
Some notations.
Let Ga := (K, K[x], +) be the additive group,

Gm := (K∗, K[x, x−1],×) be the multiplicative group,

Tn(K) := {(aij) ∈ GLn(K)|aij = 0, ∀1 ≤ j < i ≤ n},

Dn(K) := {(aij) ∈ GLn(K)|aij = 0, ∀1 ≤ j 6= i ≤ n},

Un(K) := {(aij) ∈ Tn(K)|aii = 1, ∀1 ≤ i ≤ n},

SLn(K) := {g ∈ GLn(K)|det(g) = 1}

Problem 1 Assume that char(K) = 0. Show that for any unipotent
element u ∈ GL(n, K) there exists unique homomorphism φ : Ga →
GL(n) such that φ(1) = u.

Problem 2 a) Assume that char(K) = p 6= 0. Construct a surjective
homomorphism f : Ga → Ga such that f(1) = 0.

b⋆) Describe the ring R of automorphisms of Ga.

c) Describe the ring of automorphisms of Gm.

Now we will do some more of linear algebra.

Lemma 3.1. [Schur] Let V be a finite-dimensional K-vector space,
G ⊂ Aut(V ) a group which is acting irreducibly on V . If f : V → V
is a linear map such that f ◦ g = g ◦ f for all g ∈ G then f = cId for
some c ∈ K.

Proof. Let µ be an eigenvalue of f . The Ker(f −µId) is a non-zero
G-invariant subspace of V . Since G is acting irreducibly on V we see
that V = Ker(f − µId). So f = µId.� Let V be finite-dimensional

K-vector space with an action of a group G. Then G acts on V n.

Corollary. Let V be finite-dimensional K-vector space, ρ an irre-
ducible representation of a group G on V and f : V n → V is a linear
map such that f ◦ ρ(g) = ρ(g) ◦ f for all g ∈ G. Then there exist
ci ∈ K, 1 ≥ i ≥ n such that f(v1, ..., vn) = c1v1 + ... + cnvn.

Lemma 3.2. For any irreducible representation of G on V the
representation of G on V n is completely reducible. [ that is for any G-
invariant subspace W ⊂ V n there exists a G-invariant subspace W ′ ⊂
V n such that V n = W ⊕ W ′].

Proof. The proof is by induction in n. If n = 1 there is nothing
to prove [since V is irreducible]. Assume that the result is known for
V n−1.
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For any i, 1 ≤ i ≤ n we denote by Vi ⊂ V n the subspace of vectors
(v1, ..., vn) such that vj = 0 for j 6= i and denote by V (i) ⊂ V n the
subspace of vectors (v1, ..., vn) such that vj = 0 for j = i. So Vi, V

(i) are
G-invariant subspaces of V n, the representation of G on Vi is equivalent
to it’s representation on V , the representation on V (i) is equivalent to
representation on V n−1 and V n = Vi ⊕ V (i). We denote by pi : V n →
V (i) the projection along Vi.

Let W ⊂ V n be a G-invariant subspace. If W = V n there is nothing
to prove. So assume that W * V n. Since Vi, 1 ≤ i ≤ n span V
there exists i, 1 ≤ i ≤ n such that Vi * W . Then W ∩ Vi is a proper
G-invariant subspace of Vi. Since the representation of G on Vi is
irreducible we have W ∩ Vi = {0} and the projection pi defines an
isomorphism W → pi(W ) ⊂(i).

By the inductive assumption there exists W ′′ ⊂ V (i) such that V (i) =
pi(W )⊕W ′′. But this implies that V n = W⊕W ′ where W ′ := Vi⊕W ′′

�

Proposition 3.1. [Burnside] Let ρ : G ⊂ Aut(V ) an irreducible
representation of a group G V be finite-dimensional vector space V .
Then the space Endk(V ) is spanned by ρ(g), g ∈ G.

Proof. Let e1, ..., ed be a basis of V and L ⊂ V d be the subspace
spanned by (ρ(g)e1, ..., ρ(g)ed), g ∈ G. We start with the following
result.

Claim. L = V d.

Proof of the Claim. As follows from Lemma 3.2 there exists a
G-invariant subspace W ⊂ V d such that V d = L⊕W . Let p : V d → L
be the projection along W and qi := pi ◦ p. As follows from Corollary
1 for any i, 1 ≤ i ≤ d there exists cj

i ∈ K, 1 ≤ j ≤ d such that
qi(v1, ..., vn) = c1

i v1 + ...+ cn
i vn. On the other hand By the construction

p(e1, ..., ed) = (e1, ..., ed) ∈ L. So qi(e1, ..., ed) = ei and [since e1, ..., ed

is a basis of V ] we have cj
i = δj

i . Therefore p = Id. So L = V d
�.

Now it’s easy to finish the proof of the Proposition. Choose any
f ∈ EndK(V ). We want to find ck ∈ K, gk ∈ G, 1 ≤ k ≤ N such

that f =
∑N

k=1 ckρ(g)k. Consider ef := (f(e1), ..., f(ed)) ∈ V d. Since
L = V d there exists ck ∈ K, gk ∈ G, 1 ≤ k ≤ N such that

ef =

N∑

k=1

ck(ρ(gk)e1, ..., ρ(gk)ed)

So f(ei) =
∑N

k=1 ckgkei, 1 ≤ i ≤ d and therefore f =
∑N

k=1 ckρ(gk)�.
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Definition 3.1. Let G = (G, A) be an affine algebraic group. We
say that G is unipotent iff any element of G is unipotent.

Theorem 3.1 [Kolchin] Let G ⊂ GL(V ) be a unipotent subgroup.
Then

a) there exists a line L ⊂ V such that gl = l for all g ∈ G, l ∈ L.

b) there exists an isomorphism α : V → Kn such that αGα−1 ⊂
Un(K).

Proof of a). We can assume that the representation of G on V is
irreducible [ if not restrict your attention to any irreducible subspace
of V ]. It is clearly sufficient to prove that G = Id.

Since G is unipotent trV (g) = dim(V ) for all g ∈ G. Therefore
trV ((g′ − Id)g) = trV (g′g) − trV (g) = 0 for all g, g′ ∈ G. Since by
Proposition 3.1 the space Endk(V ) is spanned by g, g ∈ G we see that
trV ((g′ − Id)f) = 0 for all g′ ∈ G, f ∈ EndK(V ). But this implies (?)
that g′ − Id = 0 for all g′ ∈ G. So G = Id.�.

Proof of b) We prove the result by induction in n = dim(V ). By
a) there exist a 1-dimensional subspace V1 ⊂ V such that gv = v for
all v ∈ V . Let V̄ := V/V1. By induction there exists an isomorphism
ᾱ : V̄ → Kn−1 such that ᾱḠᾱ−1 ⊂ Un−1(K) where Ḡ is the image of G
in Aut(V̄ ). Choose (?) now any isomorphism α : V → Kα such that
α(V1) ⊂ Ke1 and the induced map V/V1 → Kn−1 is equal to ᾱ. Then
α satisfies the conditions of the Proposition. (?) �.

To move farther we need more results from commutative algebra.

Lemma 3.3 [Cayley-Hamilton theorem]. Let A be a commutative
ring, I ⊂ A an ideal, M a finitely generated A-module and φ : M → M
a morphism of A-modules such that φ(M) ⊂ IM . Then there exists a

monic polynomial p(t) = tn +
∑n−1

i=0 cit
i, ci ∈ In−i such that p(φ) = 0.

Proof. Choose generators mi, 1 ≤ i ≤ n of the A-module M . Since
φ(M) ⊂ IM we can find ri,j ∈ I, 1 ≤ i, j ≤ n such that

φ(mi) =

n∑

i=1

ri,jaj

So the vector x̄ = (x1, ..., xn) ∈ Mn is in the kernel of the endo-
morphism φId − R where R := (ri,j). If we multiply both sides by
the adjugate matrix to A and use that Cramer’s rule we find that
det(φId − R) = 0.�
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Definition 3.2. a) A commutative k- algebra A is local if it has
unique maximal ideal.

b) If A is a commutative ring, I ⊂ A an ideal we denote by and AI

the localization of A in respect to S := A − I.

Remark. There is striking inconsistence in my [and everybody]
notations. I denote the localization of A in respect to S := A − I by
AI while according to the notations of the first lecture I should write
AA−I . But the notation AI is much shorter then AA−I . Just remember
that we always localize by subsets contains 1.

c) If M is an A-module we define an AI-module MI -module as the
tensor product

MI := M ⊗A AI

Problem 3.3. a) Show that Am is a local ring if m is a maximal ideal
of A.

b) If A is a local ring with a maximal ideal m then any element
r ∈ A − m is invertible.

Lemma 3.4 [Nakayama’s lemma]. Let A be a local ring with the
maximal ideal m and M 6= {0} be a finitely generated A-module. Then
mM 6= M .

Proof. Assume that mM = M . We want to show that any m ∈ M
is equal to 0. If we apply Lemma 3.3 to the case when φ = Id we
see that there exists a monic polynomial p(t) = tn +

∑n−1
i=0 cit

i, ci ∈ m

such that p(Id) = 0. But p(Id)(m) = rm for all m ∈ M where

r := 1 +
∑n−1

i=0 ci ∈ 1 + m. Since the ring A is local and 1 /∈ m we see
[Problem 3.3] that r ∈ A is invertible. So m = 0 for all m ∈ M.�

Lemma 3.5 Let X = (X, A), Y = (Y, B) be irreducible affine al-
gebraic varieties and (f, f ⋆) : X → Y a morphism such that f ⋆ is an
imbedding and B is finitely generated as an A-module. Then the map
f : X → Y is surjective.

Proof. Let m ∈ X be a maximal ideal of A. As follows from
Problem 3.3 the map Am → Bm is an imbedding. Since B is finitely
generated A-module Bm is finitely generated Am-module. It follows now
from the Nakayama’s lemma that Bm 6= mBm and therefore B/mB =
Bm/mBm 6= {0}. Let N̄ be a maximal ideal of the ring B/mB and
N ⊂ B it preimage. Then N is a maximal ideal of B, So N ∈ Y and by
the construction (?) m = f(N).�

Lemma 3.6. Let X = (X, A) be an irreducible affine algebraic
variety, p : X × A1 → X the natural projection and Y = (Y, B) ⊂
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X × A1 a proper closed subset. Then there exists a non-zero a ∈ A
such that the localization Ba is a finite Aa-module.

Proof. Since Y 6= X × A1 there exists f =
∑n

i=0 ait
i ∈ A[t], an 6= 0

such that the restriction of f on Y is equal to zero. Define a = an.
Then Ba is a generated by ti, 0 ≤ i < n as an Aa-module(?).�

Corollary. Let K be a finitely generated k-algebra which is a field.
Then K = k.

Proposition 3.2. Let X = (X, A) be an irreducible affine algebraic
variety, p : X × An → X the natural projection and Y = (Y, B) ⊂
X × An a such that p(Y ) is dense in X. Then p(Y ) contains a non-
empty open subset U of X.

Proof. It is easy to reduce the proof to the case when n = 1 and
Y 6= X. As follows from Lemma 3.6 there exists a non-zero a ∈ A such
that the localization Ba is a finite Aa-module and Ba 6= {0} since p(Y )
is dense in X But then it follows from Lemma 3.5 that p(Y ) contains
the basic open set Ua ⊂ X.�

Problem 3.4. Show that

a) Let X = (X, A) be an irreducible affine algebraic variety, p :
X × An → X the natural projection and Y = (Y, B) ⊂ X × An. Then
the subset p(Y ) ⊂ X is constructible.

b) For any morphism (f, f ⋆ : X → Y the image f(Y ) ⊂ X is con-
structible.

c) Prove the Nullstellensatz. [use the Corollary to Lemma 3.6].

d) Show that under the conditions of Lemma 3.4 the either the image
p(Y ) ⊂ X is dense or there exists non-zero a ∈ A such that Ba = {0}.

Now we will apply these general results to algebraic groups.

Lemma 3.7. a) Let G be an algebraic group, H ⊂ G a dense
constructible subset. Then HH = G.

Proof. Let H−1 := {h−1}, h ∈ H . To show that an element g ∈ G
belongs to HH it is sufficient to prove that gH−1 ∩ H 6= ∅. But
both H and gH−1 are dense constructible subsets of G. Therefore (?)
gH−1 ∩ H 6= ∅.�

Problem 3.5. a) let φ : H → G be a morphism of algebraic groups.
The φ(H) ⊂ G is closed.

b) Any connected algebraic group is irreducible.
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c) Let G0 ⊂ G be the connected component of G containing e. Show
that G0 ⊂ G is a normal subgroup and define a bijection between the
set of connected components of G and the quotient G/G0.

Proposition 3.3 Let G be an algebraic group, H ⊂ G be an irre-
ducible subset containing e and such that H−1 = H . Then the sub-
group G′ ⊂ G generated by H is closed and connected.

Proof. By the definition G′ = H ∪ H2 ∪ ... ∪ Hj ∪ ... where Hj =
HH...H (j-times). Consider the increasing sequence

H ⊂ H2 ⊂ ... ⊂ Hj ⊂ ...

Since

dim(H) ≤ dim(H2)... ≤ dim(Hj)... ≤ dim(G)

there exists m such that dim(Hm) = dim(Hj) for j ≥ m. As follows
from Problem 2.4 all subsets Hj are irreducible. Let Hm be closure
of Hm. It follows from Lemma 2.8 that Hm = Hj for j ≥ m. So by

Lemma 3.7 H2m = H
2m

. So G′ = H
2m

is closed and irreducible. �

Definition 3.2 a) Given two subgroups G1, G2 ⊂ G we define

(G1, G2) := {g1g2g
−1
1 g−1

2 |g1 ∈ G1, g2 ∈ G2}

b) Let G be a connected algebraic group. We define D0(G) =
C0(G) := G, D1(G) = C1(G) := (G, G), Di+1(G) := (Di(G), Di(G)), Ci+1(G) :=
(G, Ci(G)).

Problem 3.6. a) Let G be a connected algebraic group, G1, G2 ⊂ G
closed subgroups such that G1 is irreducible, Then (G1, G2) is closed
and connected subgroup of G.

b) Ci(G), Di(G) are closed, connected normal subgroups of G.

Definition 3.3 We say that an algebraic group G

a) is solvable if Di(G) = {e} for some j > 0,

b) is nilpotent if Ci(G) = {e} for some j > 0.

Example. The subgroup Tn(k) ⊂ GLn(k) of upper-triangular ma-
trices is a closed connected solvable subgroup of GLn(k).

Remark As follows from the theorem 3.1 any unipotent group is
nilpotent.
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Theorem 3.2 (Lie-Morozov) Let G be a connected solvable algebraic
group, ρ : G → Aut(V ) a morphism of algebraic groups where V is a
k-vector space, dim (V ) = n ≥ 1. Then

a) there exists a G-invariant line V1 ⊂ V ,

b) there exists a G-invariant flag V1 ⊂ V2 ⊂ ... ⊂ Vn = V where
Vi ⊂ V are subspaces of dimension i, 1 ≤ i ≤ n,

c) there exists an isomorphism α : V → kn such that αGα−1 ⊂ Tn(k).

Proof of a). We can assume that ρ is irreducible (?). The proof
goes by induction in a number i such that Di(G) = {e}. If i = 1 then
G is commutative and the result follows from the Schur’s lemma. So
assume that i > 1.

Since Di+1(G) = Di(D1(G)) we know that the result is true for
the restriction of ρ to D1(G). So there exist a D1(G)-invariant line
L1 ⊂ V . Let W ⊂ V be the subspace generated by all D1(G)-invariant
lines. We have seen that W 6= {0} and it is easy to check (?) that W is
G-invariant. Since V is irreducible we have W = V = L1⊕L2⊕ ...⊕Ln

where Li are D1(G)-invariant lines. In other words there exists a basis
in V such that ρ(g1) is diagonal for all g1 ∈ G1. In particular we see
that all ρ(g1), g1 ∈ G1 commute.

Fix any g1 ∈ G1. For any g ∈ G we have gg1g
−1 ∈ D1(G). Therefore

all matrices R(g) := ρ(gg1g
−1) belong to set S of diagonal matrices

conjugate to R(e) = ρ(g1). So the set S is finite. Consider the map
R : G → S, g → ρ(gg1g

−1). Since G is connected the image Im(R) ⊂ S
is connected. Since S is a finite we see that Im(R) is a point. So
ρ(g1)ρ(g) = ρ(g)ρ(g1) for all g ∈ G, g1 ∈ G1.

Since V is irreducible it follows from the Schur’s lemma that there
exists a algebraic morphism λ : D1(G) → k∗ such that ρ(g1) = λ(g1)Id
for all g1 ∈ D1(G). On the other hand it is clear that det(ρ(g1)) = 1
for all g1 ∈ D1(G). So λ(D1(G)) ⊂ µn where µn = {x ∈ k∗|xn = 1}.
Since µn is finite and D1(G) is connected we see that λ ≡ 1. So
gg′g−1g′−1 ∈ D1(G) for all g, g′ ∈ G and all ρ(g), g ∈ G commute.
Therefore there exists a G-invariant line V1 ⊂ V .

b) and c) follow from a) as in the proof of Theorem 3.1)�

Corollary Let G be a connected solvable algebraic group and Gu ⊂
G is the subset of unipotent elements. Then Gu is a closed normal
subgroup of G which is nilpotent.


