
In this course we will discuss applications of the Model theory to
Algebraic geometry and Analysis. There is long list of examples and I
mention only some of applications:

1) Tarski proved the elimination of quantifiers in the theory of real
closed fields. The following statement used by Hormander in his works
on differential equations is a corollary of the Tarski’s result

For any polynomial P (x) ∈ R[x1, ..., xn] there are positive constants
c, r such that

|P (x)| ≥ c|x− Z(P )|r, ∀x ∈ Rn, |x| ≤ 1

where Z(P ) ⊂ Rn is the set of zeros of P and |x| =
√

x2
1 + ... + x2

n.

2) Ax [Ax, James Injective endomorphisms of varieties and schemes.
Pacific J. Math. 31 1969 1–7] used the Model theory for the proof of
the following result:

Let X be a complex algebraic variety, f : X → X a regular map
which is an imbedding. Then f is onto .

3) Ax and Kochen [Ax, James; Kochen, Simon Diophantine problems
over local fields. I. Amer. J. Math. 87 1965 605–630] have shown that
for any n ∈ N there exists s(n) ∈ N such that for any prime number
p > s(n) any homogeneous polynomial equation
P (x0, ..., xn2) = 0, where P ∈ Qp[x0, ..., xn2] is a polynomial of degree

n, has a non-zero solution.

d) In works of Denef [Denef, J. On the evaluation of certain p-adic
integrals. Sminaire de thorie des nombres, Paris 1983–84, 25–47, Progr.
Math., 59, Birkhuser Boston, Boston, MA, 1985. ], Loeser and Cluck-
ers [Fonctions constructibles exponentielles, transformation de Fourier
motivique et principe de transfert. R. Cluckers, F. Loeser] the Model
theory is used to obtain new results about p-adic integrals and their
”motivic” generalizations.

In spite of it successes, the Model theory did not enter into a ”tool
box” of mathematicians and even many of mathematicians working on
”Motivic integrations” are content to use the results logicians without
understanding the details of the proofs.

I don’t know any mathematician who did not start as a logician and
for whom it was ”easy and natural ” to learn the Model theory. Often
the experience of learning of the Model theory is similar to the one of
learning of Physics: for a [short] while everything is so simple and so
easily reformulated in familiar terms that ”there is nothing to learn”
but suddenly one find himself in a place when Model theoreticians
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”jump from a tussock to a hummock” while we mathematicians don’t
see where to ”put a foot” and are at a complete loss.

So we have two questions:
a) Why is the Model theory so useful in different areas of Mathe-

matics?
b) Why is it so difficult for mathematicians to learn it ?

But really these two questions are almost the same- it is difficult
to learn the Model theory since it appeals to different intuition. But
exactly this new outlook leads to the successes of the Model theory.

One difficultly facing one who is trying to learn Model theory is
disappearance of the ”natural” distinction between the formalism and
the substance. For example the fundamental existence theorem says
that the syntactic analysis of a theory [ the existence or non- existence
of a contradiction] is equivalent to the semantic analysis of a theory [
the existence or non- existence of a model].

The other novelty is related to a very general phenomena. A math-
ematical object never comes in a pure form but always on a definite
background. Finding a new way of constructions usually lead to sub-
stantial achievements.

For example, a differential manifold is ”something” which is locally
like a ball. But we almost never construct a differential manifold X
by gluing it from balls. For a long time the usual way to construct
a differential manifold X was to realize it at a subvariety of a simple
manifold M [ a sphere, a projective space e.t.c].

A substantial progress in topology in the last 20 years comes from
a ”simple observation” due to physicists on can realize a differential
manifold X as quotient of an ”infinite-dimensional submanifold” Y
of a ”simple” infinite-dimensional manifold M . For example Donald-
son’s works on the invariants of differential 4-manifolds are based on
the consideration of the moduli space of self-dual connections which
is the quotient of the ”infinite-dimensional submanifold” self-dual con-
nections by the gauge group.

This tension between an abstract definition and a concrete construc-
tion is addressed in both the Category theory and the Model theory.
The Category theory is directed to a removal of the importance of a
concrete construction. It provides a language to compare different con-
crete construction and in addition provides a very new way to construct
objects as ”representable functors” which allows to construct objects
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internally. This construction is based on the Yoneda’s lemma which I
consider to be most important result of the Category theory.

On the other hand, the Model theory is concentrated on gap between
an abstract definition and a concrete construction. Let T be a complete
model. On the first glance one should not distinguish between different
models of T , since all the results which are true in one model of T are
true in any other model. One of main observations of the Model the-
ory says that our decision to ignore the existence of differences between
models is too hasty. Different models of complete theories are of differ-
ent flavors and support different intuitions. So an attack on a problem
often starts which a choice of an appropriate model. Such an approach
lead to many non-trivial techniques for constructions of models which
all are based on the compactness theorem which is almost the same as
the fundamental existence theorem.

On the other hand the novelty creates difficulties for an outsider who
is trying to reformulate the concepts in familiar terms and to ignore
the differences between models.

In addition to these general consideration there are are concrete rea-
sons to use Model theory for the ”Motivic integration”. What is an
integration? Let C be the category of pairs (X,µ) where X is an ori-
ented n-manifold, µ is a smooth absolutely integrable R-valued measure
on X. If (X ′, µ′) is another such pair we write

(X,µ) ∼ (X ′, µ′)

if there exists disjoint open subsets Ui ⊂ X,U ′

i ⊂ X ′, 1 ≤ r such that
a) for any i, 1 ≤ r there exists a diffeomorphism fi : Ui → U ′

i such
that f ∗

i (µ′) = µi and
b) the complements X−∪iUi, X

′−∪iU
′

i are contained in subvarieties
of dimension n− 1 .

Let K(C) the quotient of the free abelian group generated by equiv-
alence classes [(X,µ)] of pairs (X,µ) by the relation

[(X,µ)] + [(X,µ′)] = [(X,µ+ µ′)]

The theory of integration says that the natural map

(X,µ) →

∫

X

µ

defines an isomorphism K(C) → R. In other words one can say that a
construction of the theory of integration is equivalent to the computa-
tion of the group K(C).
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Let F be a valued field with a valuation v : F ∗ → Γ. [For example we
can take F = C((t)) be the field of formal Laurent series over C,Γ = Z

and v(f), f ∈ F ∗ to be the order of f at 0.] One consider the category
CF of v-varieties subsets X of F n which are defined by a finite system
of polynomial inequalities v(P (x1, ..., xn)) > γ, γ ∈ Γ. Let K(CF )n

be the quotient of the free abelian group generated by isomorphism
classes [X] by the relation [X] + [Y ] = [X ∪ Y ] where [X ∪ Y ] is
the isomorphism class of the disjoint union of X and Y . One of the
questions in the theory of ”Motivic integration” is the computation of
the group K(CF )n.

Why is Model theory useful for the study of the group K(CF )n?
It is very convenient reduce the study of the groupK(CF )n to the case

of curves when n = 1. For such a reduction one has to consider fibers
of the restriction to X ⊂ F n of the natural projection p : F n → F n−1

over different ”points” of F n−1.
In the familiar case of Algebraic geometry when the [ when say F =

C and the valuation is trivial ] for an analysis of an n-dimensional
algebraic variety X through it’s projection p : X → Y to an n − 1-
dimensional Y it is important to consider fibers of p not only over
C-points of Y but also over points with values in extensions of C such
as the generic point of Y .

In the case when the valuation is not trivial we have to consider
fibers of p over an wider set of ”points”. And one needs the Model
theory to define such points and to be able to talk about fibers of these
points.

Now I’ll start the second part of my introduction to the course and
present the basic concepts of the Model theory. One of many problems
one faces while learning this theory is the necessity to remember a
number of definitions. I wrote a relatively short list of them and also
a couple of problems to play with these definitions. If these concepts
are unfamiliar then it takes an effort to remember the definitions and
it is almost impossible to grasp them on the first attempt. Please put
efforts into playing with the definitions.

But I’ll start with an informal presentation of a model theoretic proof
of a corollary of the Chevalley’s theorem. The presentation is informal,
since we did not yet discuss any concepts of the Model theory, and
almost does not use the language of Logic. An attempt to avoid the
language of Model theory makes the proof much less clear and less
general. But on the other hand it is, I hope, easier to grasp and will
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provide a possibility to meet some Model theoretic concept on the
”familiar territory”.

Problem 1. Let k be a field and K an extension of k such that K is
algebraically closed and the cardinality κ(K) ofK is strictly bigger then
κ(k). Show that there exist ui ∈ K, i ∈ κ(K) which are algebraically
independent over k and such that that K is an algebraic closure of the
field k(ui), i ∈ I.

Such a set is called a transcendence basis of K over k.

Lemma 1. a) Let K ′ ⊃ k be another algebraically closed field
such that κ(K ′) ≥ κ(K). Then there exists a field homomorphism
φ : K → K ′ such that φ(a) = a, ∀a ∈ k.

b) If κ(K ′) = κ(K) then there exists a field isomorphism φ : K → K ′

such that φ(a) = a, ∀a ∈ k.

Proof. a) Choose a transcendence bases ui ∈ K, i ∈ κ(K) and
u′i ∈ K ′, i ∈ κ(K ′) of K,K ′ over k. Since κ(K ′) ≥ κ(K) we can find
an imbedding f of κ(K) into κ(K ′). Such an imbedding defines a field
isomorphism φ0 : k(ui) → k(u′i) such that φ(ui) = u′f(i), i ∈ κK. As
follows from the essential uniqueness an algebraic closure we can extend
φ0 to a k-homomorphism φ : K → K ′. The proof of b) is completely
analogous.�

Definition 1. A subset X ⊂ Kn is k-constructible if it is a finite
Boolean combination of sets defined by a finite number of polynomial
equalities Pi(t1, ..., tn) = 0, 1 ≤ i ≤M where Pi, Qj ∈ k[t1, ..., tn],

b) A subset X ⊂ Kn is almost k-constructible if it can be obtained
as a finite Boolean combination of images of constructible subsets Y of
Km+n under the natural projection p : Km+n → Kn.

c) For a pair ā, b̄ ∈ Kn we say that ā ∼c b̄ iff for any k-constructible
subset X ∈ Kn, ā ∈ X iff b̄ ∈ X and we say that ā ∼ b̄ iff for any
almost k-constructible subset X ∈ Kn, ā ∈ X iff b̄ ∈ X.

d) We denote by Sc
n(k,K) the set of equivalence classes under ∼c,

by Sn(k,K) the set of equivalence classes under ∼ and by πc : Kn →
Sc

n, π
d : Kn → Sn and π : Sn → Sc

n the natural projections.

Actually the sets Sc
n(k,K) and Sn(k,K) do not depend on a choice

of a field K.
Really, let K ′ ⊃ k be another algebraically closed field such that

κ(K) ≤ κ(K ′). As follows from the proof of Lemma 1 there exists a
k- homomorphism φ : K → K ′. It is clear that φ induces a bijection
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ψ̃ between k–constructible subsets of Kn and K ′n and an imbedding
Sc

n(k,K) → Sc
n(k,K ′).

Lemma 2.The map φ induces also an imbedding of Sn(k,K) into
Sn(k,K ′).

bf Proof. It is sufficient to show that for any ā ∈ Kn and a k-
constructible set Y ⊂ Km+n we have ā ∈ p(Y ) iff φ(ā) ∈ p(ψ̃(Y )). It

is obvious that φ(ā) ∈ p(ψ̃(Y ))(K ′) if ā ∈ p(Y ). Suppose now that

φ(ā) ∈ p(ψ̃(Y )). We want to show that ā ∈ p(Y )(K).

Since φ(ā) ∈ p(ψ̃(Y ))(K ′) there exist bn+1, ..., bn+m ∈ K ′ such that
(φ(ā), bn+1, ..., bn+m) ∈ ψ(Y ). Let K ′′ ⊂ K ′ be the algebraic clo-
sure of the field k(ā, bn+1, ..., bn+m). It is clear that κ(K ′′) < κ(K).
By lemma 1 there exists a k(ā)-isomorphism g : K ′′ → K ′. Then
(ā, g(bn+1), ..., g(bn+m)) ∈ Y�

Problem 2. Show that these imbeddings are bijections which don’t
depend on a choice of φ : K → K ′.�

Remark a) By the construction πc = π ◦πd and for any ā ∈ Kn, g ∈
Gal(K/k) we have ā ∼ g(ā) [and therefore ā ∼c g(ā)] .

b) If n = 1 and a, b ∈ K are such that a ∼c b then either both a, b
are transcendent over k or there there exists an irreducible polynomial
p(t) ∈ k[t] such that both a, b are roots of p(t). So the Galois theory
implies that a ∼c b iff there exists g ∈ Gal(K/k) such that g(ā) = b̄.

c) I’ll write Sc
n or Sn instead of Sc

n(k,K) and Sn(k,K).

Theorem 1 [ a corollary to the Chevalley’s theorem]. Any
almost k-constructible subset of Kn is k-constructible.

We start with the following result.
Lemma 2n. Let K ⊃ k be a field extension such that K is an ‘alge-

braically closed field. Assume that ā = (a1, ..., an), b̄ = (b1, ..., bn) ∈ Kn

are such that ā ∼c b̄. Then there exists g ∈ Gal(K/k) such that
g(ā) = b̄.

Proof. We prove the result by induction in n.
The case when n = 1 follows from the previous Remark. Assume

now that the Lemma 2n−1 is known.
Let ā = (a1, ..., an), b̄ = (b1, ..., bn) ∈ Kn be such that ā ∼c b̄. It is

clear that in such a case (a1, ..., an−1) ∼
c (b1, ..., bn−1). Therefore there

exists g′ ∈ Gal(K/k) such that g′(a1, ..., an−1) = (b1, ..., bn−1). So by
replacing ā = (a1, ..., an) by ā′ = (g′(a1), ..., g

′(an)) we may assume that
ai = bi for 1 ≤ i ≤ n− 1.
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But it is easy to see that for any ā = (a1, ..., an), b̄ = (a1, ..., an−1, bn) ∈
Kn such that ā ∼c

k b̄ we have an ∼c
l bn where l := k(a1, ..., an−1).

Therefore there exists g′′ ∈ Gal(K/l) such that an = g′′(bn).�

Corollary. The map π : Sn → Sc
n is a bijection.

Proof. By the construction π : Sn → Sc
n is a surjection. So we have

to prove only that it is also an injection.
In other words we have to show that for any ā = (a1, ..., an), b̄ =

(b1, ..., bn) ∈ K such that
ā ∼c b̄ we have ā ∼ b̄. As follows from Corollary to Lemma 1, there

exists g ∈ Gal(K/k) such that g(ā) = b̄. But it is clear that g(ā) ∼ ā.�

Definition 2. a) To any almost k-constructible subset Y ⊂ Kn we
associate a subset UY ⊂ Sn by UY := {t ∈ Sn|t ∈ Y }.

b) to any k-constructible subset X ⊂ Kn we associate a subset
UX := {t ∈ Sc

n|t ∈ X(K)}.

c) We denote by T the topology on Sn such that the sets {UY }, Y is
an almost k-constructible subset of Kn , is a basis of open sets in T and
by T c the topology on Sc

n such that the sets {UX}, X is k-constructible
subset of Kn ,is a basis of open sets in T c.

One of basic results in Model theory is the Compactness theorem.
When applied to the theory ACF of algebraically closed fields it

guarantees [ in view of the validity of Lemma 1 or Problem 1] the
compactness of the topological space Sn.

Lemma 3. a) For any almost k-constructible subset ofKn the subset
UY of Sn is both open and closed,

b) conversely if U ⊂ Sn is both open and closed then there exists an
almost k-constructible subset Y of Kn such that U = UY .

Proof. The part a) is obvious. To prove b) consider a subset U ⊂ Sn

which is both open and closed. Since U is open there exists a family
Yi, i ∈ I of almost k-constructible subsets of Kn such that

U = ∪i∈IUYi

On the other hand since U is a closed subset of a compact it is compact.
Therefore there exists finite subsets RI ⊂ I such that

U = ∪i∈RI
UYi

But this implies that U = UY where Y := ∪i∈RI
Yi.�

Lemma 4. The map π : Sn → Sc
n is a homeomorphism of topological

spaces.
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Proof. By the definition the map π : Sn → Sc
n is separated and

continuous. Since the topological space Sn is compact π maps closed
sets to closed sets. Since [ by Corollary to Lemma 1] π : Sn → Sc

n is a
bijection we see that it is a homeomorphism of topological spaces. .�

Now Theorem 1 follows immediately from Lemma 3.

The Chevalley’s theorem tells us that in the case when the field k
is algebraically closed and almost constructible subset of kn is con-
structible. It is easy to deduce the Chevalley’s theorem from Theorem
1 if one knows the Hilbert’s Nullstellenzatz theorem

For any k algebraically closed field and any constructible subset X ⊂
kn such that X(k) = ∅ we have X(K) = ∅ for any extension K ⊃ k.

We come back to these questions after learning some basics of the
Model theory.


