} —
Pm™. For any closed subset M of P" x Y we denote by M* a closed
subset

M* =g (M)UO XY C k" xY
and by I*(M) C S the corresponding ideal. Conversely for any homo-
geneous ideal I* C S such that I NSy = 0 we denote by V(I*) the set

of line L € P" such that fj;, =0 for all f € I*.
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Problem 0.5. a) The map M — [*(M) defines a bijection between
closed irreducible subsets Z of P" x Y such that p(Z) is dense in Y
and homogeneous prime ideals I* C S such that I NSy = 0. Moreover
the inverse map is given by I* — V(I*).

b) Let I* C S be a homogeneous ideal such that I*NSy; = {0}. Then
V(I*) = 0 iff there exists n such that S, C I.

Now we can finish the proof the Theorem. Fix y € Y. We want to
show that py'(y) N Z # 0. Let m C A be the maximal ideal corre-
sponding to y. Then py'(y) N Z = V(I* + mS,)(?). So to show that
y € py(Z) it is sufficient to show that py'(y) N Z # 0 or [see Problem
5 b)] that So we have to show that S, ¢ I* + mS,. Therefore it is
sufficient to prove the following result.

Claim 0.6. Let I* C S be a homogeneous ideal such that I N .Sy =0
and S, C I* +mSy for somen > 0. Then S, C I*.

Proof of Claim. Consider N := S,,/I*NS,,. Since S,, C [*+mS, we
have m/N = N. The same arguments as in the proof of the Nakayama’s
lemma show the existence of @ € A — {0} such that aN = 0. On
the other hand since Z is irreducible the ring S/I* is integral and
[since I* NSy = 0] the map A = Sy — S/I* is an imbedding. So the
multiplication a : S/I* — S/I*,5 — a5 is an imbedding. So N = {0}
and S, C I*OJ

Corollary 0.7. Let X C P™ be a closed subset and Y C P™ a hyper-
plane such that X NY = (. Then X 1is finite.

Proof. We can assume that X is irreducible and Y = P™ — U, where
Uy C P™ is the open set as in the Definition 4.16 (7). Since X NY = ()
we have X C Uy. By Problem 3 e) the restriction the regular function
x;/xo, 1 < i <mnon X is constant. But this implies that X is a point.[]

Problem 0.8. a) Prove the variant of the Nakayama’s lemma used
above.

b) Let f: X — Y be a continuous map of topological spaces. Then

f(U) c f(U) for any U C X where U is the closure of U in X and

f(U) is the closure of f(U) in Y.

Definition 0.9. a) Let G be an affine algebraic group, X an algebraic
variety. An action of G on X is a morphism

! 1"

GxX — X, (g9,x) = gz such (¢'g
G,z e X.

)z)=9¢'(¢"(x)),ex =x,¢,9" €
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b) for any x € X we denote by (x) the subset {gz} C X, g € G
and call it the orbit of .

Remark. As follows from Lemma 3.4 )(x) is a constructive subset
of X.

c) We denote by Q(x) the closure of Q(z) in X.
Lemma 0.10. a) The orbit Q(z) is an open subset of Q(z).

b) Let x € X be such that dim(Q(z)) < dim(Q(y)),Vy € X. Then
Q(x) is a closed subset of X .

Proof. Let G° be the connected component of G. Since the quotient
G/G" is finite [see Problem 3.5] it is sufficient (?) to prove the result
in the case when the group G is connected.

a) Since Q(z) is a dense constructive subset of Q(z) it contains a
subset U which is dense and open in Q(x). But then gUQ(z) is an
open subset for all g € G. Since Q(z) = UgeqgU we see that Q(x) is
open in Q(z).00

b) Observe first that the closure Q(z) C X is G-invariant. For this
consider the action map a : G x X — X and apply the Problem 8 b)
to the subset G x Q(z) C G x X.

Since, by our assumption, G is connected and therefore irreducible
[see Problem 3.5] the set §2(x) is irreducible. Therefore

dim(Q(z) — Q(z)) < dim(Q(z))

So dim(Q(z)) > (Qy))Vy € X for any y € Q(z) — Q(z). This would
contradict the assumption of the Lemma. So Q(z) — Q(z) = 0.0

Problem 0.11. a) Introduce the structure of an algebraic variety on
Q(x) such that the imbeddings Q(z) — X is an algebraic morphism.

b) Show that the map ¢, : G — Q(x),9 — gx defines an algebraic
morphism ¢_: G — Q().

_ ¢) Show that the map ¢, : G — Q(x),g — gz defines a bijection
¢, : G/St, — Q(x) where St, := {g € G|gz = z}.

d)*. Construct an example of an action of G on X such that the
algebraic morphism ¢_: G — (z) is not an isomorphism for all z € X.

Definition 0.12. Let G be a linear algebraic group. A Borel subgroup
B of G is a maximal connected solvable subgroup of G.

Theorem 0.13. Any two Borel subgroups of G are conjugate.
Proof. We start the proof with the following result.
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Proposition 0.14. Let p: G — GL(V) be a connected solvable group
and X C P(V') a nonempty irreducible closed G-invariant subset. Then
X contains a G-invariant point.

We prove the Proposition by induction in dim(X). If dim(X) = 0
then X is a point and there is nothing to prove. So we assume that
dim(X) > 0. Using the induction in dim (V') we reduce the proof to
the case when there is no proper G-invariant subspace W C V such
that P(W) contains X (7).

Let p¥ : G — GL(V") be the dual representation given by
< p'(9)(1), v >=<1l,plg"")(v) >veVieVgel

Since G is a connected solvable group there exists [by the Lie-Kolchin
theorem| a non-zero vector [ € V'V such that the line LY through [ is
p"(G)-invariant. Let

W:={veV|<lv>=0}

Then W C V is a proper G-invariant subspace.Since we assume that
there is no proper G-invariant subspace W C V such that P(W) con-
tains X the intersection Y := X NW is a proper non-empty [by Corol-
lary 7] G-invariant subset of a P(V'). Since X is irreducible we have
dim(Y) < dim(X) and therefore [by the induction assumption] Y con-
tains a G-invariant point y € Y C X.[J

Now we can prove the Theorem. Let B.B’ be two Borel subgroups
of G. By Theorem 2.1 we may assume that G is a closed subgroup of
GL(W) where W is a finite-dimensional k-vector space. Then G acts
on B(W). Choose a G-orbit Z C B(W) of the minimal dimension.
Then [see Lemma 2] Z is a closed not-empty subset of B(W). Using
the imbedding x : B(W) — P(V') [see the Lecture 4] we can consider Z
is closed not-empty subset of P(V'). By the Proposition 13 there exist
points z, 2’ € Z such that Bz = z, B’z = 2.

Consider the stationary subgroup St, of z.

St,={geGlgz=z2}CG
and denote by St? the connected component of St,. Since B is con-
nected and Bz = z we have B C St2. To show that B = StY consider
the flag
be BW),b=W,CcWyC..CW

such that z = k(b). Then gb = b for any g € St,. Then gW; =
Wi, 1 <i < dim(W). So (?) the group St? is a subgroup of the group
of upper-triangular matrices and therefore it is solvable . Since[ by
the definitions of Borel subgroups| B is a maximal connected solvable
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algebraic subgroup of G we see that B = St and analogously that
B/ - St(z]/

Since[ by the construction] Z is a G-orbit there exists g € G such
that gz = 2/. But then ¢St%g~! = St%. So gB~' = B'.0J

Definition 0.15. Let V be a finite-dimensional k£ vector space.
a) Given a non-degenerate quadratic form @ on V' we define
Oq = {g € GL(V)|Q(gv) = Q(v)Vv € V'}

b) Given a non-degenerate symmetric bilinear form F'(v’,v”) on V
we define

OF = {g E GL(V)|F(9'U,, gU”) — Q('U,,'U”)\V/U,,'U” 6 V}

c) Given a non-degenerate skew-symmetric bilinear form F(v',v")
on V we define

Spr :={g € GL(V)|F(gv', gv") = Q(v',v" )WV, 2" € V}

d) If F(v',v") is a non-degenerate symmetric bilinear form on V' we
define a quadratic form Q(F) on V by Q(F)(V) := F(v,v).

e) Let G be a connected affine algebraic group, P C G an algebraic
subgroup. We say that P is a parabolic subgroup of G if it contains a
Borel subgroup.

Problem 0.16. a) Show that O, Op, Spr are closed subgroups of
GL(V) .

b)* When OF = OQ(F)?.

¢) For any non-degenerate bilinear form F'(v/,v”) on V which is either

symmetric or skew-symmetric there exists subspace W of V' such that
dim(W) = [dim(V')/2] and F(w',w”) = 0 for all w’,w” € W [here [a]
is the integral part of a] .

d) Formulate and prove the analog of ¢) for quadratic forms.
e) Describe Borel subgroups of groups GL(n, k).

f) Describe Borel subgroups of groups Og, Op, Spr

A hint. Use the results of ¢) and d).

g) Describe all subgroups of GL(n, k) which contain the group 7;, of
upper-triangular matrices [that is describe all parabolic subgroups of
GL(n, k).

h) Let V be a finite-dimensional k vector space, W C V,d :=
dim(W). For any g € GL(V) we denote by A%(g) € GL(A%(V)) the



6

induced automorphism of the space A4(V). Let Ly, C A4(V) be a line
as in Definition 4.18. Show that g(W) = W iff A%(g)(Lw) = Lw.

Theorem 0.17. (Chevalley) Let G = (G, A) be an affine algebraic
group, H C G a closed subgroup. Then there exists a finitely -dimensional
representation p : G — GL(V) and a line L CV such that

H ={hedlp(g)L =L}

Proof. Let I :=Z(H). Since the ring k|G| is Noetherian the ideal I
is finitely generated. As follows from Lemma 2.2 there exists a finite-
dimensional subspace V' C A such that r(g)(V) = V,Vg € G and the
intersection W := I NV generates [ as an ideal. It is clear then that
H = {h € G|r(g)(W) = W}. Therefore H is the stabilizer of the line
Oom(W) C A™(V),m = dim(W).00

Remark. Let’s write G/H(p, L) := Q(L). Then [see Problem 11]
we have an algebraic morphism ¢, G — G/H(p,L). If char(k) =0
then quotient ¢, : G — G/H(p, L) does not depend on a choice of a

representation p : G — GL(V') and a line L C V. But his is not true if
char(k) > 0.

Problem 0.18. a) Let X = (X, A),Y = (B,Y) be irreducible affine
algebraic varieties f : X — Y be a morphism such that the map
f: X — Y is abijection. Then f*: B — A is an imbedding. Moreover
f: X — Y is an isomorphism if chark = 0 and there exists » > 0 such
that a? € B for all a € A where p = chark.

b)* Let f.: X; — X, 4,4 > 0 be a sequence of morphism of irre-
ducible algebralc varieties such that all the maps f; : X; — X;_; are
bijections, ¢g. : ¥ — X, a sequence of morphisms such that f 0g, =
9, l,z > 0 and go : Y — X is surjective. Then there exists g such
that all the morphisms f X, — X, 1,1 > 1 are isomorphisms.

c¢) Show the existence of a representation py : G — GL(V,) and a line
Ly C Vi, Sta(Lo) = H such that for any representation p : G — GL(V)
and a line L C V there exists a morphism

f:G/H(po, Lo) — G/H(p, L) such that iO?LO =9,
Lemma 0.19. Let G = (G, A) be an affine algebraic group and H C G

a closed normal subgroup. Then there exists a finitely -dimensional
representation 7 : G — GL(W) such that H = Ker(T).

Proof. Let p: G — GL(V),L C V be as in the Chevalley theorem
and let X, H — @G,, the character such that



hl = xo(h)l for l € L,h € H

Remark Let z € P(V) be the point corresponding to the line L.
One can show that existence of a finitely -dimensional representation
p:G— GL(V)andaline L C V such that H = {h € G|gL = L} such
that the map ¢ : G — Q(x) is the quotient G/H. In other words for
any action of G on Y and a point y € Y such that H C St,(G) there
exists a G-equivariant morphism f : Q(x) — Q(y) such that f(x) = y.

For any character x : H — G,, of H we define

Vy :={veV|h = x(h)v} forall he H
Since H is normal subgroup of G we have

p(9)(Vy) = Ve where x9(h) := x(g~*hg)

Therefore the subspace @yex(@)Vy C V is G-invariant and we can
replace V' by @, V, C V. From now we assume that V = @, V,.

Let W := {A € End(V)|A(Vy) for all x € X(G)} and p : G —
Aut(W) be given by p(g)(A) := gAg~'. I claim that H = Ker(r).

It is clear (7) that H C Ker(r). Conversely fix any g € Ker(7).
Since p(g) commutes with all A € W it is clear (7) that p(g)(Vy) = V4

and the restriction of p(g) on V, is a scalar for all x € X(H). Therefore
p(g)(L)=L. So g € H.O

Problem 0.20. a) Show that 7 defines a morphism of algebraic groups
from G onto the image Im(7) C GL(V).

b)* Show the existence of a representation 79 : G — GL(Vy, Ker(m) =
H such that for any representation 75 : G — GL(V'), Ker(t) = H there
exists a morphism of algebraic groups f : Im(m) — Im(7) such that
f OTop = T.

Definition 0.21. We denote the algebraic group I'm(ry) by G/H.
Lemma 0.22. Let H C G be a closed subgroup.



