
Definition 0.1. Let k be an infinite field, char(k) ̸= 2 and V be a
finite-dimensional k-vector space. We denote

(1) by R = Sym(V ∨) the graded ring of regular functions on V where
linear functionals v∨ ∈ V ∨ have degree two.

(2) by R the monoidal category of Z-graded R-bimodules which are
finitely generated as both left and right R-modules where the tensor
product in R is given by

(X,Y ) → X ⊗R Y,X, Y ∈ Ob(R)

(3) by < R > the split Grothendick group of the category R. That
is < R > is the abelian group < R > is generated by elements
< X >,X ∈ Ob(R) and relations

< X >=< Y > + < Z >,X, Y, Z ∈ Ob(R)

for triples X,Y, Z such that X is isomorphic to Y ⊕ Z.
(4) by ◦ the algebra structure on < R > induced by the tensor product

in R.
(5) For any M = ⊕iMi ∈ Ob(R) and n ∈ Z we define an object

M [n] ∈ Ob(R) by M [n]i = Mi+n.

Definition 0.2. Let (W,S) be a Coxeter system, T ⊂ W be the subset
of reflections and ρ : W → Aut(V ) be a faithful representation.

(1) We say that ρ is reflection faithful if for x ∈ W we have dim(V/V x) =
1 iff x ∈ T .

(2) For any x ∈ W we define

V −x := {v ∈ V |xv = −x}

(3) We say that ρ is reflection vector faithful if ρ(t) is a reflection for
all t ∈ T and V −x ̸= V −y for x ̸= y ∈ T .

Lemma 0.3. Any reflection faithful representation ρ is reflection vector
faithful.

Proof. Assume that V −t = V −r and set x := t−1r. By the construction
x acts trivially on V −t. Since det(x) = 1 we see that x is unipotent. On the
other hand since ρ is reflection faithful x is an involution. By the assumption
char(k) ̸= 2. So x = 1. �

Claim 0.4. Let V be a finite-dimensional k-vector space, es, s ∈ S be
a set of linearly independent vectors in V and e∨s ∈ V ∨ be a set of linearly
independent linear forms such that

e∨s (et) = −2 cos(
π

ms,t
), t, s ∈ S

(1) The formula s(v) = v− e∨s (v)v, v ∈ V defines a faithful representa-
tion of W .
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(2) If there is no proper subspace V ′ of V containing all the vectors
es, s ∈ S and such that the restriction of the functionals e∨s on V ′

are linearly independent then ρ is reflection faithful.

Definition 0.5. LetW → Aut(V ) be a reflection faithful representation
of W and as before R be the graded k-algebra of regular functions on V . We
identify R⊗k R with the graded k-algebra of regular functions on V × V .

(1) For any w ∈ W we define a subvariety Gr(w) of V × V by

Gr(w) := {(wv, v)|v ∈ V }

(2) For any finite subset A of W we define

Gr(A) := ∪w∈AGr(w) ⊂ V × V

(3) Since the subvarieties Gr(A) ⊂ V × V are homogeneous the ideal
IA ⊂ R ⊗ R of functions vanishing on Gr(A) is graded and the
quotient R(A) := R⊗R/IA is a graded algebra. We consider R(A)
as a R-bimodule. It is easy to see that R(A) ∈ Ob(R).

(4) We write Rx instead of R({x}) and Rx,y instead of R({x, y}) for
x, y ∈ W .

(5) For any w ∈ W we write R(≤ w) instead of R(A) where A =:
{x|x ≤ w}.

(6) Given f ∈ R,w ∈ W we define fw ∈ R by fw(v) := f(wv), v ∈ V .

Claim 0.6. (1) (Gr(x)+Gr(y))∩(V ×{0}) = Im(xy−1−Id)×{0}
(2) for any u ̸= w ∈ T −{e} we have Gr(u)+Gr(w)+Gr(e) ⊃ V ×{0}

Corollary 0.7. If |S| = 2 and x, y, z ∈ W are distinct elements not
all of the same parity then Gr(x) +Gr(y) +Gr(z) ⊃ V × {0}.

Proof. We may assume that the parity of z is different from parities
of x, y. Then w := xz−1, u := yz−1 have odd length and therefore are
reflections [ we use here that |S| = 2]. Now we can apply the previous
result. �

Theorem 0.8. Let (W,S) be a Coxeter system and that ρ : W → Aut(V )
be a reflections vector faithful representation. Then there exists unique ring
homomorphism E : H →< R > such that E(v) = R[1] and

E(Ts + 1) = R⊗Rs R, s ∈ S

where Rs := {r ∈ R|s(r) = r}.

Proof. Consider first the case when S = {s}. In this case we may
assume that V = k. Then R = k[a], Rs = k[a2] and the algebra H is
generated over Z[v, v−1] by (Ts + 1) and the relation

(Ts + 1)2 = (1 + v−2)(Ts + 1)

So it is sufficient to check that the bimodule (R ⊗Rs R) ⊗R (R ⊗Rs R) is
isomorphic to R⊗Rs R⊕R⊗Rs R[−2].
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Claim 0.9. The map (f, g) → f + tg, f, g ∈ Rs defines an isomorphism
between Rs- bimodules Rs ⊕Rs[−2] and R.

So we have

(R⊗RsR)⊗R(R⊗RsR) = R⊗RsR⊗RsR = R⊗Rs(Rs⊕Rs[−2])⊗RsR = ⊗RsR⊕R⊗RsR[−2]

Now back to the general case. Since the Hecke algebra H is defined by
quadratic relations

(Ts + 1)2 = (1 + v−2)(Ts + 1), s ∈ S

and the braid relations

TsTt... = TtTs..., s, t ∈ S

it is sufficient to prove Theorem for Coxeter systems of rank 2.
For any w ∈ W we write Cw :=

∑
x≤w Tx ∈ H. It is clear that the

following claim implies the validity of Theorem.

Proposition 0.10. Let E : H →< R > be the homomorphism of abelian
groups given by

E(vnCx) :=< R(≤ x) > [n+ l(x)]

Then E is a ring homomorphism.

Proof. To show that E is a ring homomorphism it is sufficient to check
the equality

E((Ts + 1)Cw) = E(Ts + 1) ◦ E(Cw), w ∈ W, s ∈ S

For any x ∈ W we define A(x) := {y ∈ W |y ≤ x}. We fix w ∈ W and write
A = A(w).

Claim 0.11. (1) If l(sw) < l(w) then sA = A
(2) If l(sw) > l(w) then A ∪ sA = A(sw)
(3) If l(sw) > l(w) and l(w) > 1 then A ∩ sA = A(tw) for some

t ∈ T , t ̸= s.
(4) If l(sw) > l(w) and l(w) ≤ 1 then A ∩ sA = ∅
(5) (Ts + 1)

∑
x∈A Tx =

∑
x∈A∪sA Tx +

∑
x∈A∩sA Tx.

We see that for a proof of Theorem we have to construct an isomorphism
between bimodules R(A ∩ sA)[−2]⊕R(A ∪ sA) and (R⊗Rs R)⊗R R(A).

We start with the following general result. Let L be a k-vector space,
t ∈ Aut(L) be a reflection along a hyperplane given Lt given by the equation

λ(l) = 0, λ ∈ L∨ − {0}
We define the Demazure operator ∂t on R(L) by

∂t(f) =
f − f t

2λ

IfX ⊂ L is a t-invariant Zarski closed subvariety then t induces an involution
on X and we obtain direct sum decomposition R(X) = R(X)+ ⊕R(X)−.
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Claim 0.12. Assume that X does not have any irreducible components
contained in Lt. Then

(1) ∂t stabilizes the kernel of the restriction R(L) → R(X) and there-
fore induces a map ∂t : R(X) → R(X).

(2) ∂t and the multiplication by λ define mutually inverse isomorphism
between graded R(L)-modules R(X)+ and R(X)−[2].

Lemma 0.13. Let W be a group acting on a k-vector space V,A be a
finite subset of W and s ∈ W be an element acting on V as a reflection and
such that sA = A. We denote by R(A)+ ⊂ R(A) the invariants under the
action of s× id. Then

(1) The graded bimodules R ⊗Rs R(A) and R(A) ⊕ R(A)[−2] are iso-
morphic.

(2) The multiplication induces an isomorphism R⊗Rs R(A)+ → R(A)
of bimodules.

Proof. Take L = V × V, t = s × id and X = R(A). We obtain a
decomposition R(A) = R(A)+ ⊕ R(A)− and an isomorphism R(A)+ →
R(A)−[2] defined by the multiplication by λ⊗1 where λ ∈ V ∨ is the equation
defining V s. Since R = R+ ⊕ λR+ we see that the multiplication induces
an isomorphism R⊗Rs R(A)+ → R(A). The existence of the decomposition
R(A) = R(A)+⊕R(A)− and an isomorphism between R(A)+ and R(A)−[2]
finishes the proof of Lemma. �

To prove the Proposition [and therefore the Theorem] it is sufficient to
construct isomorphisms between bimodules

(R⊗Rs R)⊗R R(A) = R⊗Rs R(A) and R(A ∩ sA)[−2]⊕R(A ∪ sA) .
The case when sA = A follows from the previous Lemma. The case when

w = e is also clear. So may assume that A = A(w), w ̸= e and l(sw) > l(w).
It is easy to see that in this case A− sA∩A = {(tw,w)} for some reflection
t ̸= s. As before we construct a decomposition of R(A) = M ⊕N as Rs×R-
bimodule such that R(A ∩ sA)[−2] = R⊗Rs M and R(A ∪ sA) = R⊗Rs N.

Since ρ is a reflections vector faithful representation the −1-eigenspaces
of reflections s and t span a 2-dimensional subspace U of V . As follows from
Claim 6 there exists a linear functional λ ∈ (V × V )∨ trivial on Gr(w) and
on Gr(tw) whose restriction on U is non-trivial.

Lemma 0.14. For any x ∈ A∩sA the restriction of λ on Gr(x)∪Gr(sx)
is not s-invariant.

Proof. If the restriction of λ on Gr(x) ∪Gr(sx) were s-invariant then
the restriction of λ onGr(x)+Gr(sx) is also s-invariant. But then λ vanishes
on V −s. Since V −s ̸= V −t this would imply that λ vanishes on U . �

We define M and N as Rs ×R-subbimodules of R(A) generated by the
images 1̄, λ̄ of 1, λ ∈ R ⊗ R in R(A). It follows from the previous Lemma
that Proposition is implied by the following result.
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Lemma 0.15. (1) The graded bimodules Rs × R-bimodules M and
R(A ∩ sA)+[−2] are isomorphic.

(2) The graded bimodules Rs × R-bimodules N and R(A ∪ sA)+ are
isomorphic.

(3) R(A) = M ⊕N

Proof. As follows from Corollary 7 the restriction of λ on Gr(x) is
not zero for any x ∈ A ∩ sA. So the kernel of the multiplication by λ
in R(A) is equal to the kernel of the surjection p : R(A) → R(A ∩ sA).
Therefore the multiplication by λ defines an imbedding R(A∩ sA) ↪→ R(A)
which is an isomorphism on the image λR(A) ⊂ R(A). Since the image
of Rs ⊗ R in R(A) consists of s × Id-invariants we obtain an isomorphism
R(A ∩ sA)+[−2] → M.

The same observation [the image of Rs ⊗ R in R(A) consists of s× Id-
invariants] provides an isomorphism R ∪ sA)+ → N.

To prove the equality R(A) = M + N it is sufficient to show that as
an (Rs, R)-bimodule R ⊗ R is generated by 1 and λ. Let µ ∈ V ∨ be the
equation of the hyperplane V s ⊂ V . It is clear that R ⊗ R is generated as
an (Rs, R)-bimodule by 1 and (µ, 0). Since λ is not s-invariant [otherwise
λ would vanish on Gr(sx) and therefore by Corollary 7 on the whole U ] we
have

(V ⊕ V )∨ = V s∨ ⊕ V ∨ ⊕ kλ

We see that (µ, 0) belongs to (Rs, R)-bimodule R⊗R generated by 1 and λ
and therefore R⊗R is generated as an (Rs, R)-bimodule by 1 and λ.

To finish the proof of the Theorem we have to show only that M ∩
N = {0}. For any n ∈ N and any x ∈ A ∩ sA the restriction of n onto
Gr(x)∪Gr(sx) is s-invariant. On the other hand as follows from Lemma 14
the restriction of λ on Gr(x) ∪Gr(sx) is not s-invariant. This implies that
there is no non-zero m ∈ M such that restrictions of m on Gr(x) ∪Gr(sx)
are s-invariant for all x ∈ A ∩ sA. So M ∩N = {0}.
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