Some notations.

Let \(G_a := (K, K[x], +) \) be the additive group,
\(G_m := (K^*, K[x, x^{-1}], \times) \) be the multiplicative group,
\(T_n(K) := \{(a_{ij}) \in GL_n(K) | a_{ij} = 0, \forall 1 \leq j < i \leq n\} \),
\(D_n(K) := \{(a_{ij}) \in GL_n(K) | a_{ij} = 0, \forall 1 \leq j \neq i \leq n\} \),
\(U_n(K) := \{(a_{ij}) \in T_n(K) | a_{ii} = 1, \forall 1 \leq i \leq n\} \),
\(SL_n(K) := \{g \in GL_n(K) | \det(g) = 1\} \).

Problem 1 Assume that \(\text{char}(K) = 0 \). Show that for any unipotent element \(u \in GL_n(K) \) there exists unique homomorphism \(\phi : G_a \to GL(n) \) such that \(\phi(1) = u \).

Problem 2

a) Assume that \(\text{char}(K) = p \neq 0 \). Construct a surjective homomorphism \(f : G_a \to G_a \) such that \(f(1) = 0 \).

b) Describe the ring \(R \) of automorphisms of \(G_a \).

c) Describe the ring of automorphisms of \(G_m \).

Now we will do some more of linear algebra.

Lemma 3.1. [Schur] Let \(V \) be a finite-dimensional \(K \)-vector space, \(G \subset Aut(V) \) a group which is acting irreducibly on \(V \). If \(f : V \to V \) is a linear map such that \(f \circ g = g \circ f \) for all \(g \in G \) then \(f = cId \) for some \(c \in K \).

Proof. Let \(\mu \) be an eigenvalue of \(f \). The \(\text{Ker}(f - \mu Id) \) is a non-zero \(G \)-invariant subspace of \(V \). Since \(G \) is acting irreducibly on \(V \) we see that \(V = \text{Ker}(f - \mu Id) \). So \(f = \mu Id \). \(\Box \)

Corollary. Let \(V \) be finite-dimensional \(K \)-vector space, \(\rho \) an irreducible representation of a group \(G \) on \(V \) and \(f : V^n \to V \) is a linear map such that \(f \circ \rho(g) = \rho(g) \circ f \) for all \(g \in G \). Then there exist \(c_i \in K, 1 \geq i \geq n \) such that \(f(v_1, ..., v_n) = c_1 v_1 + ... + c_n v_n \).

Lemma 3.2. For any irreducible representation of \(G \) on \(V \) the representation of \(G \) on \(V^n \) is completely reducible. [that is for any \(G \)-invariant subspace \(W \subset V^n \) there exists a \(G \)-invariant subspace \(W' \subset V^n \) such that \(V^n = W \oplus W' \)].

Proof. The proof is by induction in \(n \). If \(n = 1 \) there is nothing to prove [since \(V \) is irreducible]. Assume that the result is known for \(V^{n-1} \).
For any \(i, 1 \leq i \leq n \) we denote by \(V_i \subset V^n \) the subspace of vectors \((v_1, ..., v_n)\) such that \(v_j = 0 \) for \(j \neq i \) and denote by \(V^{(i)} \subset V^n \) the subspace of vectors \((v_1, ..., v_n)\) such that \(v_j = 0 \) for \(j = i \). So \(V_i, V^{(i)} \) are \(G \)-invariant subspaces of \(V^n \), the representation of \(G \) on \(V_i \) is equivalent to it’s representation on \(V \), the representation on \(V^{(i)} \) is equivalent to representation on \(V^{n-1} \) and \(V^n = V_i \oplus V^{(i)} \). We denote by \(p_i : V^n \to V^{(i)} \) the projection along \(V_i \).

Let \(W \subset V^n \) be a \(G \)-invariant subspace. If \(W = V^n \) there is nothing to prove. So assume that \(W \not\subset V^n \). Since \(V_i, 1 \leq i \leq n \) span \(V \) there exists \(i, 1 \leq i \leq n \) such that \(V_i \not\subset W \). Then \(W \cap V_i \) is a proper \(G \)-invariant subspace of \(V_i \). Since the representation of \(G \) on \(V_i \) is irreducible we have \(W \cap V_i = \{0\} \) and the projection \(p_i \) defines an isomorphism \(W \to p_i(W) \subset V^{(i)} \).

By the inductive assumption there exists \(W'' \subset V^{(i)} \) such that \(V^{(i)} = p_i(W) \oplus W'' \). But this implies that \(V^n = W \oplus W'' \) where \(W' := V_i \oplus W'' \).

Proposition 3.1. [Burnside] Let \(\rho : G \subset Aut(V) \) an irreducible representation of a group \(GV \) be finite-dimensional vector space \(V \). Then the space \(End_k(V) \) is spanned by \((\rho(g)e_1, ..., \rho(g)e_d), g \in G \). We start with the following result.

Claim. \(L = V^d \).

Proof of the Claim. As follows from Lemma 3.2 there exists a \(G \)-invariant subspace \(W \subset V^d \) such that \(V^d = L \oplus W \). Let \(p : V^d \to L \) be the projection along \(W \) and \(q_i := p_i \circ p \). As follows from Corollary 1 for any \(i, 1 \leq i \leq d \) there exists \(c^i_j \in K, 1 \leq j \leq d \) such that \(q_i(v_1, ..., v_n) = c^i_1 v_1 + ... + c^i_n v_n \). On the other hand By the construction \(p(e_1, ..., e_d) = (e_1, ..., e_d) \in L \). So \(q_i(e_1, ..., e_d) = e_i \) and [since \(e_1, ..., e_d \) is a basis of \(V \)] we have \(c^i_j = \delta^i_j \). Therefore \(p = Id \). So \(L = V^d \).

Now it’s easy to finish the proof of the Proposition. Choose any \(f \in End_k(V) \). We want to find \(c_k \in K, g_k \in G, 1 \leq k \leq N \) such that \(f = \sum_{k=1}^N c_k \rho(g_k) \). Consider \(e_f := (f(e_1), ..., f(e_d)) \in V^d \). Since \(L = V^d \) there exists \(c_k \in K, g_k \in G, 1 \leq k \leq N \) such that

\[
e_f = \sum_{k=1}^N c_k (\rho(g_k)e_1, ..., \rho(g_k)e_d)\]

So \(f(e_i) = \sum_{k=1}^N c_k g_k e_i, 1 \leq i \leq d \) and therefore \(f = \sum_{k=1}^N c_k \rho(g_k) \).

□
Definition 3.1. Let $G = (G, A)$ be an affine algebraic group. We say that G is unipotent iff any element of G is unipotent.

Theorem 3.1 [Kolchin] Let $G \subseteq GL(V)$ be a unipotent subgroup. Then

a) there exists a line $L \subset V$ such that $gl = l$ for all $g \in G, l \in L$.

b) there exists an isomorphism $\alpha : V \to K^n$ such that $\alpha G \alpha^{-1} \subset U_n(K)$.

Proof of a). We can assume that the representation of G on V is irreducible [if not restrict your attention to any irreducible subspace of V]. It is clearly sufficient to prove that $G = Id$.

Since G is unipotent $tr_V(g) = dim(V)$ for all $g \in G$. Therefore $tr_V((g' - Id)g) = tr_V(g'g) - tr_V(g) = 0$ for all $g, g' \in G$. Since by Proposition 3.1 the space $End_K(V)$ is spanned by $g, g \in G$ we see that $tr_V((g' - Id)f) = 0$ for all $g', f \in End_K(V)$. But this implies (?) that $g' - Id = 0$ for all $g' \in G$. So $G = Id$. □

Proof of b) We prove the result by induction in $n = dim(V)$. By a) there exist a 1-dimensional subspace $V_1 \subset V$ such that $gv = v$ for all $v \in V$. Let $\bar{V} := V/V_1$. By induction there exists an isomorphism $\bar{\alpha} : \bar{V} \to K^{n-1}$ such that $\bar{\alpha} G \bar{\alpha}^{-1} \subset U_{n-1}(K)$ where \bar{G} is the image of G in $Aut(\bar{V})$. Choose (?) now any isomorphism $\alpha : V \to K^n$ such that $\alpha(V_1) \subset Ke_1$ and the induced map $V/V_1 \to K^{n-1}$ is equal to $\bar{\alpha}$. Then α satisfies the conditions of the Proposition. (?) □

To move farther we need more results from commutative algebra.

Lemma 3.3 [Cayley-Hamilton theorem]. Let A be a commutative ring, $I \subset A$ an ideal, M a finitely generated A-module and $\phi : M \to M$ a morphism of A-modules such that $\phi(M) \subset IM$. Then there exists a monic polynomial $p(t) = t^n + \sum_{i=0}^{n-1} c_i t^i$ such that $p(\phi) = 0$.

Proof. Choose generators $m_i, 1 \leq i \leq n$ of the A-module M. Since $\phi(M) \subset IM$ we can find $r_{i,j} \in I, 1 \leq i, j \leq n$ such that

$$\phi(m_i) = \sum_{j=1}^n r_{i,j} a_j$$

So the vector $\bar{x} = (x_1, ..., x_n) \in M^n$ is in the kernel of the endomorphism $\phi Id - R$ where $R := (r_{i,j})$. If we multiply both sides by the adjugate matrix to A and use that Cramer’s rule we find that $det(\phi Id - R) = 0$. □
Definition 3.2. a) A commutative k-algebra \(A \) is local if it has unique maximal ideal.

b) If \(A \) is a commutative ring, \(I \subset A \) an ideal we denote by \(A_I \) the localization of \(A \) in respect to \(S := A - I \).

Remark. There is striking inconsistence in my [and everybody] notations. I denote the localization of \(A \) in respect to \(S := A - I \) by \(A_I \) while according to the notations of the first lecture I should write \(A_{A-I} \). But the notation \(A_I \) is much shorter then \(A_{A-I} \). Just remember that we always localize by subsets contains 1.

c) If \(M \) is an \(A \)-module we define an \(A_I \)-module \(M_I \) as the tensor product

\[M_I := M \otimes_A A_I \]

Problem 3.3. a) Show that \(A_m \) is a local ring if \(m \) is a maximal ideal of \(A \).

b) If \(A \) is a local ring with a maximal ideal \(m \) then any element \(r \in A - m \) is invertible.

Lemma 3.4 [Nakayama’s lemma]. Let \(A \) be a local ring with the maximal ideal \(m \) and \(M \neq \{0\} \) be a finitely generated \(A \)-module. Then \(mM \neq 0 \).

Proof. Assume that \(mM = M \). We want to show that any \(m \in M \) is equal to 0. If we apply Lemma 3.3 to the case when \(\phi = Id \) we see that there exists a monic polynomial \(p(t) = t^n + \sum_{i=0}^{n-1} c_i t^i, c_i \in m \) such that \(p(Id) = 0 \). But \(p(Id)(m) = rm \) for all \(m \in M \) where \(r := 1 + \sum_{i=0}^{n-1} c_i \in 1 + m \). Since the ring \(A \) is local and \(1 \notin m \) we see [Problem 3.3] that \(r \in A \) is invertible. So \(m = 0 \) for all \(m \in M \). ☐

Lemma 3.5 Let \(X = (X, A), Y = (Y, B) \) be irreducible affine algebraic varieties and \((f, f^*) : X \to Y \) a morphism such that \(f^* \) is an imbedding and \(B \) is finitely generated as an \(A \)-module. Then the map \(f : X \to Y \) is surjective.

Proof. Let \(m \in X \) be a maximal ideal of \(A \). As follows from Problem 3.3 the map \(A_m \to B_m \) is an imbedding. Since \(B \) is finitely generated \(A \)-module \(B_m \) is finitely generated \(A_m \)-module. It follows now from the Nakayama’s lemma that \(B_m \neq mB_m \) and therefore \(B/mB = B_m/mB_m \neq \{0\} \). Let \(N \) be a maximal ideal of the ring \(B/mB \) and \(N \subset B \) it preimage. Then \(N \) is a maximal ideal of \(B \), So \(N \in Y \) and by the construction \(m = f(N) \). ☐

Lemma 3.6. Let \(X = (X, A) \) be an irreducible affine algebraic variety, \(p : X \times \mathbb{A}^1 \to X \) the natural projection and \(Y = (Y, B) \subset \)
$X \times A^1$ a proper closed subset. Then there exists a non-zero $a \in A$ such that the localization B_a is a finite A_a-module.

Proof. Since $Y \neq X \times A^1$ there exists $f = \sum_{i=0}^{n} a_i t^i \in A[t], a_n \neq 0$ such that the restriction of f on Y is equal to zero. Define $a = a_n$. Then B_a is a generated by $t^i, 0 \leq i < n$ as an A_a-module. □

Corollary. Let K be a finitely generated k-algebra which is a field. Then $K = k$.

Proposition 3.2. Let $X = (X, A)$ be an irreducible affine algebraic variety, $p : X \times A^n \to X$ the natural projection and $Y = (Y, B) \subset X \times A^n$ a such that $p(Y)$ is dense in X. Then $p(Y)$ contains a non-empty open subset U of X.

Proof. It is easy to reduce the proof to the case when $n = 1$ and $Y \neq X$. As follows from Lemma 3.6 there exists a non-zero $a \in A$ such that the localization B_a is a finite A_a-module and $B_a \neq \{0\}$ since $p(Y)$ is dense in X. But then it follows from Lemma 3.5 that $p(Y)$ contains the basic open set $U_a \subset X$. □

Problem 3.4. Show that

a) Let $X = (X, A)$ be an irreducible affine algebraic variety, $p : X \times A^n \to X$ the natural projection and $Y = (Y, B) \subset X \times A^n$. Then the subset $p(Y) \subset X$ is constructible.

b) For any morphism $(f, f^* : X \to Y$ the image $f(Y) \subset X$ is constructible.

c) Prove the Nullstellensatz. [use the Corollary to Lemma 3.6].

d) Show that under the conditions of Lemma 3.4 the either the image $p(Y) \subset X$ is dense or there exists non-zero $a \in A$ such that $B_a = \{0\}$.

Now we will apply these general results to algebraic groups.

Lemma 3.7. a) Let G be an algebraic group, $H \subset G$ a dense constructible subset. Then $HH = G$.

Proof. Let $H^{-1} := \{h^{-1}\}, h \in H$. To show that an element $g \in G$ belongs to HH it is sufficient to prove that $gH^{-1} \cap H \neq \emptyset$. But both H and gH^{-1} are dense constructible subsets of G. Therefore (?) $gH^{-1} \cap H \neq \emptyset$. □

Problem 3.5. a) let $\phi : H \to G$ be a morphism of algebraic groups. The $\phi(H) \subset G$ is closed.

b) Any connected algebraic group is irreducible.
c) Let $G^0 \subset G$ be the connected component of G containing e. Show that $G^0 \subset G$ is a normal subgroup and define a bijection between the set of connected components of G and the quotient G/G^0.

Proposition 3.3 Let G be an algebraic group, $H \subset G$ be an irreducible subset containing e and such that $H^{-1} = H$. Then the subgroup $G' \subset G$ generated by H is closed and connected.

Proof. By the definition $G' = H \cup H^2 \cup \ldots \cup H^j \cup \ldots$ where $H^i = HH\ldots H$ (j-times). Consider the increasing sequence

$$H \subset H^2 \subset \ldots \subset H^j \subset \ldots$$

Since

$$\dim(H) \leq \dim(H^2) \ldots \leq \dim(H^j) \ldots \leq \dim(G)$$

there exists m such that $\dim(H^m) = \dim(H^j)$ for $j \geq m$. As follows from Problem 2.4 all subsets H^j are irreducible. Let $\overline{H^m}$ be closure of H^m. It follows from Lemma 2.8 that $\overline{H^m} = \overline{H^j}$ for $j \geq m$. So by Lemma 3.7 $H^{2m} = \overline{H^{2m}}$. So $G' = \overline{H^{2m}}$ is closed and irreducible. □

Definition 3.2 a) Given two subgroups $G_1, G_2 \subset G$ we define

$$(G_1, G_2) := \{g_1g_2g_1^{-1}g_2^{-1} | g_1 \in G_1, g_2 \in G_2\}$$

b) Let G be a connected algebraic group. We define $D^0(G) = C^0(G) := G, D^1(G) = C^1(G) := (G, G), D^{i+1}(G) := (D^i(G), D^i(G)), C^{i+1}(G) := (G, C^i(G))$.

Problem 3.6. a) Let G be a connected algebraic group, $G_1, G_2 \subset G$ closed subgroups such that G_1 is irreducible, Then (G_1, G_2) is closed and connected subgroup of G.

b) $C^i(G), D^i(G)$ are closed, connected normal subgroups of G.

Definition 3.3 We say that an algebraic group G

a) is solvable if $D^i(G) = \{e\}$ for some $j > 0$,

b) is nilpotent if $C^i(G) = \{e\}$ for some $j > 0$.

Example. The subgroup $T_n(k) \subset GL_n(k)$ of upper-triangular matrices is a closed connected solvable subgroup of $GL_n(k)$.

Remark As follows from the theorem 3.1 any unipotent group is nilpotent.
Theorem 3.2 (Lie-Morozov) Let G be a connected solvable algebraic group, $\rho : G \to Aut(V)$ a morphism of algebraic groups where V is a k-vector space, $\dim(V) = n \geq 1$. Then

a) there exists a G-invariant line $V_1 \subset V$,

b) there exists a G-invariant flag $V_1 \subset V_2 \subset \ldots \subset V_n = V$ where $V_i \subset V$ are subspaces of dimension $i, 1 \leq i \leq n$,

c) there exists an isomorphism $\alpha : V \rightarrow k^n$ such that $\alpha G \alpha^{-1} \subset T_n(k)$.

Proof of a). We can assume that ρ is irreducible (?). The proof goes by induction in a number i such that $D^i(G) = \{e\}$. If $i = 1$ then G is commutative and the result follows from the Schur’s lemma. So assume that $i > 1$.

Since $D^{i+1}(G) = D^i(D^1(G))$ we know that the result is true for the restriction of ρ to $D^1(G)$. So there exist a $D^1(G)$-invariant line $L_1 \subset V$. Let $W \subset V$ be the subspace generated by all $D^1(G)$-invariant lines. We have seen that $W \neq \{0\}$ and it is easy to check (?) that W is G-invariant. Since V is irreducible we have $W = V = L_1 \oplus L_2 \oplus \ldots \oplus L_n$ where L_i are $D^1(G)$-invariant lines. In other words there exists a basis in V such that $\rho(g_1)$ is diagonal for all $g_1 \in G_1$. In particular we see that all $\rho(g_1), g_1 \in G_1$ commute.

Fix any $g_1 \in G_1$. For any $g \in G$ we have $gg_1g^{-1} \in D^1(G)$. Therefore all matrices $R(g) := \rho(gg_1g^{-1})$ belong to set S of diagonal matrices conjugate to $R(e) = \rho(g_1)$. So the set S is finite. Consider the map $R : G \rightarrow S, g \rightarrow \rho(gg_1g^{-1})$. Since G is connected the image $Im(R) \subset S$ is connected. Since S is a finite we see that $Im(R)$ is a point. So $\rho(g_1)\rho(g) = \rho(g)\rho(g_1)$ for all $g \in G, g_1 \in G_1$.

Since V is irreducible it follows from the Schur’s lemma that there exists a group morphism $\lambda : D^1(G) \rightarrow k^*$ such that $\rho(g_1) = \lambda(g_1)Id$ for all $g_1 \in D^1(G)$. On the other hand it is clear that $\det(\rho(g_1)) = 1$ for all $g_1 \in D^1(G)$. So $\lambda(D^1(G)) \subset \mu_n$ where $\mu_n = \{x \in k^*| x^n = 1\}$.

Since μ_n is finite and $D^1(G)$ is connected we see that $\lambda \equiv 1$. So $gg'g^{-1}g'^{-1} \in D^1(G)$ for all $g, g' \in G$ and all $\rho(g), g \in G$ commute. Therefore there exists a G-invariant line $V_1 \subset V$.

b) and c) follow from a) as in the proof of Theorem 3.1) □

Corollary Let G be a connected solvable algebraic group and $G_u \subset G$ is the subset of unipotent elements. Then G_u is a closed normal subgroup of G which is nilpotent.