Definition 0.1.
(1) Let \(\mathfrak{g} \) be a semi-simple Lie algebra of a connected algebraic \(\mathbb{C} \)-group \(G \) which acts by conjugation on \(\mathfrak{g} \). We denote by \(\mathcal{B} \) the flag variety of Borel subalgebras of \(\mathfrak{g} \).

(2) For any \(b \in \mathcal{B} \) we denote by \(\mathfrak{h}_b \) the quotient of \(b \) by the unipotent radical.

(3) For any \(b \in \mathcal{B} \) we denote by \(B_b \subset G \) the stabilizer of \(b \) in \(G \). Then \(B_b \) is a Borel subgroup of \(G \).

(4) For any pair \(b, b' \in \mathcal{B} \) there exist \(g \in G \) such that \(Ad(g)(b') = b \) and such element \(g \) defines an isomorphism \(i_g \) between and \(\mathfrak{h}_b \) and \(\mathfrak{h}'_b \).

Since \(g \) is uniquely defined up to a left multiplication by an elements of the Borel subgroup \(B_b \) which acts trivially on the quotient \(\mathfrak{h}_b \) we see that the isomorphism \(i_g \) does not depend on a choice of \(g \).

So we have a canonical identification of commutative Lie algebras \(\mathfrak{h}_b, b \in \mathcal{B} \). We denote this Lie algebra \(\mathfrak{h} \) and call it the abstract Cartan algebra. The Weyl group \(W \) acts on \(\mathfrak{h} \) and \(\mathfrak{h} \) is isomorphic to any Cartan subalgebra \(\mathfrak{h} \subset \mathfrak{g} \) and the isomorphism is well defined up to a composition with \(w \in W \).

(5) As well known the characteristic polynomial of \(\text{ad}(x) \in \text{End}(\mathfrak{g}), x \in \mathfrak{g} \) is divisible by \(t^r, r := \text{dim}(\mathfrak{h}) \) and so has a form \(t'D(x,t) \) where \(D(x,t) \) is a polynomial in \(t \) of degree \(\text{dim}(\mathfrak{g}) - r \). Moreover [please check] \(D(x,t) \) is polynomial function on \(\mathfrak{g} \times \mathbb{A}^1 \) and we define \(D(x) := D(x,0) \).

(6) We define \(\mathfrak{g}_{rs} := \{ x \in \mathfrak{g} | D(x) \neq 0 \} \), \(h_{rs} := \mathfrak{g}_{rs} \cap \mathfrak{h} \) and use the identification of \(\mathfrak{h} \) with the abstract Cartan algebra \(\tilde{\mathfrak{h}} \) to define the open subset \(\tilde{h}_{rs} \) of \(\tilde{\mathfrak{h}} \). Please check that

\[
\tilde{h}_{rs} = \{ h \in \tilde{\mathfrak{h}} | \text{St}_W(h) = \{ e \} \}
\]

(7) We define \(\tilde{\mathfrak{g}} \) as the subvariety in \(\mathfrak{g} \times \mathcal{B} \) of pairs \((x, b) \subset \mathfrak{g} \times \mathcal{B} \) such \(x \in b \) and denote by \(\pi : \tilde{\mathfrak{g}} \to \mathfrak{g} \) and by \(\tau : \tilde{\mathfrak{g}} \to \tilde{\mathfrak{h}} \) the natural projections. Since the space \(\mathcal{B} \) is compact we see that the morphism \(\pi \) is proper.

(8) We define \(\tilde{\mathfrak{g}}_{rs} := \pi^{-1}(\mathfrak{g}_{rs}) \) and denote by \(\pi_{rs}, \tau_{rs} \) the restrictions of \(\pi \) and \(\tau \) on \(\tilde{\mathfrak{g}}_{rs} \).

Claim 0.2.
(1) The Weyl group \(W \) acts freely on \(\tilde{\mathfrak{g}}_{rs} \) and \(\pi_{rs} \) is a \(W \)-torsor [that it \(W \) acts simply-transitively on fibers of \(\pi_{rs} \)].

(2) The projection \(\tau_{rs} \) is \(W \)-equivariant.

Let \(\mathfrak{g} \) be a semi-simple Lie algebra of an algebraic \(\mathbb{C} \)-group \(G, \mathfrak{h} \subset \mathfrak{g} \) a Cartan subalgebra, \(W \) the Weyl group of \(\mathfrak{g}, S(\mathfrak{g}^\vee) \) and \(S(\mathfrak{h}^\vee) \) be the rings of polynomials functions on \(\mathfrak{g} \) and \(\mathfrak{h} \). We denote by \(A \subset S(\mathfrak{g}^\vee) \) the subring of \(Ad \)-invariant polynomials and by \(C_\mathfrak{h} \subset S(\mathfrak{h}^\vee) \) the subring of \(W \)-invariant polynomials. As we know we can identify the ring \(C_\mathfrak{h} \) with the ring \(C \) of polynomial functions on the abstract Cartan algebra \(\mathfrak{h} \). It is clear [please check] that

(1) the restriction map defines a ring homomorphism \(r_\mathfrak{h} : A \to C_\mathfrak{h} \).
(2) The induced ring homomorphism $r : A \to C$ does not depend on a choice of a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$.

Theorem 0.3 (Chevalley). The ring homomorphism $r : A \to C$ is an isomorphism.

Proof. Since the set of semi simple elements is dense in \mathfrak{g} and any semi simple element is conjugate to one in \mathfrak{h} we see that r is injective. To prove the surjectivity consider the ring \hat{A} of Ad-invariant regular on \mathfrak{g}_{rs} and the ring \hat{C} of W-invariant regular functions on \mathfrak{g}_{rs}. As before we have a ring homomorphism $\hat{r} : \hat{A} \to \hat{C}$.

Lemma 0.4. The ring homomorphism \hat{r} is an isomorphism.

Proof. We want to show that any $f \in \hat{C}$ is of the form $\hat{r}(F)$ for $F \in \hat{A}$. Let $F' := \tau_{rs}^*(f)$. As follows from Claim 2 the function F' is W-invariant and therefore has a form $F' = \pi_{rs}^*(F_f), F_f \in \hat{A}$. But this implies that $f = \hat{r}(F_f)$.

To finish the proof of the theorem it is sufficient to show that the function F_f on \mathfrak{g}_{rs} extends to a regular function on \mathfrak{g} in the case when f extends to a regular function on \mathfrak{h}. But this follows immediately from the properness of π and the following well known result.

Claim 0.5. Let X be a smooth algebraic variety, $Y \subset X$ a proper closed subvariety F a regular function on $X - Y$ which is bounded [as an analytic function] near any point $y \in Y$. Then F extends to a regular function on X.

[Please check that you know a proof of this Claim.]