DEFINITION 0.1. Let k be an infinite field, char(k) # 2 and V be a
finite-dimensional k-vector space. We denote

(1) by R = Sym(V") the graded ring of regular functions on V' where
linear functionals vV € V'V have degree two.

(2) by R the monoidal category of Z-graded R-bimodules which are
finitely generated as both left and right R-modules where the tensor
product in R is given by

(X,Y) > X ®rY,X,Y € Ob(R)

(3) by < R > the split Grothendick group of the category R. That
is < R > is the abelian group < R > is generated by elements
< X >,X € Ob(R) and relations

<X>=<Y>+<Z> XY, ZecObR)

for triples X,Y, Z such that X is isomorphic to Y & Z.

(4) by o the algebra structure on < R > induced by the tensor product
in R.

(5) For any M = @;M; € Ob(R) and n € Z we define an object
M(n] € Ob(R) by Mn]; = M.

DEFINITION 0.2. Let (W, S) be a Coxeter system, 7 C W be the subset
of reflections and p : W — Aut(V') be a faithful representation.
(1) We say that p is reflection faithful if for x € W we have dim(V/V*®) =
lifx e T.
(2) For any x € W we define

V™ i={veV]zv=—z}

(3) We say that p is reflection vector faithful if p(t) is a reflection for
allte T and V* £V Vforx£yeT.

LEMMA 0.3. Any reflection faithful representation p is reflection vector
faithful.

PROOF. Assume that V=t = V" and set « := t~!r. By the construction
x acts trivially on V!, Since det(z) = 1 we see that z is unipotent. On the

other hand since p is reflection faithful x is an involution. By the assumption
char(k) # 2. Soxz = 1. O

CrLAmM 0.4. Let V be a finite-dimensional k-vector space, es,s € S be
a set of linearly independent vectors in V and el € VV be a set of linearly
independent linear forms such that

T ),t,s €S
ms,t
(1) The formula s(v) =v—e/(v)v,v € V defines a faithful representa-
tion of W.

el (er) = —2cos(




(2) If there is no proper subspace V' of V containing all the vectors
es, s € S and such that the restriction of the functionals e on V'
are linearly independent then p is reflection faithful.

DEFINITION 0.5. Let W — Aut(V') be a reflection faithful representation
of W and as before R be the graded k-algebra of regular functions on V. We
identify R ®; R with the graded k-algebra of regular functions on V' x V.

(1) For any w € W we define a subvariety Gr(w) of V' x V by
Gr(w) := {(wv,v)|v € V}
(2) For any finite subset A of W we define
Gr(A) := UyeaGr(w) CV xV

(3) Since the subvarieties Gr(A) C V x V are homogeneous the ideal
I4 C R® R of functions vanishing on Gr(A) is graded and the
quotient R(A) := R® R/14 is a graded algebra. We consider R(A)
as a R-bimodule. It is easy to see that R(A) € Ob(R).

(4) We write R, instead of R({z}) and R, , instead of R({x,y}) for
T,y e W.

(5) For any w € W we write R(< w) instead of R(A) where A =:
{z|z < w}.

(6) Given f € R,w € W we define f* € R by f¥(v) := f(wv),v € V.

CrLAM 0.6. (1) (Gr(x)+Gr(y))N(V x{0}) = Im(zy~t —Id) x {0}
(2) for anyu # w € T —{e} we have Gr(u)+Gr(w)+Gr(e) D V x {0}

COROLLARY 0.7. If |S| = 2 and z,y,z € W are distinct elements not
all of the same parity then Gr(z) + Gr(y) + Gr(z) D V x {0}.

PrROOF. We may assume that the parity of z is different from parities

of z,y. Then w := xzz~!,u := yz~! have odd length and therefore are
reflections [ we use here that |S| = 2]. Now we can apply the previous
result. O

THEOREM 0.8. Let (W, S) be a Coxeter system and that p : W — Aut(V)
be a reflections vector faithful representation. Then there exists unique ring
homomorphism &€ : H —< R > such that £(v) = R[1] and

ETs+1)=R®ps R,se€ S
where R® := {r € R|s(r) =r}.

PrOOF. Consider first the case when S = {s}. In this case we may
assume that V = k. Then R = k[a], R°® = k[a®] and the algebra H is
generated over Z[v,v~1] by (Ts + 1) and the relation

(T +1)* = (1+v ) (Ts+ 1)

So it is sufficient to check that the bimodule (R ®ps R) ®r (R ®pgs R) is
isomorphic to R ®ps R® R ®ps R[—2].
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Cram 0.9. The map (f,g9) — f +tg, f,g € R® defines an isomorphism
between R*- bimodules R®* & R*[—2] and R.

So we have
(ROpsR)®Rr(R®psR) = Rps ROps R = RAps (R°OR°|—2])®@ps R = Qps RORRps R[—2]
Now back to the general case. Since the Hecke algebra H is defined by
quadratic relations
(Ts+ 1) =1 +v ) (Ts+1),s€ S
and the braid relations
TT;... = TiTs...,s,t € S

it is sufficient to prove Theorem for Coxeter systems of rank 2.
For any w € W we write Cy, 1= > ., T: € H. It is clear that the
following claim implies the validity of Theorem.

PropoSITION 0.10. Let £ : H —< R > be the homomorphism of abelian
groups given by
EW"Cy) =< R(< z) > [n+I(x)]

Then & is a ring homomorphism.

ProOF. To show that £ is a ring homomorphism it is sufficient to check
the equality

E((Ty +1)Cy) = E(Ty +1) 0 E(Cy),w € W,s € S

For any x € W we define A(z) := {y € Wy < z}. We fix w € W and write
A= A(w).

Cram 0.11. (1) If l(sw) < l(w) then sA=A
(2) If i(sw) > l(w) then AUsA = A(sw)
(3) If l(sw) > l(w) and l(w) > 1 then AN sA = A(tw) for some
teT,t#s.
(4) If l(sw) > l(w) and l(w) <1 then ANsA =10
(5) (TS + 1) ZmGA T, = ZzGAUsA T + erAﬂsA T
We see that for a proof of Theorem we have to construct an isomorphism
between bimodules R(ANsA)[—2] ® R(AUsA) and (R®pgs R) ®@p R(A).
We start with the following general result. Let L be a k-vector space,
t € Aut(L) be a reflection along a hyperplane given L given by the equation
A1) =0,Ae LY - {0}
We define the Demazure operator 9; on R(L) by
=7

If X C Lisat-invariant Zarski closed subvariety then ¢ induces an involution
on X and we obtain direct sum decomposition R(X) = R(X)T & R(X)".




CLAIM 0.12. Assume that X does not have any irreducible components
contained in Lt. Then

(1) O, stabilizes the kernel of the restriction R(L) — R(X) and there-
fore induces a map Oy : R(X) — R(X).

(2) O¢ and the multiplication by A define mutually inverse isomorphism
between graded R(L)-modules R(X)" and R(X)™[2].

LEMMA 0.13. Let W be a group acting on a k-vector space V, A be a
finite subset of W and s € W be an element acting on V' as a reflection and
such that sA = A. We denote by R(A)"™ C R(A) the invariants under the
action of s X id. Then

(1) The graded bimodules R ®ps R(A) and R(A) ® R(A)[—2] are iso-
morphic.

(2) The multiplication induces an isomorphism R @ps R(A)t — R(A)
of bimodules.

PrROOF. Take L = V x V,t = s x id and X = R(A). We obtain a
decomposition R(A) = R(A)" @& R(A)~ and an isomorphism R(A)t —
R(A)™[2] defined by the multiplication by A®@1 where A € V'V is the equation
defining V. Since R = Rt @ AR™ we see that the multiplication induces
an isomorphism R ®ps R(A)"™ — R(A). The existence of the decomposition
R(A) = R(A)* ® R(A)~ and an isomorphism between R(A)" and R(A)™[2]
finishes the proof of Lemma. O

To prove the Proposition [and therefore the Theorem] it is sufficient to
construct isomorphisms between bimodules

(R®ps R) ®r R(A) = R®ps R(A) and R(ANsA)[—2]® R(AUsA) .

The case when sA = A follows from the previous Lemma. The case when
w = e is also clear. So may assume that A = A(w),w # e and [(sw) > [(w).
It is easy to see that in this case A —sANA = {(tw,w)} for some reflection
t # s. As before we construct a decomposition of R(A) = M & N as R® x R-
bimodule such that R(ANsA)[—2] = R®prs M and R(AUsA) = R®ps N.

Since p is a reflections vector faithful representation the —1-eigenspaces
of reflections s and ¢ span a 2-dimensional subspace U of V. As follows from
Claim 6 there exists a linear functional A € (V x V) trivial on Gr(w) and
on Gr(tw) whose restriction on U is non-trivial.

LEMMA 0.14. For any x € ANsA the restriction of A on Gr(x) UGr(sz)
18 mot s-invariant.

PROOF. If the restriction of A\ on Gr(z) U Gr(sz) were s-invariant then

the restriction of A on Gr(x)+Gr(sx) is also s-invariant. But then A vanishes
on V5. Since V~* # V! this would imply that A vanishes on U. O

We define M and N as R® x R-subbimodules of R(A) generated by the
images 1,A of 1,A € R® R in R(A). It follows from the previous Lemma
that Proposition is implied by the following result.
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LEMMA 0.15. (1) The graded bimodules R® x R-bimodules M and
R(AN sA)T[-2] are isomorphic.
(2) The graded bimodules R® x R-bimodules N and R(A U sA)T are
isomorphic.

3) R(A)=M & N

PRrROOF. As follows from Corollary 7 the restriction of A on Gr(x) is
not zero for any z € A N sA. So the kernel of the multiplication by A
in R(A) is equal to the kernel of the surjection p : R(A) — R(A N sA).
Therefore the multiplication by A defines an imbedding R(ANsA) — R(A)
which is an isomorphism on the image AR(A) C R(A). Since the image
of R®* ® R in R(A) consists of s x Id-invariants we obtain an isomorphism
R(ANsA)T[-2] — M.

The same observation [the image of R®* ® R in R(A) consists of s x Id-
invariants| provides an isomorphism R U sA)™ — N.

To prove the equality R(A) = M + N it is sufficient to show that as
an (R*, R)-bimodule R ® R is generated by 1 and A\. Let u € VV be the
equation of the hyperplane V* C V. It is clear that R ® R is generated as
an (R*, R)-bimodule by 1 and (x,0). Since X is not s-invariant [otherwise
A would vanish on Gr(sz) and therefore by Corollary 7 on the whole U] we
have

(VeV) =V VYak)
We see that (u,0) belongs to (R®, R)-bimodule R ® R generated by 1 and A
and therefore R ® R is generated as an (R*, R)-bimodule by 1 and A.

To finish the proof of the Theorem we have to show only that M N
N = {0}. For any n € N and any = € AN sA the restriction of n onto
Gr(z)UGr(sx) is s-invariant. On the other hand as follows from Lemma 14
the restriction of A on Gr(z) U Gr(sx) is not s-invariant. This implies that
there is no non-zero m € M such that restrictions of m on Gr(z) U Gr(sx)
are s-invariant for all x € ANsA. So M NN = {0}.

O
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