
We start with the following general result.

Lemma 2.1 Let φ : X → Y be a morphism of affine varieties such
that φ∗ : k[Y ] → k[X] is surjective. Then Z := Im(φ) ⊂ Y is a closed
subset of Y and φ defines an isomorphism X → Z of affine algebraic
varieties.

Proof. Let I := Ker(φ∗). Then I is a primitive ideal of k[Y ].
It defines a closed subset Z of Y and moreover Z = (Z, k[Y ]/I) is an
affine variety. Since φ∗ is surjective it defines an isomorphism k[Y ]/I →
k[X]�.

Definition 2.1. a) An affine algebraic group is an affine variety
G = (G,A) and a group structure m : G×G→ G, inv : G→ G, e ∈ G
on G such that the maps m, inv are morphisms of affine varieties. All
algebraic groups in this course are affine.

b) Let X = (X,B) be an affine variety. An action of G on X is an
action a : G×X → X of the group G on X such that a : G×X → X is
a morphism of affine varieties. For any g ∈ G we define a(g) : X → X
by a(g)(x) := a(g, x).

c) Given an action a : G × X → X of an algebraic group G on
an affine variety X = (X,B) we denote by ρa : G → Aut(B) the
representation of G on B given by ρa(g)(f)(x) := f(a(g−1)(x)), f ∈
B, x ∈ X, g ∈ G.

d) In the case X = G we obtain the left regular representation l of
G on the space A of regular functions on G

l(g)(f)(x) := f(g−1x), f ∈ A, x, g ∈ G

and the right regular representation r of G on the space A of regular
functions on G

l(g)(f)(x) := f(xg), f ∈ A, x, g ∈ G�

Examples a) The additive group Ga. We take G = A1 with the addi-
tion as the group operation. Then A = k[x], A⊗A = k[x, y].inv⋆(f) =
f(−x) and the map m⋆ : A→, A⊗A is given by m⋆(f) = f(x+ y).

b) The multiplicative group Gm. We take G = A1 − {0} with the
multiplication as the group operation. Then A = k[x, x−1], A ⊗ A =
k[x, x−1, y, y−1], inv⋆(f) = f(x−1) and the map m⋆ : A →, A ⊗ A is
given by m⋆(f) = f(xy)

c) The matrix group GLn. Let GLn ⊂ Mn be the basic open set
X ∈ Mn|D(X) 6= 0 where D(X) is the determinant of X. The group
operation is the matrix multiplication. Then k[GLn] = k[Tij, D

−1] and
1
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the map m⋆ is given by

m⋆(Tij) =
n

∑

k=1

Tik ⊗ Tkj

It is clear that GL1 = Gm.

d) Let m⋆
GLn

: k[GLn] → k[GLn]⊗k[GLn] be as in c). Since D(xy) =
D(x)D(y) we have m⋆

GLn
(D) = D ⊗D. So the closed subset

SLn(k) = {x ∈ GLn(k)|D(x) = 1}

inherits the structure of an algebraic group.�

Problems 2.1 a) Let L be a finite-dimensional k-vector space, De-
fine the structure of algebraic group Aut(L) on the group Aut(L) of
invertible linear transformations of L.

b) Let (G,A) be an algebraic group, ρ : G → GLn(k) a representa-
tion. Show that ρ defines a homomorphism of algebraic groups iff there
exists aj

i ∈ A, 1 ≤ i, j ≤ n such that

ρ(g) = (evg(a
j
i ))

n
i,j=1, g ∈ G

c) let G = (G,A), H = (H,B) be algebraic groups. Define a notion
of a homomorphism φ : G→ H of algebraic groups without any appeal
to groups G and H .

d) Let G be an affine algebraic variety, m : G×G→ G, inv : G→ G
algebraic morphisms and e ∈ G. We denote by and γ : G → G be
the constant map onto e ∈ G. Write diagrams using the multiplication
µ : A ⊗ A → A and the maps m⋆, inv⋆ and γ whose commutativity
express the the group axioms for G�.

Lemma 2.2 Let a : G×X → X be an action of an algebraic group
on an affine variety (X,B) and ρa : G → Aut(B) the corresponding
representation. Show that

a) A subspace L ⊂ B is ρ-invariant iff a∗(L) ⊂ A⊗ L.

b) For any finite-dimensional subspace L′ ⊂ B there exists a finite-
dimensional ρa-invariant subspace L ⊂ B containing L.

c) Let (G,A) be an algebraic group, c : A→ A an algebra automor-
phism commuting with r(g) for all g ∈ G. Then there exists unique
y ∈ G such that c = l(y).

Proof. a’) Assume that L ⊂ B is ρ(g)-invariant for all g ∈ G.
We want to show that a∗(L) ⊂ A ⊗ L. Fix l ∈ L. Since the action
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a : G×X → X is algebraic we have

a⋆(l) =

n
∑

i=1

fi ⊗ bi, fi ∈ k[G], bi ∈ B = k[X]

Moreover we can assume that the functions fi ∈ k[G], 1 ≤ i ≤ n are
linearly independent. Since ρ(g)(l) ∈ L for all g ∈ G we see that
∑n

i=1 fi(g)bi(= ρ(g)(l)) lies in L for all g ∈ G. It is now easy to see (?)
that bi ∈ L for all 1 ≤ i ≤ m.

a”) Conversely, assume that a∗(L) ⊂ A⊗ L. Then for any l ∈ L we
have

a∗(l) ==

n
∑

i=1

fi ⊗ bi, fi ∈ k[G], bi ∈ L

But then then ρ(g)(l) =
∑n

i=1 fi(g)bi = ρ(g)(l) ∈ L.

b) Let lj , 1 ≤ j ≤ m be a basis of L′. Since the action a : G×X → X
is algebraic we have

a⋆(lj) =

nj
∑

i=1

f i
j(g) ⊗ bij , f

i
j ∈ k[G], bij ∈ B = k[X], 1 ≤ i ≤ nj

Then (?) the subspace L of B spanned by bij , 1 ≤ j ≤ m, 1 ≤ i ≤ nj

contains L′ and is ρ-invariant.

c) Consider the homomorphism α : A → k, f → c(f)(e). Then
ker(α) is a maximal ideal of A. Therefore [ by the Nullstellensatz]
there exists y ∈ G such that α(f) = f(y), f ∈ A. So c(f)(e) ≡ f(y).
Since c commutes with with r(g) for all g ∈ G we see that

c(f)(g) = r(g)(c(f))(e) = c(r(g)(f))(e) = r(g)(f)(y) = f(yg) = l(y)(f)(g)�

Theorem 2.1. If G = (G,A) is an [affine] algebraic group then
there exists a morphism φ : G→ GLn(k) of algebraic groups such that
Im(φ) is a closed subgroup of GLn(k) and φ defines an isomorphism
φ : G→ Im(φ) of algebraic groups.�

Proof. Let l : G × G → G be the left regular representation and
a1, ..., ar be generators of the algebra A. As follows from Lemma 2.2 b)
there exists a finite-dimensional l-invariant subspace L ⊂ A containing
a1, ..., ar. Choose a basis li, 1 ≤ i ≤ n of L. Since the left regular
representation is algebraic there exist aj

i ∈ A, 1 ≤ i, j ≤ n such that

li(g
′g′′) =

n
∑

j=1

(aj
i )(g

′)lj(g
′′), g′, g′′ ∈ G
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Consider now the map

ψ : G→ GLn(k), g → (aj
i (g))

It is clear (?) that ψ is a morphism of algebraic groups and that the
map ψ∗ : k[GLn] → A is surjective.

Theorem 2.1 follows now from Lemma 2.1.�

We discuss now some results familiar from Linear algebra.

Definition 2.2. Let V be a finite-dimensional k-vector space, d :=
dimension (V ), x ∈ End(V ).

a) x is semisimple if x is diagonalizable,

b) x is unipotent if all eigenvalues of x are equal to 1,

c) For any µ ∈ k we define

Vµ := {v ∈ V |(x− µId)dv = 0}

d) We denote by Px(t) the characteristic polynomial Px(t) := det(t−
x) and by Spect(x) ⊂ k the set of roots of Px(t), Then we have Px(t) =
∏

µ∈Spect(x)(t− µ)mµ where mµ is the order of zero of Px(t) at µ.�

Lemma 2.3 a) Let Let V be a finite-dimensional k-vector space,
x ∈ End(V ). Then Px(x) = 0.�

Proof. For any x ∈ End(V ) we denote by ad(x) : End(V ) →
End(V ) the linear map y → [x, y] := xy − yx and by disc(x) the
characteristic polynomial of ad(x). Let

U := {x ∈ End(V )|disc(x) 6= 0}

It is clear that any x ∈ U the subspaces Vµ, µ ∈ Spect(x) are one-
dimensional and the matrix x is conjugate to a diagonal matrix with the
set of diagonal entries equal to Spect(x). So the restriction of Px(x) :
End(V ) → End(V ) to U is equal to zero. Choose a basis v1, ..., vd in
V and consider the matrix coefficients of Px(x) as polynomial function
fi,j, 1 ≤ i, j ≤ d on the algebraic variety End(V ). We want to prove
that fi,j ≡ 0 for all 1 ≤ i, j ≤ d.

Since the restriction of Px(x) : End(V ) → End(V ) is equal to zero
we see that the restriction of on the basic set U = Udisc is equal to
zero. In other words the image of fi,j in the ring k[End(V )]disc is
equal to zero. But is follows from Problem 1.1 b) that the kernel of
the localization map k[End(V )] → k[End(V )]disc is equal to {0}. So
fi,j ≡ 0 for all 1 ≤ i, j ≤ d.�
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Definition 2.3. a) Let V be a [not necessary finite-dimensional] k-
vector space. We say that an automorphism g : V → V is locally finite

if for any vector v ∈ V there exists a finite-dimensional g-invariant
subspace W ⊂ V containing v.

b) we say that a locally finite automorphism s : V → V is locally

semisimple if for any s-invariant finite-dimensional subspace W ⊂ V
the automorphism sW is semisimple.

c) we say that a locally finite automorphism s : V → V is locally

unipotent if for any s-invariant finite-dimensional subspace W ⊂ V the
automorphism sW is unipotent.�

In the next problem all vector spaces in the part a) -m) are finite-
dimensional.

Problem 2.2 a) Let g ∈ Aut(V ) be an element of finite order m.
Then g is semisimple iff m is prime to the characteristic p of k. [We
assume that every number is prime to 0].

b) Vµ 6= {0} iff µ ∈ Spect(g).

c) V = ⊕µ∈Spect(g)Vµ.

d) If s′ : V → V are semisimple and u, u′ : V → V a unipotent
automorphisms such that g = u′s′ = s′u′ and g = us = su then
s′ = s, u′ = u.

e) Let sg ∈ Aut(V ) be such that sg(v) = µv for v ∈ Vµ. Then sg is
semisimple, ug := s−1

g g is unipotent and g = ugsg = sgug.

Remark This decomposition g = su = us is called the Jordan de-

composition of g.

f) Let Rg[t] ∈ k[t] be a polynomial such that Rg(µ) = µ for all
µ ∈ Spect(g) and the order of zero of Rg[t]−µ at µ is not less then mµ

for all µ ∈ Spect(g). Then sg = Rg[g].

g) Show the existence of a polynomial Qg[t] such that ug = Qg[g]

h) For any x ∈ Aut(V ) such that gx = xg we have sgx = xsg, ugx =
xug

l) If W ⊂ V is g-invariant then it is sg-invariant and ug-invariant.

m) Let V, V ′ be k-vectors spaces, g ∈ Aut(V )), g′ ∈ Aut(V ′)) and
r : V → V ′ a k-linear map such that g′ ◦ r = r ◦ g. Then

s′ ◦ r = r ◦ s, u′ ◦ r = r ◦ u

where g = su, g′ = s′u′ are the Jordan decompositions of g, g′.
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n) Let A be a k-vector space, r ∈ Aut(A) a locally finite auto-
morphism of A. Then there exists unique pair S, U of locally finite
automorphism of A such that r = SU = US, S is locally semisimple
and U is locally unipotent. Moreover in the case when A is a k-algebra
and r is a locally finite automorphism of A the linear automorphisms
S and U are algebra automorphisms of A.

o)⋆ Show the existence of the Jordan decomposition for any perfect
field k.

p) Let L = F2(t) [ so L is not perfect],

g =

(

0 1
t 0

)

Show that one can’t find s, u ∈ GL2(L), s semisimple, u unipotent,
such that g = su = us.

q) Formulate and prove the additive version of the Jordan decompo-
sition for for Mn(k) where k is an algebraically closed field.�

Definition 2.4. Let (G,A) be an [affine] algebraic group. As follows
from Lemma 2.2 operators r(g) : A → A, g ∈ G are locally finite. We
say that g ∈ G is semisimple if r(g) : A → A is semisimple and that
g ∈ G is unipotent if r(g) : A→ A is unipotent.�

Theorem 2.2. Let (G,A) be an [affine] algebraic group, g ∈ G.
Then there exists unique elements s, u ∈ G such that g = su = us
where s is semisimple and u is unipotent.

Proof. I leave for you to prove the uniqueness.

Let r(g) = SU be the decomposition as in Lemma Problem 2.2 n).
As follows from Problem Lemma 2.2 h) the automorphisms S and U
commute with operators l(g), g ∈ G. Therefore it follows from Lemma
2.2 c) that there exist s, u ∈ G such that S = r(s), U = r(u). By
the definition S is semisimple, u is unipotent and it is easy to see that
g = su = us.�

Problem 2.3 a) Show that in the case G = GLn(k) the definition
2.4 coincides with the definition 2.2

Remark This decomposition g = su is called the Jordan decompo-

sition of g
b) Let (G,A), (H,B) be algebraic groups and φ : G→ H be a mor-

phism of algebraic groups. Let g = su be the Jordan decomposition of
an element g ∈ G. Then φ(g) = φ(s)φ(u) is the Jordan decomposition
of φ(g) ∈ H�.
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The construction of the Jordan decomposition of elements of G is a
little ad hoc. So I’ll give a more ”categorical” explanation.

Definition⋆ 2.5 a) Let G = (G,A) be an [affine] algebraic group. A
representation of G is a representation ρV : G→ Aut(V ) where V is a
finite-dimensional k-vector space and ρV : G→ Aut(V ) is a morphism
of algebraic groups.

b) A G-data is rule which α associates with any representation ρV :
G→ Aut(V ) of G an automorphism αV ∈ Aut(V ) such that

a) αV ′⊕V ′′ = αV ′ ⊕ αV ′′ ,
b) αV ′⊗V ′′ = αV ′ ⊗ αV ′′ and
c) for any G-morphism f : V ′ → V ′′ we have αV ′′ ◦ f = f ◦ αV ′.

It is clear that any g ∈ G defines a G-data α(g) such that αV (g) :=
ρV (g).�

Lemma 2.7 For any G-data α there exists unique g ∈ G such that
α = α(g).�

Proof. Let α be a G-data. As follows form Lemma 2.2 we can write
A as a union A = ∪nVn where Vn ⊂ A, Vn−1 ⊂ Vn, n > 0 are finite
dimensional subspaces invariant under the left regular representation.
So we can define αVn

⊂ Aut(Vn), n > 0. As follows from the condition
c) the automorphisms αVn

, n > 0 come from an automorphisms αA of
the vector space A. Using the conditions b) and c) we see that

αA(f ′f ′′) = αA(f ′)αA(f ′′)

for all f ′, f ′′ ∈ A. In other words we see that αA an automorphism of
the algebra A. As follows from the condition c) αA commutes with the
right shifts. As follows from Lemma 2.2 c) there exists g ∈ G such that
αA(f) = r(g)(f) for all f ∈ A�

Using Lemma 2.7 we can give a very short [ an conceptual] definition
of the Jordan decomposition of g ∈ G. For any representation ρV : G→
Aut(V ) of G we consider the Jordan decomposition ρV (g) = sV uV of
ρV (g) and define α(s) := sV , α(u) := uV . As follows from Lemma
2.5 g) α(s) and α(u) are G-datas and therefore there exists s, u ∈ G
such that α(s)V ≡ ρV (s), α(u)V ≡ ρV (u). Then g = su is the Jordan
decomposition of an element g ∈ G�.

Definition 2.6.a) We say that a topological space X is irreducible

if X 6= ∅ and X is not a union of two proper closed subsets. A subset
Y ⊂ X is irreducible if it is irreducible in the induced topology.

b) Let X be a topological space. A subset of X is locally closed if
it is an intersection of an open and a closed subsets of X. A subset of
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X is constructible if it is a union of a finite number of locally closed
subsets.�

Problem 2.4 a) If (X,A) is an affine variety then X is irreducible
iff A is integral [= does not have zero divisor].

b) A constructible subset Y ⊂ X is irreducible iff it’s closure Ȳ is
irreducible.

c) Let X,X ′ be topological spaces such that X is irreducible and
f : X → X ′ is a continuous map. Then f(X) is irreducible.

d) If X is irreducible, U ⊂ X is open non-empty then U is irreducible
and dense in X�.

e) Let X be a Noetherian topological space. Then there exists only
a finite number of maximal irreducible subsets of X, X is a union of
it’s maximal irreducible subsets, and every irreducible subset of X is
contained in a maximal irreducible subset.�

f) If Y ⊂ X is a constructible subset then there exists a set U ⊂ Y
which is open and dense in the closure Ȳ of Y.�.

Definition 2.8. a) Let (X,A) be an irreducible affine variety. Then
dim(X) := deg.trk(QA) where QA is the field of fractions of A.

b) For any affine variety X we define dim(X) as the maximal dimen-
sion of it irreducible components. �.

Lemma 2.8. Let (X,A) be an affine variety, Z ⊂ X a closed
irreducible subspace. Then dim(Z) ≤ dim(X) and if dim(Z) = dim(X)
then Z is an irreducible component of (X).�

Proof. It is easy (?) to reduce the proof to the case when (X,A)
is irreducible. We have to show that for any proper closed irreducible
subspace Z ⊂ X we have dim(Z) < dim(X). Since Z ⊂ X is closed it
has the form Z = V(I) where I ⊂ A is a non-zero ideal and we have to
show that

deg.trk(QB) < deg.trk(QA), B := A/I

Let d = deg.trk(QA). Then we can find algebraically independent
elements a1, ..., ad ∈ A such that for any non-zero x ∈ A there exists a
monic polynomial Pa[t] = tn +

∑n−1
i=0 ci[a1, ..., ad]t

i with coefficients in
the subring k[a1, ..., ad] ⊂ A such that c0[a1, ..., ad] 6= 0 and Px[x] = 0.
We denote by b1, ..., bd ∈ B the images of ai under the reduction A→ B.
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Let x be a non-zero element of I, P := Px =
∑n

i=0 ci[a1, ..., ad]t
i. So

xn +
n−1
∑

i=0

ci[a1, ..., ad]x
i = 0

Since x ∈ I we see that c0[b1, ..., bd] = 0. Therefore we can find j0, 1 ≤
j0 ≤ d such that bj ∈ B is algebraic over k[aj , j 6= j0. Therefore
deg.trk(QB) < d.�,

Problem 2.4 a) Let φ : X → Y be a morphism of affine varieties
and φ∗ : k[Y ] → k[X] be the associated algebra homomorphism. Show
that

a) If X is irreducible then the closure φ(X) is also irreducible and

dimφ(X) ≤ dim(X),

b) φ∗ is injective iff φ(X) is dense in Y ,
c) if X, Y are irreducible affine varieties then
dim(X × Y ) = dim(X)+dim(Y ).


