DEFINITION 0.1. Let k be an infinite field, $char(k) \neq 2$ and V be a finite-dimensional k-vector space. We denote

- (1) by $R = Sym(V^{\vee})$ the graded ring of regular functions on V where linear functionals $v^{\vee} \in V^{\vee}$ have degree two.
- (2) by \mathcal{R} the monoidal category of \mathbb{Z} -graded R-bimodules which are finitely generated as both left and right R-modules where the tensor product in \mathcal{R} is given by

$$(X,Y) \to X \otimes_R Y, X, Y \in Ob(\mathcal{R})$$

(3) by $\langle \mathcal{R} \rangle$ the split Grothendick group of the category \mathcal{R} . That is $\langle \mathcal{R} \rangle$ is the abelian group $\langle \mathcal{R} \rangle$ is generated by elements $\langle X \rangle, X \in Ob(\mathcal{R})$ and relations

$$< X > = < Y > + < Z >, X, Y, Z \in Ob(\mathcal{R})$$

for triples X, Y, Z such that X is isomorphic to $Y \oplus Z$.

- (4) by \circ the algebra structure on $<\mathcal{R}>$ induced by the tensor product in \mathcal{R} .
- (5) For any $M = \bigoplus_i M_i \in Ob(\mathcal{R})$ and $n \in \mathbb{Z}$ we define an object $M[n] \in Ob(\mathcal{R})$ by $M[n]_i = M_{i+n}$.

DEFINITION 0.2. Let (W, S) be a Coxeter system, $\mathcal{T} \subset W$ be the subset of reflections and $\rho: W \to Aut(V)$ be a faithful representation.

- (1) We say that ρ is reflection faithful if for $x \in W$ we have $dim(V/V^x) = 1$ iff $x \in \mathcal{T}$.
- (2) For any $x \in W$ we define

$$V^{-x} := \{ v \in V | xv = -x \}$$

(3) We say that ρ is reflection vector faithful if $\rho(t)$ is a reflection for all $t \in \mathcal{T}$ and $V^{-x} \neq V^{-y}$ for $x \neq y \in \mathcal{T}$.

Lemma 0.3. Any reflection faithful representation ρ is reflection vector faithful.

PROOF. Assume that $V^{-t} = V^{-r}$ and set $x := t^{-1}r$. By the construction x acts trivially on V^{-t} . Since det(x) = 1 we see that x is unipotent. On the other hand since ρ is reflection faithful x is an involution. By the assumption $char(k) \neq 2$. So x = 1.

Claim 0.4. Let V be a finite-dimensional k-vector space, $e_s, s \in S$ be a set of linearly independent vectors in V and $e_s^{\vee} \in V^{\vee}$ be a set of linearly independent linear forms such that

$$e_s^{\vee}(e_t) = -2\cos(\frac{\pi}{m_{s,t}}), t, s \in S$$

(1) The formula $s(v) = v - e_s^{\vee}(v)v, v \in V$ defines a faithful representation of W.

(2) If there is no proper subspace V' of V containing all the vectors $e_s, s \in S$ and such that the restriction of the functionals e_s^{\vee} on V' are linearly independent then ρ is reflection faithful.

DEFINITION 0.5. Let $W \to Aut(V)$ be a reflection faithful representation of W and as before R be the graded k-algebra of regular functions on V. We identify $R \otimes_k R$ with the graded k-algebra of regular functions on $V \times V$.

(1) For any $w \in W$ we define a subvariety Gr(w) of $V \times V$ by

$$Gr(w) := \{(wv, v) | v \in V\}$$

(2) For any finite subset A of W we define

$$Gr(A) := \bigcup_{w \in A} Gr(w) \subset V \times V$$

- (3) Since the subvarieties $Gr(A) \subset V \times V$ are homogeneous the ideal $I_A \subset R \otimes R$ of functions vanishing on Gr(A) is graded and the quotient $R(A) := R \otimes R/I_A$ is a graded algebra. We consider R(A) as a R-bimodule. It is easy to see that $R(A) \in Ob(\mathcal{R})$.
- (4) We write R_x instead of $R(\lbrace x \rbrace)$ and $R_{x,y}$ instead of $R(\lbrace x,y \rbrace)$ for $x,y \in W$.
- (5) For any $w \in W$ we write $R(\leq w)$ instead of R(A) where $A =: \{x | x \leq w\}$.
- (6) Given $f \in R, w \in W$ we define $f^w \in R$ by $f^w(v) := f(wv), v \in V$.
- CLAIM 0.6. (1) $(Gr(x)+Gr(y))\cap (V\times\{0\}) = Im(xy^{-1}-Id)\times\{0\}$ (2) for any $u\neq w\in \mathcal{T}-\{e\}$ we have $Gr(u)+Gr(w)+Gr(e)\supset V\times\{0\}$

COROLLARY 0.7. If |S| = 2 and $x, y, z \in W$ are distinct elements not all of the same parity then $Gr(x) + Gr(y) + Gr(z) \supset V \times \{0\}$.

PROOF. We may assume that the parity of z is different from parities of x,y. Then $w:=xz^{-1}, u:=yz^{-1}$ have odd length and therefore are reflections [we use here that |S|=2]. Now we can apply the previous result.

THEOREM 0.8. Let (W, S) be a Coxeter system and that $\rho: W \to Aut(V)$ be a reflections vector faithful representation. Then there exists unique ring homomorphism $\mathcal{E}: \mathcal{H} \to <\mathcal{R} > such that \mathcal{E}(v) = R[1]$ and

$$\mathcal{E}(T_s+1)=R\otimes_{R^s}R, s\in S$$

where $R^s := \{r \in R | s(r) = r\}.$

PROOF. Consider first the case when $S = \{s\}$. In this case we may assume that V = k. Then $R = k[a], R^s = k[a^2]$ and the algebra \mathcal{H} is generated over $\mathbb{Z}[v, v^{-1}]$ by $(T_s + 1)$ and the relation

$$(T_s+1)^2 = (1+v^{-2})(T_s+1)$$

So it is sufficient to check that the bimodule $(R \otimes_{R^s} R) \otimes_R (R \otimes_{R^s} R)$ is isomorphic to $R \otimes_{R^s} R \oplus R \otimes_{R^s} R[-2]$.

Claim 0.9. The map $(f,g) \to f + tg, f, g \in R^s$ defines an isomorphism between R^s - bimodules $R^s \oplus R^s[-2]$ and R.

So we have

$$(R \otimes_{R^s} R) \otimes_R (R \otimes_{R^s} R) = R \otimes_{R^s} R \otimes_{R^s} R = R \otimes_{R^s} (R^s \oplus R^s[-2]) \otimes_{R^s} R = \otimes_{R^s} R \oplus R \otimes_{R^s} R[-2]$$

Now back to the general case. Since the Hecke algebra \mathcal{H} is defined by quadratic relations

$$(T_s+1)^2 = (1+v^{-2})(T_s+1), s \in S$$

and the braid relations

$$T_sT_t... = T_tT_s..., s, t \in S$$

it is sufficient to prove Theorem for Coxeter systems of rank 2.

For any $w \in W$ we write $C_w := \sum_{x \leq w} T_x \in \mathcal{H}$. It is clear that the following claim implies the validity of Theorem.

PROPOSITION 0.10. Let $\mathcal{E}:\mathcal{H}\to<\mathcal{R}>$ be the homomorphism of abelian groups given by

$$\mathcal{E}(v^n C_x) := < R(\le x) > [n + l(x)]$$

Then \mathcal{E} is a ring homomorphism.

PROOF. To show that \mathcal{E} is a ring homomorphism it is sufficient to check the equality

$$\mathcal{E}((T_s+1)C_w) = \mathcal{E}(T_s+1) \circ \mathcal{E}(C_w), w \in W, s \in S$$

For any $x \in W$ we define $A(x) := \{y \in W | y \le x\}$. We fix $w \in W$ and write A = A(w).

Claim 0.11. (1) If l(sw) < l(w) then sA = A

- (2) If l(sw) > l(w) then $A \cup sA = A(sw)$
- (3) If l(sw) > l(w) and l(w) > 1 then $A \cap sA = A(tw)$ for some $t \in \mathcal{T}, t \neq s$.
- (4) If l(sw) > l(w) and $l(w) \le 1$ then $A \cap sA = \emptyset$
- (5) $(T_s + 1) \sum_{x \in A} T_x = \sum_{x \in A \cup s} T_x + \sum_{x \in A \cap s} T_x$.

We see that for a proof of Theorem we have to construct an isomorphism between bimodules $R(A \cap sA)[-2] \oplus R(A \cup sA)$ and $(R \otimes_{R^s} R) \otimes_R R(A)$.

We start with the following general result. Let L be a k-vector space, $t \in Aut(L)$ be a reflection along a hyperplane given L^t given by the equation

$$\lambda(l) = 0, \lambda \in L^{\vee} - \{0\}$$

We define the Demazure operator ∂_t on R(L) by

$$\partial_t(f) = \frac{f - f^t}{2\lambda}$$

If $X \subset L$ is a t-invariant Zarski closed subvariety then t induces an involution on X and we obtain direct sum decomposition $R(X) = R(X)^+ \oplus R(X)^-$.

Claim 0.12. Assume that X does not have any irreducible components contained in L^t . Then

- (1) ∂_t stabilizes the kernel of the restriction $R(L) \to R(X)$ and therefore induces a map $\partial_t : R(X) \to R(X)$.
- (2) ∂_t and the multiplication by λ define mutually inverse isomorphism between graded R(L)-modules $R(X)^+$ and $R(X)^-[2]$.

LEMMA 0.13. Let W be a group acting on a k-vector space V, A be a finite subset of W and $s \in W$ be an element acting on V as a reflection and such that sA = A. We denote by $R(A)^+ \subset R(A)$ the invariants under the action of $s \times id$. Then

- (1) The graded bimodules $R \otimes_{R^s} R(A)$ and $R(A) \oplus R(A)[-2]$ are isomorphic.
- (2) The multiplication induces an isomorphism $R \otimes_{R^s} R(A)^+ \to R(A)$ of bimodules.

PROOF. Take $L = V \times V$, $t = s \times id$ and X = R(A). We obtain a decomposition $R(A) = R(A)^+ \oplus R(A)^-$ and an isomorphism $R(A)^+ \to R(A)^-[2]$ defined by the multiplication by $\lambda \otimes 1$ where $\lambda \in V^\vee$ is the equation defining V^s . Since $R = R^+ \oplus \lambda R^+$ we see that the multiplication induces an isomorphism $R \otimes_{R^s} R(A)^+ \to R(A)$. The existence of the decomposition $R(A) = R(A)^+ \oplus R(A)^-$ and an isomorphism between $R(A)^+$ and $R(A)^-[2]$ finishes the proof of Lemma.

To prove the Proposition [and therefore the Theorem] it is sufficient to construct isomorphisms between bimodules

 $(R \otimes_{R^s} R) \otimes_R R(A) = R \otimes_{R^s} R(A) \text{ and } R(A \cap sA)[-2] \oplus R(A \cup sA)$.

The case when sA = A follows from the previous Lemma. The case when w = e is also clear. So may assume that $A = A(w), w \neq e$ and l(sw) > l(w). It is easy to see that in this case $A - sA \cap A = \{(tw, w)\}$ for some reflection $t \neq s$. As before we construct a decomposition of $R(A) = M \oplus N$ as $R^s \times R$ -bimodule such that $R(A \cap sA)[-2] = R \otimes_{R^s} M$ and $R(A \cup sA) = R \otimes_{R^s} N$.

Since ρ is a reflections vector faithful representation the -1-eigenspaces of reflections s and t span a 2-dimensional subspace U of V. As follows from Claim 6 there exists a linear functional $\lambda \in (V \times V)^{\vee}$ trivial on Gr(w) and on Gr(tw) whose restriction on U is non-trivial.

LEMMA 0.14. For any $x \in A \cap sA$ the restriction of λ on $Gr(x) \cup Gr(sx)$ is not s-invariant.

PROOF. If the restriction of λ on $Gr(x) \cup Gr(sx)$ were s-invariant then the restriction of λ on Gr(x)+Gr(sx) is also s-invariant. But then λ vanishes on V^{-s} . Since $V^{-s} \neq V^{-t}$ this would imply that λ vanishes on U.

We define M and N as $R^s \times R$ -subbimodules of R(A) generated by the images $\bar{1}, \bar{\lambda}$ of $1, \lambda \in R \otimes R$ in R(A). It follows from the previous Lemma that Proposition is implied by the following result.

LEMMA 0.15. (1) The graded bimodules $R^s \times R$ -bimodules M and $R(A \cap sA)^+[-2]$ are isomorphic.

- (2) The graded bimodules $R^s \times R$ -bimodules N and $R(A \cup sA)^+$ are isomorphic.
- (3) $R(A) = M \oplus N$

PROOF. As follows from Corollary 7 the restriction of λ on Gr(x) is not zero for any $x \in A \cap sA$. So the kernel of the multiplication by λ in R(A) is equal to the kernel of the surjection $p: R(A) \to R(A \cap sA)$. Therefore the multiplication by λ defines an imbedding $R(A \cap sA) \hookrightarrow R(A)$ which is an isomorphism on the image $\lambda R(A) \subset R(A)$. Since the image of $R^s \otimes R$ in R(A) consists of $s \times Id$ -invariants we obtain an isomorphism $R(A \cap sA)^+[-2] \to M$.

The same observation [the image of $R^s \otimes R$ in R(A) consists of $s \times Id$ -invariants] provides an isomorphism $R \cup sA)^+ \to N$.

To prove the equality R(A) = M + N it is sufficient to show that as an (R^s, R) -bimodule $R \otimes R$ is generated by 1 and λ . Let $\mu \in V^{\vee}$ be the equation of the hyperplane $V^s \subset V$. It is clear that $R \otimes R$ is generated as an (R^s, R) -bimodule by 1 and $(\mu, 0)$. Since λ is not s-invariant [otherwise λ would vanish on Gr(sx) and therefore by Corollary 7 on the whole U] we have

$$(V \oplus V)^{\vee} = V^{s \vee} \oplus V^{\vee} \oplus k\lambda$$

We see that $(\mu, 0)$ belongs to (R^s, R) -bimodule $R \otimes R$ generated by 1 and λ and therefore $R \otimes R$ is generated as an (R^s, R) -bimodule by 1 and λ .

To finish the proof of the Theorem we have to show only that $M \cap N = \{0\}$. For any $n \in N$ and any $x \in A \cap sA$ the restriction of n onto $Gr(x) \cup Gr(sx)$ is s-invariant. On the other hand as follows from Lemma 14 the restriction of λ on $Gr(x) \cup Gr(sx)$ is not s-invariant. This implies that there is no non-zero $m \in M$ such that restrictions of m on $Gr(x) \cup Gr(sx)$ are s-invariant for all $x \in A \cap sA$. So $M \cap N = \{0\}$.