DEFINITION 0.1. Let E be a finite-dimensional Euclidean vector space, with the standard Euclidean inner product denoted by (\cdot, \cdot) . A [reduced] root system in E is a finite set Φ of vectors (called roots) that satisfy the following conditions:

- (1) The set Φ spans E.
- (2) The only scalar multiples of a root $\alpha \in \Phi$ that belong to Φ are α and $-\alpha$.
- (3) For every root $\alpha \in \Phi$, the set Φ is closed under reflection σ_{α} through the hyperplane perpendicular to α where

$$\sigma_{\alpha}(v) := v - 2 \frac{(\alpha, v)}{(\alpha, \alpha)} \alpha, v \in E$$

(4) For any roots $\alpha, \beta \in \Phi$ we have $a_{\alpha,\beta} := (\alpha^{\vee}, \beta) \in \mathbb{Z}$ where $\alpha^{\vee} := \frac{2}{(\alpha,\alpha)}\alpha \in E$ is the corresponding *coroot*. So $\sigma_{\alpha}(v) = v - (\alpha^{\vee}, v)\alpha$.

DEFINITION 0.2. (1) A subset Φ^+ of Φ is a set of positive roots if

- (a) for each root $\alpha \in \Phi$ exactly one of the roots $-\alpha, \alpha$ belongs to Φ^+ and
- (b) for any $\alpha, \beta \in \Phi^+$ such that $\alpha + \beta \in \Phi$, we have $\alpha + \beta \in \Phi^+$.
- (2) The group of isometries of V generated by reflections $\sigma_{\alpha}, \alpha \in \Phi$ is called the Weyl group W_{Φ} of Φ . As the group W_{Φ} acts faithfully on the finite set Φ we see that it is finite.
- (3) If a subset of positive roots Φ^+ is chosen, elements of $-\Phi^+$ are called negative roots.
- (4) A positive root is *simple* if it cannot be written as the sum of two positive roots. We denote by $\Delta \subset \Phi^+$ the set of simple roots.
- (5) The rank of root system $\Phi \subset E$ is the dimension of E.

Low rank examples.

There is only one root system of rank 1, consisting of two nonzero vectors $\{\alpha, -\alpha\}$ such that $(\alpha, \alpha) = 2$. This root system is called A_1 .

In rank 2 there are four possibilities, which are called $A_1 \times A_1, A_2, B_2$ and G_2 . The root system $A_1 \times A_1$ is of the form $\{\pm \alpha, \pm \beta\}$ where $\alpha, \beta \in V$ are orthogonal vectors. The set Δ of simple roots for systems A_2, B_2 and G_2 consists of vectors $\alpha, \beta \in V$ such that $a_{\beta,\alpha} = 1, a_{\alpha,\beta} = -1, -2$ or -3 correspondingly, $(\alpha, \alpha) = 1, (\beta, \beta) = -a_{\alpha,\beta}$. Therefore $\sigma_{\alpha}(\beta) = \beta + n\alpha$, where n = 1, 2, 3 and $\sigma_{\beta}(\alpha) = \beta + \alpha$.

Whenever Φ is a root system in E, and U is a subspace of E spanned by $\Psi = \Phi \cap U$ then Ψ is a root system in U. Thus, the exhaustive list of four root systems of rank 2 shows that any two roots meet at an angle of 0, 30, 45, 60, 90, 120, 135, 150 or 180 degrees.

- Claim 0.3. (1) Given a root system Φ we can always choose a set Φ^+ of positive roots.
- (2) The Weyl group W_{Φ} acts simply-transitively on the set $\{\Phi^+\}$ of subsets of positive roots.

- (3) The set Δ of simple roots is a basis of E with the property that every vector in Φ^+ is a linear combination of elements of Δ with integral non-negative coefficients.
- (4) For any two different simple roots $\alpha, \beta \in \Phi^+$ we have $-(\alpha, \beta) \in \{0, 1, 2, 3\}$.
- (5) The group W_{Φ} is generated by reflections $s_{\alpha}, \alpha \in \Delta$ and relations

$$s_{\alpha}^2 = e, \alpha \in \Delta, (s_{\alpha}s_{\beta})^{m_{\alpha,\beta}} = e, \alpha \neq \beta \in \Delta$$

where $m_{\alpha,\beta} = 2, 3, 4$ or 6 in the case when $-(\alpha, \beta) = 0, 1, 2$ or 3.

- (6) For any two different roots $\alpha, \beta \in \Phi$ the roots of the form $\alpha + k\beta, k \in \mathbb{Z}$ form an unbroken chain $\{\alpha r\beta, ..., \alpha, ..., \alpha + s\beta\}$ where $r, s \in \mathbb{Z}^+$ and $r + s \leq 4$.
- (7) For any $\beta \in \Phi^+$ there exists $\alpha \in \Delta$ such that $(\alpha^{\vee}, \beta) \in \mathbb{Z}^+$
- (8) The set $\{\alpha^{\vee}\}, \alpha \in \Phi$ of coroots forms the dual root system Φ^{\vee} in V.
- (9) $s_{\alpha^{\vee}} = s_{\alpha}$ for all $\alpha \in \Phi$. So both root systems Φ and Φ^{\vee} have the same Weyl group.
- (10) Any reflection $s \in W$ is equal to s_{α} for some $\alpha \in \Phi$.

Let \mathfrak{g} be a semi-simple Lie algebra, $\mathfrak{h} \subset \mathfrak{g}$ a Cartan subalgebra. The Killing form of \mathfrak{g} induces the Euclidean inner product (,) on the dual space \mathfrak{h}^{\vee} . For any $\alpha \in \mathfrak{h}^{\vee}$ we define $\mathfrak{g}_{\alpha} := \{x \in \mathfrak{g} | [h, x] = \alpha(h)x, h \in \mathfrak{h}$. Let $\Phi_{\mathfrak{g}} \subset \mathfrak{h}^{\vee}$ be the the set of non-zero functionals $\alpha \in \mathfrak{h}^{\vee}$ such that $\mathfrak{g}_{\alpha} \neq \{0\}$.

Theorem 0.4. (1) $dim(\mathfrak{g}_{\alpha}) = 1$ for all $\alpha \in \Phi_{\mathfrak{g}}$.

- (2) $\Phi_{\mathfrak{g}} \subset \mathfrak{h}^{\vee}$ is a root system.
- (3) Let $\mathfrak{g}, \mathfrak{g}'$ be semi-simple Lie algebras $\mathfrak{g}, \mathfrak{g}'$ such that the root systems $\Phi_{\mathfrak{g}}, \Phi_{\mathfrak{g}'}$ are isomorphic. Then the Lie algebras $\mathfrak{g}, \mathfrak{g}'$ are isomorphic.
- (4) For any root system Φ in a vector space V there exists a semi-simple Lie algebra $\mathfrak g$ such that $\mathfrak h=V$ and $\Phi_{\mathfrak g}=\Phi$. Moreover the Lie algebra $\mathfrak g$ is generated by elements $h_i,e_i,f_i,i\in\Delta$ and the Chevalley-Serre relations:

$$\begin{aligned} 1.[h_i, h_j] &= 0 \\ 2.[e_i, f_i] &= h_i \text{ and } [e_i, f_j] = 0 \text{ if } i \neq j \\ 3.[h_i, e_j] &= a_{ij}e_j \\ 4.[h_i, f_j] &= -a_{ij}f_j \\ 5.ad(e_i)^{1-a_{ij}}(e_j) &= 0 \\ 6.ad(f_i)^{1-a_{ij}}(f_j) &= 0. \end{aligned}$$

Definition 0.5. Let $\Phi \subset E$ be a root system and Φ^+ be a set of positive roots.

- (1) For any positive root $\beta = \sum_{\alpha \in \Delta} c_{\alpha} \alpha$ we define $ht(\beta) := \sum_{\alpha \in \Delta} c_{\alpha}$.
- (2) The root lattice Λ_r is the span in E of the set Φ
- (3) The weight lattice Λ is defined by $\Lambda := \{\lambda \in E | (\alpha^{\vee}, \lambda) \in \mathbb{Z} \}$ for all $\alpha \in \Delta$.

Remark 0.6. It is clear that $\Lambda_r \subset \Lambda$.

EXAMPLE 0.7 (The root system A_{n-1}). Let \mathbb{R}^n be the standard n-dimensional Euclidean vector space with the basis $e_i, 1 \leq i \leq n, E \subset \mathbb{R}^n$ be the subspace of vectors $\sum_i c_i e_i, c_i \in \mathbb{R}$ such that $\sum_i c_i = 0, \Phi \subset E$ be the set of vectors of the form $\alpha_{i,j} := e_i - e_j, 1 \leq i \neq j \leq n$ and $\Phi^+ \subset \Phi$ be the subset of vectors of the form $\alpha_{i,j}, 1 \leq i < j \leq n$. Then Φ is a root system in E, $\Phi^+ \subset \Phi$ is a set of positive roots, $\Delta = \{\alpha_i\}, 1 \leq i < n$ where $\alpha_i := e_i - e_{i+1}, W_{\Phi} = S_n, \Lambda_r = \mathbb{Z}^n \cap E$ and Λ is the span of Λ_r and any one of vectors $v_k := e_k - 1/n \sum_{i=1}^n e_i, 1 \leq k \leq n$. So $\Lambda/\Lambda_r = \mathbb{Z}/n\mathbb{Z}$. We have $m_{\alpha_i,\alpha_j} = 2$ if |i-j| > 1 and $m_{\alpha_i,\alpha_j} = 3$ if |i-j| = 1. The rank of the root system A_{n-1} is equal to n-1 and $ht(\alpha_{i,j}) = j-i$

PROBLEM 0.8. Let S_n the symmetric group on n elements. The Weyl group W of the Lie algebra of $n \times n$ -matrices is equal to S_n .

- (1) For any permutation $w \in S_n$ and a pair $(i, j), 1 \le i, j \le n$ we define w[i; j] as the number of elements $k, 1 \le k \le i$ such that $w(i) \le j$. Show that $w' \le w; w', w \in W$ iff $w[i; j] \le w'[i; j]$ for all pairs $(i, j), 1 \le i, j \le n$.
- (2) Let $\kappa: W \hookrightarrow SL_n(\mathbb{C})$ be the imbedding of S_n as the subgroup of permutation matrices. For any $w \in W$ we define $\mathcal{O}_w := B\kappa B \subset SL_n(\mathbb{C})$ where $B \subset SL_n(\mathbb{C})$ is the subgroup of upper-triangular matrices. Show that $w' \leq w; w', w \in W$ iff $\mathcal{O}_{w'} \subset \bar{\mathcal{O}}_w$ where $\bar{\mathcal{O}}_w$ is the closure of \mathcal{O}_w in $SL_n(\mathbb{C})$.
- DEFINITION 0.9. (1) Let \mathfrak{g} be a semi-simple Lie algebra of a connected algebraic \mathbb{C} -group G which acts by conjugation on \mathfrak{g} . We denote by \mathcal{B} the flag variety of Borel subalgebras of \mathfrak{g} .
- (2) For any $\mathfrak{b} \in \mathcal{B}$ we denote by $\mathfrak{h}_{\mathfrak{b}}$ the quotient of \mathfrak{b} by the unipotent radical and by $q_{\mathfrak{b}}$ the projection $q_{\mathfrak{b}} : \mathfrak{b} \to \mathfrak{h}_{\mathfrak{b}}$.
- (3) For any $\mathfrak{b} \in \mathcal{B}$ we denote by $B_{\mathfrak{b}} \subset G$ the stabilizer of \mathfrak{b} in G. As well known $B_{\mathfrak{b}}$ is a Borel subgroup of G.
- (4) For any pair $\mathfrak{b}, \mathfrak{b}' \in \mathcal{B}$ there exist $g \in G$ such that $Ad(g)(\mathfrak{b}') = \mathfrak{b}$ and such element g defines an isomorphism i_g between and $\mathfrak{h}_{\mathfrak{b}}$ and $\mathfrak{h}'_{\mathfrak{b}}$. Since g is uniquely defined up to a left multiplication by an elements of the Borel subgroup $B_{\mathfrak{b}}$ which acts trivially on the quotient $\mathfrak{h}_{\mathfrak{b}}$ we see that the isomorphism i_g does not depend on a choice of g. So we have a canonical identification of commutative Lie algebras $\mathfrak{h}_{\mathfrak{b}}, \mathfrak{b} \in \mathcal{B}$. We denote this Lie algebra $\tilde{\mathfrak{h}}$ and call it the abstract Cartan algebra.
- (5) One can define the Weyl group W as the set of G-orbits on $\mathcal{B} \times \mathcal{B}$. Given a representative $(\mathfrak{b}, \mathfrak{b}')$ of $w \in W$ the restrictions of the projections $q_{\mathfrak{b}}, q_{\mathfrak{b}'}$ to the intersection $\mathfrak{b} \cap \mathfrak{b}'$ defines isomorphisms $t : (\mathfrak{b} \cap \mathfrak{b}')/\mathfrak{n} \to \mathfrak{h}_{\mathfrak{b}}$ and $t' : (\mathfrak{b} \cap \mathfrak{b}')/\mathfrak{n} \to \mathfrak{h}_{\mathfrak{b}'}$ where \mathfrak{n} is the nilpotent radical of the Lie algebra $\mathfrak{b} \cap \mathfrak{b}'$ and therefore an isomorphism $h \to h^w := t' \circ t(h), h \in \tilde{\mathfrak{h}}$. There exists unique group structure on W such that the map $w \to \hat{w}$ is an action of the group W on $\tilde{\mathfrak{h}}$.

- (6) For any Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$ a choice of a Borel subalgebra \mathfrak{b} defines an isomorphism $\mathfrak{h} \to \tilde{\mathfrak{h}}$ well defined up to a composition with $w \in W$.
- (7) As well known the characteristic polynomial of $ad(x) \in \text{End}(\mathfrak{g}), x \in \mathfrak{g}$ is divisible by $t^r, r := dim(\tilde{\mathfrak{h}})$ and so has a form $t^r D(x,t)$ where D(x,t) is a polynomial in t of degree $dim(\mathfrak{g}) r$. Moreover [please check] D(x,t) is polynomial function on $\mathfrak{g} \times \mathbb{A}^1$ and we define D(x) := D(x,0).
- (8) We define $\mathfrak{g}_{rs} := \{x \in \mathfrak{g} | D(x) \neq 0\}, \mathfrak{h}_{rs} := \mathfrak{g}_{rs} \cap \mathfrak{h}$ and use the identification of \mathfrak{h} with the abstract Cartan algebra $\tilde{\mathfrak{h}}$ to define the open subset $\tilde{\mathfrak{h}}_{rs}$ of $\tilde{\mathfrak{h}}$. Please check that

$$\tilde{\mathfrak{h}}_{rs} = \{ h \in \tilde{\mathfrak{h}} | St_W(h) = \{ e \} \}$$

- (9) We define $\tilde{\mathfrak{g}}$ as the subvariety in $\mathfrak{g} \times \mathcal{B}$ of pairs $(x, \mathfrak{b}) \subset \mathfrak{g} \times \mathcal{B}$ such $x \in \mathfrak{b}$ and denote by $\pi : \tilde{\mathfrak{g}} \to \mathfrak{g}$ and by $\tau : \tilde{\mathfrak{g}} \to \tilde{\mathfrak{h}}$ the natural projections. Since the space \mathcal{B} is compact we see that the morphism π is proper.
- (10) We define $\tilde{\mathfrak{g}}_{rs} := \pi^{-1}(\mathfrak{g}_{rs})$ and denote by π_{rs}, τ_{rs} the restrictions of π and τ on $\tilde{\mathfrak{g}}_{rs}$.
- CLAIM 0.10. (1) The Weyl group W acts freely on $\tilde{\mathfrak{g}}_{rs}$ and π_{rs} is a W-torsor [that it W acts simply-transitively on fibers of π_{rs}].
- (2) The projection τ_{rs} is W-equivariant.

Let \mathfrak{g} be a semi-simple Lie algebra of an algebraic \mathbb{C} -group $G, \mathfrak{h} \subset \mathfrak{g}$ a Cartan subalgebra, W the Weyl group of \mathfrak{g} . Any semi-simple element $x \in \mathfrak{g}$ is conjugate to an element $h_x \in \mathfrak{h}$ under the adjoint action of G on \mathfrak{g} and the W orbit $h_x^W \subset \mathfrak{h}$ of h_x does not depend on a choice of $h_x \in \mathfrak{h}$. In other words we have a well defined map $\tilde{r}_{\mathbb{C}} : \mathfrak{g}(\mathbb{C}) \to \mathfrak{h}/W(\mathbb{C})$ of sets. On the other hand any element $x \in \mathfrak{g}$ can be written uniquely as the sum $x = x_s + x_n$ where x_s, x_n are commuting semi-simple and unipotent elements. So we can define a map $r_{\mathbb{C}} : \mathfrak{g}(\mathbb{C}) \to \mathfrak{h}/W(\mathbb{C})$ of sets where $r_{\mathbb{C}}(x) := \tilde{r}_{\mathbb{C}}(x_s)$. The Chevalley] theorem says that this map is algebraic. To be more precise let $S(\mathfrak{g}^{\vee})$ and $S(\mathfrak{h}^{\vee})$ be the rings of polynomials functions on \mathfrak{g} and \mathfrak{h} . We denote by $A \subset S(\mathfrak{g}^{\vee})$ the subring of Ad-invariant polynomials and by $C_{\mathfrak{h}} \subset S(\mathfrak{h}^{\vee})$ the subring of W-invariant polynomials. As we know we can identify the ring $C_{\mathfrak{h}}$ with the ring C of polynomial functions on the abstract Cartan algebra $\tilde{\mathfrak{h}}$. It is clear [please check] that

- (1) the restriction map defines a ring homomorphism $r_{\mathfrak{h}}: A \to C_{\mathfrak{h}}$.
- (2) The induced ring homomorphism $r: A \to C$ does not depend on a choice of a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$.

Theorem 0.11 (Chevalley). The ring homomorphism $r:A\to C$ is an isomorphism.

PROOF. Since the set of semi simple elements is dense in \mathfrak{g} and any semi simple element is conjugate to one in \mathfrak{h} we see that r is injective. To prove

the surjectivity consider the ring \hat{A} of Ad-invariant regular on \mathfrak{g}_{rs} and the ring \hat{C} of W-invariant regular functions on $\tilde{\mathfrak{g}}_{rs}$. As before we have a ring homomorphism $\hat{r}: \hat{A} \to \hat{C}$.

Lemma 0.12. The ring homomorphism \hat{r} is an isomorphism.

PROOF. We want to show that any $f \in \hat{C}$ is of the form $\hat{r}(F)$ for $F \in \hat{A}$. Let $F' := \tau_{rs}^{\star}(f)$. As follows from Claim 2 the function F' is W-invariant and therefore has a form $F' = \pi_{rs}^{\star}(F_f), F_f \in \hat{A}$. But this implies that $f = \hat{r}(F_f)$.

To finish the proof of the theorem it is sufficient to show that the function F_f on \mathfrak{g}_{rs} extends to a regular function on \mathfrak{g} in the case when f extends to a regular function on $\tilde{\mathfrak{h}}$. But this follows immediately from the properness of π and the following well known result.

Claim 0.13. Let X be a smooth algebraic variety, $Y \subset X$ a proper closed subvariety F a regular function on X-Y which is bounded [as an analytic function] near any point $y \in Y$. Then F extends to a regular function on X.

[Please check that you know a proof of this Claim.]