We start with the following general result.

Lemma 2.1 Let \(\phi : X \to Y \) be a morphism of affine varieties such that \(\phi^* : k[Y] \to k[X] \) is surjective. Then \(Z := \text{Im}(\phi) \subseteq Y \) is a closed subset of \(Y \) and \(\phi \) defines an isomorphism \(X \to Z \) of affine algebraic varieties.

Proof. Let \(I := \text{Ker}(\phi^*) \). Then \(I \) is a primitive ideal of \(k[Y] \). It defines a closed subset \(Z \) of \(Y \) and moreover \(Z = (Z, k[Y]/I) \) is an affine variety. Since \(\phi^* \) is surjective it defines an isomorphism \(k[Y]/I \to k[X] \).

Definition 2.1.

a) An affine algebraic group is an affine variety \(G = (G, A) \) and a group structure \(m : G \times G \to G, \text{inv} : G \to G, e \in G \) on \(G \) such that the maps \(m, \text{inv} \) are morphisms of affine varieties. All algebraic groups in this course are affine.

b) Let \(X = (X, B) \) be an affine variety. An *action* of \(G \) on \(X \) is an action \(a : G \times X \to X \) of the group \(G \) on \(X \) such that \(a : G \times X \to X \) is a morphism of affine varieties. For any \(g \in G \) we define \(a(g) : X \to X \) by \(a(g)(x) := a(g, x) \).

c) Given an action \(a : G \times X \to X \) of an algebraic group \(G \) on an affine variety \(X = (X, B) \) we denote by \(\rho_a : G \to \text{Aut}(B) \) the representation of \(G \) on \(B \) given by \(\rho_a(g)(f)(x) := f(a(g^{-1})(x)), f \in B, x \in X, g \in G \).

d) In the case \(X = G \) we obtain the *left regular representation* \(l \) of \(G \) on the space \(A \) of regular functions on \(G \)

\[
l(g)(f)(x) := f(g^{-1}x), f \in A, x, g \in G
\]

and the *right regular representation* \(r \) of \(G \) on the space \(A \) of regular functions on \(G \)

\[
l(g)(f)(x) := f(xg), f \in A, x, g \in G
\]

Examples

a) The additive group \(\mathbb{G}_a \). We take \(G = \mathbb{A}^1 \) with the addition as the group operation. Then \(A = k[x], A \otimes A = k[x, y], \text{inv}^*(f) = f(-x) \) and the map \(m^* : A \to A \otimes A \) is given by \(m^*(f) = f(x + y) \).

b) The multiplicative group \(\mathbb{G}_m \). We take \(G = \mathbb{A}^1 - \{0\} \) with the multiplication as the group operation. Then \(A = k[x, x^{-1}], A \otimes A = k[x, x^{-1}, y, y^{-1}], \text{inv}^*(f) = f(x^{-1}) \) and the map \(m^* : A \to A \otimes A \) is given by \(m^*(f) = f(xy) \).

c) The matrix group \(GL_n \). Let \(GL_n \subseteq M_n \) be the basic open set \(X \in M_n | D(X) \neq 0 \) where \(D(X) \) is the determinant of \(X \). The group operation is the matrix multiplication. Then \(k[GL_n] = k[T_{ij}, D^{-1}] \) and
the map \(m^* \) is given by

\[
m^*(T_{ij}) = \sum_{k=1}^{n} T_{ik} \otimes T_{kj}
\]

It is clear that \(GL_1 = \mathbb{G}_m \).

d) Let \(m^*_{GL_n} : k[GL_n] \rightarrow k[GL_n] \otimes k[GL_n] \) be as in c). Since \(D(xy) = D(x)D(y) \) we have \(m^*_{\mathbb{GL}_n}(D) = D \otimes D \). So the closed subset

\[
SL_n(k) = \{x \in GL_n(k)|D(x) = 1\}
\]

inherits the structure of an algebraic group. □

Problems 2.1

a) Let \(L \) be a finite-dimensional \(k \)-vector space, Define the structure of algebraic group \(Aut(L) \) on the group \(Aut(L) \) of invertible linear transformations of \(L \).

b) Let \((G, A) \) be an algebraic group, \(\rho : G \rightarrow GL_n(k) \) a representation. Show that \(\rho \) defines a homomorphism of algebraic groups iff there exists \(a^i_j \in A, 1 \leq i, j \leq n \) such that

\[
\rho(g) = (ev_g(a^i_j))_{i,j=1}^{n}, g \in G
\]

c) Let \(G = (G, A), H = (H, B) \) be algebraic groups. Define a notion of a homomorphism \(\phi : G \rightarrow H \) of algebraic groups without any appeal to groups \(G \) and \(H \).

d) Let \(G \) be an affine algebraic variety, \(m : G \times G \rightarrow G, inv : G \rightarrow G \) algebraic morphisms and \(e \in G \). We denote by and \(\gamma : G \rightarrow G \) be the constant map onto \(e \in G \). Write diagrams using the multiplication \(\mu : A \otimes A \rightarrow A \) and the maps \(m^*, inv^* \) and \(\gamma \) whose commutativity express the the group axioms for \(G \). □

Lemma 2.2 Let \(g : G \times X \rightarrow X \) be an action of an algebraic group on an affine variety \((X, B) \) and \(\rho_a : G \rightarrow Aut(B) \) the corresponding representation. Show that

a) A subspace \(L \subset B \) is \(\rho \)-invariant iff \(a^*(L) \subset A \otimes L \).

b) For any finite-dimensional subspace \(L' \subset B \) there exists a finite-dimensional \(\rho_a \)-invariant subspace \(L \subset B \) containing \(L \).

c) Let \((G, A) \) be an algebraic group, \(c : A \rightarrow A \) an algebra automorphism commuting with \(r(g) \) for all \(g \in G \). Then there exists unique \(y \in G \) such that \(c = l(y) \).

Proof. a') Assume that \(L \subset B \) is \(\rho(g) \)-invariant for all \(g \in G \). We want to show that \(a^*(L) \subset A \otimes L \). Fix \(l \in L \). Since the action
a : G × X → X is algebraic we have

\[a^*(l) = \sum_{i=1}^{n} f_i \otimes b_i, f_i \in k[G], b_i \in B = k[X] \]

Moreover we can assume that the functions \(f_i \in k[G], 1 \leq i \leq n \) are linearly independent. Since \(\rho(g)(l) \in L \) for all \(g \in G \) we see that \(\sum_{i=1}^{n} f_i(g)b_i(= \rho(g)(l)) \) lies in \(L \) for all \(g \in G \). It is now easy to see (?) that \(b_i \in L \) for all \(1 \leq i \leq m \).

a') Conversely, assume that \(a^*(L) \subset A \otimes L \). Then for any \(l \in L \) we have

\[a^*(l) = \sum_{i=1}^{n} f_i \otimes b_i, f_i \in k[G], b_i \in L \]

But then then \(\rho(g)(l) = \sum_{i=1}^{n} f_i(g)b_i = \rho(g)(l) \in L \).

b) Let \(l_j, 1 \leq j \leq m \) be a basis of \(L' \). Since the action \(a : G \times X \to X \) is algebraic we have

\[a^*(l_j) = \sum_{i=1}^{n_j} f_j^i(g) \otimes b_j^i, f_j^i \in k[G], b_j^i \in B = k[X], 1 \leq i \leq n_j \]

Then (?) the subspace \(L \) of \(B \) spanned by \(b_j^i, 1 \leq j \leq m, 1 \leq i \leq n_j \) contains \(L' \) and is \(\rho \)-invariant.

c) Consider the homomorphism \(\alpha : A \to k, f \to c(f)(e) \). Then \(\ker(\alpha) \) is a maximal ideal of \(A \). Therefore [by the Nullstellensatz] there exists \(g \in G \) such that \(\alpha(f) = f(y), f \in A \). So \(c(f)(e) \equiv f(y) \). Since \(c \) commutes with with \(r(g) \) for all \(g \in G \) we see that

\[c(f)(g) = r(g)(c(f))(e) = c(r(g)(f))(e) = r(g)(f)(y) = f(yg) = l(y)(f)(g) \]

Theorem 2.1. If \(G = (G, A) \) is an [affine] algebraic group then there exists a morphism \(\phi : G \to GL_n(k) \) of algebraic groups such that \(\text{Im}(\phi) \) is a closed subgroup of \(GL_n(k) \) and \(\phi \) defines an isomorphism \(\phi : G \to \text{Im}(\phi) \) of algebraic groups.□

Proof. Let \(l : G \times X \to G \) be the left regular representation and \(a_1, ..., a_r \) be generators of the algebra \(A \). As follows from Lemma 2.2 b) there exists a finite-dimensional \(l \)-invariant subspace \(L \subset A \) containing \(a_1, ..., a_r \). Choose a basis \(l_i, 1 \leq i \leq n \) of \(L \). Since the left regular representation is algebraic there exist \(a_i^j \in A, 1 \leq i, j \leq n \) such that

\[l_i(g'g'') = \sum_{j=1}^{n} (a_i^j)(g')l_j(g''), g', g'' \in G \]
Consider now the map
\[\psi : G \to GL_n(k), g \to (a^1_j(g)) \]
It is clear (?) that \(\psi \) is a morphism of algebraic groups and that the map \(\psi^* : k[GL_n] \to A \) is surjective.

Theorem 2.1 follows now from Lemma 2.1. □

We discuss now some results familiar from Linear algebra.

Definition 2.2. Let \(V \) be a finite-dimensional \(k \)-vector space,
\[d := \text{dimension } (V), x \in \text{End}(V). \]

a) \(x \) is semisimple if \(x \) is diagonalizable,
b) \(x \) is unipotent if all eigenvalues of \(x \) are equal to 1,
c) For any \(\mu \in k \) we define
\[V_\mu := \{ v \in V | (x - \mu Id)^d v = 0 \} \]
d) We denote by \(P_x(t) \) the characteristic polynomial \(P_x(t) := \det(t - x) \) and by \(\text{Spect}(x) \subset k \) the set of roots of \(P_x(t) \). Then we have \(P_x(t) = \prod_{\mu \in \text{Spect}(x)} (t - \mu)^{m_\mu} \) where \(m_\mu \) is the order of zero of \(P_x(t) \) at \(\mu \). □

Lemma 2.3 a) Let \(V \) be a finite-dimensional \(k \)-vector space, \(x \in \text{End}(V) \). Then \(P_x(x) = 0. \)

Proof. For any \(x \in \text{End}(V) \) we denote by \(\text{ad}(x) : \text{End}(V) \to \text{End}(V) \) the linear map \(y \to [x,y] := xy - yx \) and by \(\text{disc}(x) \) the characteristic polynomial of \(\text{ad}(x) \). Let
\[U := \{ x \in \text{End}(V) | \text{disc}(x) \neq 0 \} \]
It is clear that any \(x \in U \) the subspaces \(V_\mu, \mu \in \text{Spect}(x) \) are one-dimensional and the matrix \(x \) is conjugate to a diagonal matrix with the set of diagonal entries equal to \(\text{Spect}(x) \). So the restriction of \(P_x(x) : \text{End}(V) \to \text{End}(V) \) to \(U \) is equal to zero. Choose a basis \(v_1, ..., v_d \) in \(V \) and consider the matrix coefficients of \(P_x(x) \) as polynomial function \(f_{i,j}, 1 \leq i, j \leq d \) on the algebraic variety \(\text{End}(V) \). We want to prove that \(f_{i,j} \equiv 0 \) for all \(1 \leq i, j \leq d \).

Since the restriction of \(P_x(x) : \text{End}(V) \to \text{End}(V) \) is equal to zero we see that the restriction of on the basic set \(U = U_{\text{disc}} \) is equal to zero. In other words the image of \(f_{i,j} \) in the ring \(k[\text{End}(V)]_{\text{disc}} \) is equal to zero. But is follows from Problem 1.1 b) that the kernel of the localization map \(k[\text{End}(V)] \to k[\text{End}(V)]_{\text{disc}} \) is equal to \(\{0\} \). So \(f_{i,j} \equiv 0 \) for all \(1 \leq i, j \leq d \). □
Definition 2.3. a) Let V be a [not necessary finite-dimensional] k-vector space. We say that an automorphism $g : V \to V$ is locally finite if for any vector $v \in V$ there exists a finite-dimensional g-invariant subspace $W \subset V$ containing v.

b) we say that a locally finite automorphism $s : V \to V$ is locally semisimple if for any s-invariant finite-dimensional subspace $W \subset V$ the automorphism s_W is semisimple.

c) we say that a locally finite automorphism $s : V \to V$ is locally unipotent if for any s-invariant finite-dimensional subspace $W \subset V$ the automorphism s_W is unipotent.□

In the next problem all vector spaces in the part a) -m) are finite-dimensional.

Problem 2.2 a) Let $g \in \text{Aut}(V)$ be an element of finite order m. Then g is semisimple iff m is prime to the characteristic p of k. [We assume that every number is prime to 0].

b) $V_\mu \neq \{0\}$ iff $\mu \in \text{Spect}(g)$.

c) $V = \bigoplus_{\mu \in \text{Spect}(g)} V_\mu$.

d) If $s' : V \to V$ are semisimple and $u, u' : V \to V$ a unipotent automorphisms such that $g = u's' = s'u'$ and $g = us = su$ then $s' = s, u' = u$.

e) Let $s_g \in \text{Aut}(V)$ be such that $s_g(v) = \mu v$ for $v \in V_\mu$. Then s_g is semisimple, $u_g := s_g^{-1}g$ is unipotent and $g = u_gs_g = s_gu_g$.

Remark This decomposition $g = su = us$ is called the Jordan decomposition of g.

f) Let $R_g[t] \in k[t]$ be a polynomial such that $R_g(\mu) = \mu$ for all $\mu \in \text{Spect}(g)$ and the order of zero of $R_g[t] - \mu$ at μ is not less then m_μ for all $\mu \in \text{Spect}(g)$. Then $s_g = R_g[g]$.

g) Show the existence of a polynomial $Q_g[t]$ such that $u_g = Q_g[g]$.

h) For any $x \in \text{Aut}(V)$ such that $gx = xg$ we have $s_gx = xs_g, u_gx = xu_g$.

i) If $W \subset V$ is g-invariant then it is s_g-invariant and u_g-invariant.

m) Let V, V' be k-vectors spaces, $g \in \text{Aut}(V)), g' \in \text{Aut}(V'))$ and $r : V \to V'$ a k-linear map such that $g' \circ r = r \circ g$. Then

$$s' \circ r = r \circ s, u' \circ r = r \circ u$$

where $g = su, g' = s'u'$ are the Jordan decompositions of g, g'.
n) Let \(A \) be a \(k \)-vector space, \(r \in Aut(A) \) a locally finite automorphism of \(A \). Then there exists unique pair \(S, U \) of locally finite automorphism of \(A \) such that \(r = SU = US \), \(S \) is locally semisimple and \(U \) is locally unipotent. Moreover in the case when \(A \) is a \(k \)-algebra and \(r \) is a locally finite automorphism of \(A \) the linear automorphisms \(S \) and \(U \) are algebra automorphisms of \(A \).

o)* Show the existence of the Jordan decomposition for any perfect field \(k \).

p) Let \(L = \mathbb{F}_2(t) \) [so \(L \) is not perfect],

\[
g = \begin{pmatrix} 0 & 1 \\ t & 0 \end{pmatrix}
\]

Show that one can’t find \(s, u \in GL_2(L) \), \(s \) semisimple, \(u \) unipotent, such that \(g = su = us \).

q) Formulate and prove the additive version of the Jordan decomposition for for \(M_n(k) \) where \(k \) is an algebraically closed field. □

Definition 2.4. Let \((G,A)\) be an [affine] algebraic group. As follows from Lemma 2.2 operators \(r(g) : A \to A, g \in G \) are locally finite. We say that \(g \in G \) is **semisimple** if \(r(g) : A \to A \) is semisimple and that \(g \in G \) is **unipotent** if \(r(g) : A \to A \) is unipotent. □

Theorem 2.2. Let \((G,A)\) be an [affine] algebraic group, \(g \in G \). Then there exists unique elements \(s, u \in G \) such that \(g = su = us \) where \(s \) is semisimple and \(u \) is unipotent.

Proof. I leave for you to prove the uniqueness.

Let \(r(g) = SU \) be the decomposition as in Lemma Problem 2.2 n). As follows from Problem Lemma 2.2 h) the automorphisms \(S \) and \(U \) commute with operators \(l(g), g \in G \). Therefore it follows from Lemma 2.2 c) that there exist \(s, u \in G \) such that \(S = r(s), U = r(u) \). By the definition \(S \) is semisimple, \(u \) is unipotent and it is easy to see that \(g = su = us \). □

Problem 2.3 a) Show that in the case \(G = GL_n(k) \) the definition 2.4 coincides with the definition 2.2

Remark This decomposition \(g = su \) is called the **Jordan decomposition** of \(g \).

b) Let \((G,A), (H,B)\) be algebraic groups and \(\phi : G \to H \) be a morphism of algebraic groups. Let \(g = su \) be the Jordan decomposition of an element \(g \in G \). Then \(\phi(g) = \phi(s)\phi(u) \) is the Jordan decomposition of \(\phi(g) \in H \). □
The construction of the Jordan decomposition of elements of G is a little ad hoc. So I’ll give a more “categorical” explanation.

Definition 2.5 a) Let $G = (G, A)$ be an [affine] algebraic group. A representation of G is a representation $\rho_V : G \to Aut(V)$ where V is a finite-dimensional k-vector space and $\rho_V : G \to Aut(V)$ is a morphism of algebraic groups.

b) A G-data is rule which associates with any representation $\rho_V : G \to Aut(V)$ of G an automorphism $\alpha \in Aut(V)$ such that

\[
\begin{align*}
\alpha_V \otimes V'' &= \alpha_V \otimes \alpha_{V''} \\
\text{for any } G\text{-morphism } f : V' \to V'' \text{ we have } \alpha_{V''} \circ f = f \circ \alpha_{V'}.
\end{align*}
\]

It is clear that any $g \in G$ defines a G-data $\alpha(g)$ such that $\alpha_V(g) := \rho_V(g)$.

Lemma 2.7 For any G-data α there exists unique $g \in G$ such that $\alpha = \alpha(g)$.

Proof. Let α be a G-data. As follows form Lemma 2.2 we can write

A as a union $A = \bigcup_n V_n$ where $V_n \subset G, V_{n-1} \subset V_n, n > 0$ are finite dimensional subspaces invariant under the left regular representation. So we can define $\alpha_{V_n} \subset Aut(V_n), n > 0$. As follows from the condition c) the automorphisms $\alpha_{V_n}, n > 0$ come from an automorphism α_A of the vector space A. Using the conditions b) and c) we see that

$\alpha_A(f'f'') = \alpha_A(f')\alpha_A(f'')$

for all $f', f'' \in A$. In other words we see that α_A an automorphism of the algebra A. As follows from the condition c) α_A commutes with the right shifts. As follows from Lemma 2.2 c) there exists $g \in G$ such that $\alpha_A(f) = r(g)(f)$ for all $f \in A$.

Using Lemma 2.7 we can give a very short [an conceptual] definition of the Jordan decomposition of $g \in G$. For any representation $\rho_V : G \to Aut(V)$ of G we consider the Jordan decomposition $\rho_V(g) = s_V u_V$ of $\rho_V(g)$ and define $\alpha(s) := s_V, \alpha(u) := u_V$. As follows from Lemma 2.5 g) $\alpha(s)$ and $\alpha(u)$ are G-datas and therefore there exists $s, u \in G$ such that $\alpha(s) = \rho_V(s), \alpha(u) = \rho_V(u)$. Then $g = su$ is the Jordan decomposition of an element $g \in G$.

Definition 2.6 a) We say that a topological space X is irreducible if $X \neq \emptyset$ and X is not a union of two proper closed subsets. A subset $Y \subset X$ is irreducible if it is irreducible in the induced topology.

b) Let X be a topological space. A subset of X is locally closed if it is an intersection of an open and a closed subsets of X. A subset of
X is constructible if it is a union of a finite number of locally closed subsets. □

Problem 2.4

a) If (X, A) is an affine variety then X is irreducible iff A is integral $[=\text{does not have zero divisor}].$

b) A constructible subset $Y \subset X$ is irreducible iff it’s closure \overline{Y} is irreducible.

c) Let X, X' be topological spaces such that X is irreducible and $f : X \rightarrow X'$ is a continuous map. Then $f(X)$ is irreducible.

d) If X is irreducible, $U \subset X$ is open non-empty then U is irreducible and dense in X. □

e) Let X be a Noetherian topological space. Then there exists only a finite number of maximal irreducible subsets of X, X is a union of it’s maximal irreducible subsets, and every irreducible subset of X is contained in a maximal irreducible subset. □

f) If $Y \subset X$ is a constructible subset then there exists a set $U \subset Y$ which is open and dense in the closure \overline{Y} of Y. □.

Definition 2.8.

a) Let (X, A) be an irreducible affine variety. Then $\dim(X) := \deg.tr_k(Q_A)$ where Q_A is the field of fractions of A.

b) For any affine variety X we define $\dim(X)$ as the maximal dimension of its irreducible components. □.

Lemma 2.8. Let (X, A) be an affine variety, $Z \subset X$ a closed irreducible subspace. Then $\dim(Z) \leq \dim(X)$ and if $\dim(Z) = \dim(X)$ then Z is an irreducible component of (X). □

Proof. It is easy (?) to reduce the proof to the case when (X, A) is irreducible. We have to show that for any proper closed irreducible subspace $Z \subset X$ we have $\dim(Z) < \dim(X)$. Since $Z \subset X$ is closed it has the form $Z = \mathcal{V}(I)$ where $I \subset A$ is a non-zero ideal and we have to show that

$$\deg.tr_k(Q_B) < \deg.tr_k(Q_A), B := A/I$$

Let $d = \deg.tr_k(Q_A)$. Then we can find algebraically independent elements $a_1, ..., a_d \in A$ such that for any non-zero $x \in A$ there exists a monic polynomial $P_x[t] = t^n + \sum_{i=0}^{n-1} c_i[a_1, ..., a_d]t^i$ with coefficients in the subring $k[a_1, ..., a_d] \subset A$ such that $c_0[a_1, ..., a_d] \neq 0$ and $P_x[x] = 0$. We denote by $b_1, ..., b_d \in B$ the images of a_i under the reduction $A \rightarrow B$.

Let x be a non-zero element of $I, P := P_x = \sum_{i=0}^{n} c_i[a_1, ..., a_d] t^i$. So

$$x^n + \sum_{i=0}^{n-1} c_i[a_1, ..., a_d] x^i = 0$$

Since $x \in I$ we see that $c_0[b_1, ..., b_d] = 0$. Therefore we can find $j_0, 1 \leq j_0 \leq d$ such that $b_j \in B$ is algebraic over $k[a_j, j \neq j_0]$. Therefore $\text{deg} tr_k(Q_B) < d$. □

Problem 2.4

a) Let $\phi : X \to Y$ be a morphism of affine varieties and $\phi^* : k[Y] \to k[X]$ be the associated algebra homomorphism. Show that

a) If X is irreducible then the closure $\overline{\phi(X)}$ is also irreducible and $\dim \overline{\phi(X)} \leq \dim(X)$,

b) ϕ^* is injective iff $\phi(X)$ is dense in Y,

c) if X, Y are irreducible affine varieties then $\dim(X \times Y) = \dim(X) + \dim(Y)$.