Some notations.
Let G, := (K, K[x], +) be the additive group,

G,, = (K*, K[z,x7'], X) be the multiplicative group,
T.(K) == {(aij) € GLy(K)|a;; =0,V1 < j <i <n},
Du(K) = {(037) € GLu(K)|as; = 0,91 < j £ < n},
Un(K) = {(a;j) € T,(K)|a; = 1,V1 <i <n},
SL,(K):={g € GL,(K)|det(g) = 1}

Problem 1 Assume that char(K) = 0. Show that for any unipotent
element u € GL(n, K) there exists unique homomorphism ¢ : G, —
GL(n) such that ¢(1) = u.

Problem 2 a) Assume that char(K) = p # 0. Construct a surjective
homomorphism f : G, — G, such that f(1) = 0.

b*) Describe the ring R of automorphisms of G,.
c¢) Describe the ring of automorphisms of G,,.
Now we will do some more of linear algebra.

Lemma 3.1. [Schur| Let V' be a finite-dimensional K-vector space,
G C Aut(V') a group which is acting irreducibly on V. If f: V — V
is a linear map such that fog = go f for all g € G then f = cld for
some ¢ € K.

Proof. Let p be an eigenvalue of f. The Ker(f — uld) is a non-zero
G-invariant subspace of V. Since G is acting irreducibly on Vwe see
that V = Ker(f — uld). So f = pld.d Let V' be finite-dimensional

K-vector space with an action of a group GG. Then G acts on V™.

Corollary. Let V be finite-dimensional K-vector space, p an irre-
ducible representation of a group G on V and f: V" — V is a linear
map such that f o p(g) = p(g) o f for all g € G. Then there exist
¢; € K,1>1i>nsuch that f(vy,...,v,) = c1v1 + ... + CpUy.

Lemma 3.2. For any irreducible representation of G on V the
representation of G on V" is completely reducible. [ that is for any G-
invariant subspace W C V" there exists a G-invariant subspace W' C
V™ such that V" =W @ W'].

Proof. The proof is by induction in n. If n = 1 there is nothing
to prove [since V is irreducible]. Assume that the result is known for
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For any 7,1 <7 < n we denote by V; C V"™ the subspace of vectors
(1, ..., v,) such that v; = 0 for j # i and denote by V@ C V™ the
subspace of vectors (vy, ..., v,) such that v; = 0 for j = 4. So V;, V@ are
G-invariant subspaces of V", the representation of G on Vj is equivalent
to it’s representation on V, the representation on V® is equivalent to
representation on V"~ ! and V"* = V; @ V. We denote by p; : V" —
V@ the projection along V;.

Let W C V™ be a G-invariant subspace. If W = V" there is nothing
to prove. So assume that W ¢ V™. Since V;,1 < i < n span V
there exists 4,1 < ¢ < n such that V; ¢ W. Then W N'V; is a proper
G-invariant subspace of V;. Since the representation of G on Vj is
irreducible we have W N'V; = {0} and the projection p; defines an
isomorphism W — p;(W) c®.

By the inductive assumption there exists W” C V@ such that V® =
pi(W)@W?”. But this implies that V" = W& W' where W' := V;eW"O

Proposition 3.1. [Burnside] Let p : G C Aut(V) an irreducible

representation of a group G V be finite-dimensional vector space V.
Then the space Endy (V) is spanned by p(g),g € G.

Proof. Let eq,...,eq be a basis of V and L C V¢ be the subspace
spanned by (p(g)e1, ..., p(9)eq), g € G. We start with the following
result.

Claim. L = V<

Proof of the Claim. As follows from Lemma 3.2 there exists a
G-invariant subspace W C V¢ such that V¢ =L®W. Let p: V¢ — L
be the projection along W and ¢; := p; o p. As follows from Corollary
1 for any i,1 < ¢ < d there exists ¢/ € K,1 < j < d such that
¢i(v1, ..., v) = g + ... + cv,. On the other hand By the construction
pler,...,eq) = (e1,...,eq) € L. So gi(eq,...,eq) = e; and [since ey, ..., &4
is a basis of V] we have ¢/ = §/. Therefore p = Id. So L = V0.

Now it’s easy to finish the proof of the Proposition. Choose any
f € Endg(V). We want to find ¢, € K, g, € G,1 < k < N such

that f = S0 cxp(g)e. Consider e; == (f(e1), ..., f(eq)) € V. Since
L = V< there exists ¢; € K, g, € G,1 < k < N such that

ef = Z cr(p(gr)ers -, p(gr)eq)

So f(e;) = Z;ngzl ckgrei, 1 < i < d and therefore f = Z,iv:l cep(gr) 0.
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Definition 3.1. Let G = (G, A) be an affine algebraic group. We
say that G is unipotent iff any element of G is unipotent.

Theorem 3.1 [Kolchin] Let G € GL(V) be a unipotent subgroup.
Then

a) there exists a line L C V such that gl =1 for all g € G,[ € L.

b) there exists an isomorphism « : V' — K™ such that aGa™! C
U, (K).

Proof of a). We can assume that the representation of G on V' is
irreducible [ if not restrict your attention to any irreducible subspace
of V]. It is clearly sufficient to prove that G = Id.

Since G is unipotent try(g) = dim(V) for all ¢ € G. Therefore
try((¢' — Id)g) = try(g'g) — try(g) = 0 for all g,¢" € G. Since by
Proposition 3.1 the space End(V) is spanned by g, g € G we see that
try((¢' —Id)f) =0 for all ¢ € G, f € Endg (V). But this implies (7)
that ¢ — Id =0 for all ¢’ € G. So G = Id.C0.

Proof of b) We prove the result by induction in n = dim(V'). By
a) there exist a 1-dimensional subspace Vi C V such that gv = v for
allv € V. Let V := V/Vj. By induction there exists an isomorphism
a:V — K" ! such that aGa~' C U,_(K) where G is the image of G
in Aut(V'). Choose (?) now any isomorphism « : V — K< such that
a(Vy) C Ke; and the induced map V/V; — K" ! is equal to &. Then

« satisfies the conditions of the Proposition. (7) .

To move farther we need more results from commutative algebra.

Lemma 3.3 [Cayley-Hamilton theorem|. Let A be a commutative
ring, I C A an ideal, M a finitely generated A-module and ¢ : M — M
a morphism of A-modules such that ¢(M) C IM. Then there exists a
monic polynomial p(t) = t" + 327" ¢;t!, ¢; € I"~* such that p(¢) = 0.

Proof. Choose generators m;,1 < i < n of the A-module M. Since
¢(M) C IM we can find r;; € 1,1 <i,j < n such that

n

$(mi) = rija;

i=1

So the vector z = (z1,...,4,) € M™ is in the kernel of the endo-
morphism ¢/d — R where R := (r;;). If we multiply both sides by
the adjugate matrix to A and use that Cramer’s rule we find that
det(¢pld — R) = 0.0



Definition 3.2. a) A commutative k- algebra A is local if it has
unique maximal ideal.

b) If A is a commutative ring, I C A an ideal we denote by and A;
the localization of A in respect to S := A — 1.

Remark. There is striking inconsistence in my [and everybody]
notations. I denote the localization of A in respect to S := A — I by
A; while according to the notations of the first lecture I should write
A _r. But the notation A; is much shorter then A4_;. Just remember
that we always localize by subsets contains 1.

c) If M is an A-module we define an A;-module M;-module as the
tensor product
M[ =M ®A A[
Problem 3.3. a) Show that A, is a local ring if m is a maximal ideal
of A.

b) If A is a local ring with a maximal ideal m then any element
r € A —m is invertible.

Lemma 3.4 [Nakayama’s lemma]. Let A be a local ring with the
maximal ideal m and M # {0} be a finitely generated A-module. Then
mM # M.

Proof. Assume that mM = M. We want to show that any m € M
is equal to 0. If we apply Lemma 3.3 to the case when ¢ = Id we
see that there exists a monic polynomial p(t) = t" + Z?:_Ol citl,c; €m
such that p(Id) = 0. But p(Id)(m) = rm for all m € M where
ri=1+ 2?2—01 ¢; € 1+ m. Since the ring A is local and 1 ¢ m we see

[Problem 3.3] that r € A is invertible. So m = 0 for all m € M.[J
Lemma 3.5 Let X = (X, A),Y = (Y, B) be irreducible affine al-

gebraic varieties and (f, f*) : X — Y a morphism such that f* is an
imbedding and B is finitely generated as an A-module. Then the map

f: X — Y is surjective.

Proof. Let m € X be a maximal ideal of A. As follows from
Problem 3.3 the map A, — By, is an imbedding. Since B is finitely
generated A-module By, is finitely generated Ay,-module. It follows now
from the Nakayama’s lemma that By, # mBy, and therefore B/mB =
Bw/mBy, # {0}. Let N be a maximal ideal of the ring B/mB and
N C B it preimage. Then N is a maximal ideal of B, So N € Y and by
the construction (?) m = f(N).OI

Lemma 3.6. Let X = (X, A) be an irreducible affine algebraic
variety, p : X x A" — X the natural projection and ¥ = (Y, B) C
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X x A! a proper closed subset. Then there exists a non-zero a € A
such that the localization B, is a finite A,-module.

Proof. Since Y # X x A! there exists f = > a;t" € Aft],a, # 0
such that the restriction of f on Y is equal to zero. Define a = a,.
Then B, is a generated by t/,0 < i < n as an A,-module(?).0]

Corollary. Let K be a finitely generated k-algebra which is a field.
Then K = k.

Proposition 3.2. Let X = (X, A) be an irreducible affine algebraic
variety, p : X X A" — X the natural projection and Y = (Y, B) C
X x A" a such that p(Y) is dense in X. Then p(Y) contains a non-
empty open subset U of X.

Proof. It is easy to reduce the proof to the case when n = 1 and
Y # X. As follows from Lemma 3.6 there exists a non-zero a € A such
that the localization B, is a finite A,-module and B, # {0} since p(Y’)
is dense in X But then it follows from Lemma 3.5 that p(Y’) contains
the basic open set U, C X.[J

Problem 3.4. Show that

a) Let X = (X, A) be an irreducible affine algebraic variety, p :
X x A" — X the natural projection and Y = (Y, B) C X x A". Then
the subset p(Y') C X is constructible.

b) For any morphism (f, f* : X — Y the image f(Y) C X is con-
structible.

c) Prove the Nullstellensatz. [use the Corollary to Lemma 3.6].

d) Show that under the conditions of Lemma 3.4 the either the image
p(Y) C X is dense or there exists non-zero a € A such that B, = {0}.

Now we will apply these general results to algebraic groups.

Lemma 3.7. a) Let G be an algebraic group, H C G a dense
constructible subset. Then HH = G.

Proof. Let H™!':= {h™'},h € H. To show that an element g € G
belongs to HH it is sufficient to prove that ¢gH ' N H # (. But
both H and gH ! are dense constructible subsets of G. Therefore (?)
gH'NH # 0.0

Problem 3.5. a) let ¢ : H — G be a morphism of algebraic groups.
The ¢(H) C G is closed.
b) Any connected algebraic group is irreducible.



c) Let G° C G be the connected component of G' containing e. Show
that GY C @ is a normal subgroup and define a bijection between the
set of connected components of G and the quotient G/G°.

Proposition 3.3 Let G be an algebraic group, H C G be an irre-
ducible subset containing e and such that H~! = H. Then the sub-
group G’ C G generated by H is closed and connected.

Proof. By the definition G’ = H U H*>U ... U H' U ... where H’ =
HH...H (j-times). Consider the increasing sequence

HcH*?c..c H c ..

Since

dim(H) < dim(H?)... < dim(H?)... < dim(G)

there exists m such that dim(H™) = dim(H’) for j > m. As follows
from Problem 2.4 all subsets H’ are irreducible. Let H™ be closure
of H™. It follows from Lemma 2.8 that H™ = HJ for j > m. So by

Lemma 3.7 H>" = H". So &' = H" is closed and irreducible. [
Definition 3.2 a) Given two subgroups G, G C G we define

(G1,G2) = {919207 '95 |91 € G1, 92 € Ga}

b) Let G be a connected algebraic group. We define D°(G) =
C°(G) = G, DY(G) = CY(G) = (G, G), D"H(G) = (D'(G), D'(@G)), C"H(G) =
(G, C(@)).

Problem 3.6. a) Let G be a connected algebraic group, G1,Gy C G
closed subgroups such that G is irreducible, Then (G, G5) is closed
and connected subgroup of G.

b) CY(G), D(G) are closed, connected normal subgroups of G.
Definition 3.3 We say that an algebraic group G

a) is solvable if D'(G) = {e} for some j > 0,

b) is nilpotent if C*(G) = {e} for some j > 0.

Example. The subgroup 7, (k) C GL,(k) of upper-triangular ma-
trices is a closed connected solvable subgroup of GL,, (k).

Remark As follows from the theorem 3.1 any unipotent group is
nilpotent.
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Theorem 3.2 (Lie-Morozov) Let G be a connected solvable algebraic
group, p : G — Aut(V) a morphism of algebraic groups where V is a
k-vector space, dim (V') =n > 1. Then

a) there exists a G-invariant line V; C V,

b) there exists a G-invariant flag V; € Vo C ... C V,, = V where
V; C V are subspaces of dimension 7,1 <17 < n,

c) there exists an isomorphism a : V' — k" such that aGa™' C T,,(k).

Proof of a). We can assume that p is irreducible (7). The proof
goes by induction in a number i such that D'(G) = {e}. If i = 1 then
G is commutative and the result follows from the Schur’s lemma. So
assume that 7 > 1.

Since D"™(G) = D'(D'(G@)) we know that the result is true for
the restriction of p to D'(G). So there exist a D'(G)-invariant line
Ly C V. Let W C V be the subspace generated by all D!(G)-invariant
lines. We have seen that W # {0} and it is easy to check (7) that W is
G-invariant. Since V is irreducible we have W =V = L1 ® Ly ®...B L,
where L; are D'(G)-invariant lines. In other words there exists a basis
in V such that p(g;) is diagonal for all g; € G;. In particular we see
that all p(¢g1), 1 € G1 commute.

Fix any g, € G;. For any g € G we have gg;g~' € D(G). Therefore
all matrices R(g) := p(gg1g~") belong to set S of diagonal matrices
conjugate to R(e) = p(g1). So the set S is finite. Consider the map
R:G — S,g— p(ggig™"). Since G is connected the image Im(R) C S
is connected. Since S is a finite we see that I'm(R) is a point. So

p(91)p(g) = p(g)p(g1) for all g € G, g1 € G1.

Since V' is irreducible it follows from the Schur’s lemma that there
exists a algebraic morphism X : D'(G) — k* such that p(g;) = A(g1)Id
for all g; € D'(G). On the other hand it is clear that det(p(g;)) = 1
for all g1 € DY(G). So A(D'(Q)) C py, where p, = {z € k*|2" = 1}.
Since i, is finite and D'(G) is connected we see that A = 1. So
g9'g7 g’ € DYG) for all g,¢' € G and all p(g),g € G commute.
Therefore there exists a G-invariant line V; C V.

b) and c¢) follow from a) as in the proof of Theorem 3.1)O

Corollary Let G be a connected solvable algebraic group and G,, C
G is the subset of unipotent elements. Then G, is a closed normal
subgroup of G which is nilpotent.



