
Definition 0.1. Let E be a finite-dimensional Euclidean vector space,
with the standard Euclidean inner product denoted by (·, ·). A [reduced]
root system in E is a finite set Φ of vectors (called roots) that satisfy the
following conditions:

(1) The set Φ spans E.
(2) The only scalar multiples of a root α ∈ Φ that belong to Φ are α

and -α.
(3) For every root α ∈ Φ, the set Φ is closed under reflection σα through

the hyperplane perpendicular to α where

σα(v) := v − 2
(α, v)

(α, α)
α, v ∈ E

(4) For any roots α, β ∈ Φ we have aα,β := (α∨, β) ∈ Z where α∨ :=
2

(α,α)α ∈ E is the corresponding coroot. So σα(v) = v − (α∨, v)α.

Definition 0.2. (1) A subset Φ+ of Φ is a set of positive roots if
(a) for each root α ∈ Φ exactly one of the roots -α, α belongs to

Φ+ and
(b) for any α, β ∈ Φ+ such that α+ β ∈ Φ, we have α+ β ∈ Φ+.

(2) The group of isometries of V generated by reflections σα, α ∈ Φ is
called the Weyl group WΦ of Φ. As the group WΦ acts faithfully
on the finite set Φ we see that it is finite.

(3) If a subset of positive roots Φ+ is chosen, elements of −Φ+ are
called negative roots.

(4) A positive root is simple if it cannot be written as the sum of two
positive roots. We denote by ∆ ⊂ Φ+ the set of simple roots.

(5) The rank of root system Φ ⊂ E is the dimension of E.

Low rank examples.
There is only one root system of rank 1, consisting of two nonzero vectors

{α,−α} such that (α, α) = 2. This root system is called A1.
In rank 2 there are four possibilities, which are called A1 × A1, A2, B2

and G2. The root system A1 × A1 is of the form {±α,±β} where α, β ∈ V
are orthogonal vectors. The set ∆ of simple roots for systems A2, B2 and
G2 consists of vectors α, β ∈ V such that aβ,α = 1, aα,β = −1,−2 or −3
correspondingly, (α, α) = 1, (β, β) = −aα,β. Therefore σα(β) = β + nα,
where n = 1, 2, 3 and σβ(α) = β + α.

Whenever Φ is a root system in E, and U is a subspace of E spanned
by Ψ = Φ ∩ U then Ψ is a root system in U . Thus, the exhaustive list of
four root systems of rank 2 shows that any two roots meet at an angle of
0, 30, 45, 60, 90, 120, 135, 150 or 180 degrees.

Claim 0.3. (1) Given a root system Φ we can always choose a set
Φ+ of positive roots.

(2) The Weyl group WΦ acts simply-transitively on the set {Φ+} of
subsets of positive roots.
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(3) The set ∆ of simple roots is a basis of E with the property that
every vector in Φ+ is a linear combination of elements of ∆ with
integral non-negative coefficients.

(4) For any two different simple roots α, β ∈ Φ+ we have −(α, β) ∈
{0, 1, 2, 3}.

(5) The group WΦ is generated by reflections sα, α ∈ ∆ and relations

s2α = e, α ∈ ∆, (sαsβ)
mα,β = e, α ̸= β ∈ ∆

where mα,β = 2, 3, 4 or 6 in the case when −(α, β) = 0, 1, 2 or 3.
(6) For any two different roots α, β ∈ Φ the roots of the form α+kβ, k ∈

Z form an unbroken chain {α−rβ, ..., α, ..., α+sβ} where r, s ∈ Z+

and r + s ≤ 4.
(7) For any β ∈ Φ+ there exists α ∈ ∆ such that (α∨, β) ∈ Z+

(8) The set {α∨}, α ∈ Φ of coroots forms the dual root system Φ∨ in
V .

(9) sα∨ = sα for all α ∈ Φ. So both root systems Φ and Φ∨ have the
same Weyl group.

(10) Any reflection s ∈ W is equal to sα for some α ∈ Φ.

Let g be a semi-simple Lie algebra, h ⊂ g a Cartan subalgebra. The
Killing form of g induces the Euclidean inner product (, ) on the dual space
h∨. For any α ∈ h∨ we define gα := {x ∈ g|[h, x] = α(h)x, h ∈ h. Let
Φg ⊂ h∨ be the the set of non-zero functionals α ∈ h∨ such that gα ̸= {0}.

Theorem 0.4. (1) dim(gα) = 1 for all α ∈ Φg.
(2) Φg ⊂ h∨ is a root system.
(3) Let g, g′ be semi-simple Lie algebras g, g′ such that the root systems

Φg,Φg′ are isomorphic. Then the Lie algebras g, g′ are isomorphic.
(4) For any root system Φ in a vector space V there exists a semi-

simple Lie algebra g such that h = V and Φg = Φ. Moreover
the Lie algebra g is generated by elements hi, ei, fi, i ∈ ∆ and the
Chevalley-Serre relations:

1.[hi, hj ] = 0
2.[ei, fi] = hi and [ei, fj ] = 0 if i ̸= j
3.[hi, ej ] = aijej
4.[hi, fj ] = −aijfj
5.ad(ei)

1−aij (ej) = 0
6.ad(fi)

1−aij (fj) = 0.

Definition 0.5. Let Φ ⊂ E be a root system and Φ+ be a set of positive
roots.

(1) For any positive root β =
∑

α∈∆ cαα we define ht(β) :=
∑

α∈∆ cα.
(2) The root lattice Λr is the span in E of the set Φ
(3) The weight lattice Λ is defined by

Λ := {λ ∈ E|(α∨, λ) ∈ Z} for all α ∈ ∆.

Remark 0.6. It is clear that Λr ⊂ Λ.
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Example 0.7 (The root system An−1). Let Rn be the standard n-
dimensional Euclidean vector space with the basis ei, 1 ≤ i ≤ n,E ⊂ Rn

be the subspace of vectors
∑

i ciei, ci ∈ R such that
∑

i ci = 0,Φ ⊂ E be
the set of vectors of the form αi,j := ei − ej , 1 ≤ i ̸= j ≤ n and Φ+ ⊂ Φ
be the subset of vectors of the form αi,j , 1 ≤ i < j ≤ n. Then Φ is a root
system in E, Φ+ ⊂ Φ is a set of positive roots, ∆ = {αi}, 1 ≤ i < n where
αi := ei − ei+1,WΦ = Sn,Λr = Zn ∩E and Λ is the span of Λr and any one
of vectors vk := ek − 1/n

∑n
i=1 ei, 1 ≤ k ≤ n. So Λ/Λr = Z/nZ. We have

mαi,αj = 2 if |i− j| > 1 and mαi,αj = 3 if |i− j| = 1. The rank of the root
system An−1 is equal to n− 1 and ht(αi,j) = j − i

Problem 0.8. Let Sn the symmetric group on n elements. The Weyl
group W of the Lie algebra of n× n-matrices is equal to Sn.

(1) For any permutation w ∈ Sn and a pair (i, j), 1 ≤ i, j ≤ n we define
w[i; j] as the number of elements k, 1 ≤ k ≤ i such that w(i) ≤ j.

Show that w′ ≤ w;w′, w ∈ W iff w[i; j] ≤ w′[i; j] for all pairs
(i, j), 1 ≤ i, j ≤ n.

(2) Let κ : W ↪→ SLn(C) be the imbedding of Sn as the subgroup of
permutation matrices. For any w ∈ W we define Ow := BκB ⊂
SLn(C) where B ⊂ SLn(C) is the subgroup of upper-triangular
matrices. Show that w′ ≤ w;w′, w ∈ W iff Ow′ ⊂ Ōw where Ōw is
the closure of Ow in SLn(C).

Definition 0.9. (1) Let g be a semi-simple Lie algebra of a con-
nected algebraic C-group G which acts by conjugation on g. We
denote by B the flag variety of Borel subalgebras of g.

(2) For any b ∈ B we denote by hb the quotient of b by the unipotent
radical and by qb the projection qb : b → hb.

(3) For any b ∈ B we denote by Bb ⊂ G the stabilizer of b in G. As
well known Bb is a Borel subgroup of G.

(4) For any pair b, b′ ∈ B there exist g ∈ G such that Ad(g)(b′) = b and
such element g defines an isomorphism ig between and hb and h′b.
Since g is uniquely defined up to a left multiplication by an elements
of the Borel subgroup Bb which acts trivially on the quotient hb we
see that the isomorphism ig does not depend on a choice of g.
So we have a canonical identification of commutative Lie algebras
hb, b ∈ B. We denote this Lie algebra h̃ and call it the abstract
Cartan algebra.

(5) One can define the Weyl group W as the set of G-orbits on B ×B.
Given a representative (b, b′) of w ∈ W the restrictions of the
projections qb, qb′ to the intersection b ∩ b′ defines isomorphisms
t : (b∩ b′)/n → hb and t′ : (b∩ b′)/n → hb′ where n is the nilpotent
radical of the Lie algebra b∩ b′ and therefore an isomorphism h →
hw := t′ ◦ t(h), h ∈ h̃. There exists unique group structure on W

such that the map w → ŵ is an action of the group W on h̃.
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(6) For any Cartan subalgebra h ⊂ g a choice of a Borel subalgebra

b defines an isomorphism h → h̃ well defined up to a composition
with w ∈ W .

(7) As well known the characteristic polynomial of ad(x) ∈ End(g), x ∈
g is divisible by tr, r := dim(h̃) and so has a form trD(x, t) where
D(x, t) is a polynomial in t of degree dim(g)− r. Moreover [please
check] D(x, t) is polynomial function on g × A1 and we define
D(x) := D(x, 0).

(8) We define grs := {x ∈ g|D(x) ̸= 0}, hrs := grs ∩ h and use the

identification of h with the abstract Cartan algebra h̃ to define the
open subset h̃rs of h̃. Please check that

h̃rs = {h ∈ h̃|StW (h) = {e}}
(9) We define g̃ as the subvariety in g × B of pairs (x, b) ⊂ g × B

such x ∈ b and denote by π : g̃ → g and by τ : g̃ → h̃ the natural
projections. Since the space B is compact we see that the morphism
π is proper.

(10) We define g̃rs := π−1(grs) and denote by πrs, τrs the restrictions of
π and τ on g̃rs.

Claim 0.10. (1) The Weyl group W acts freely on g̃rs and πrs is a
W -torsor [that it W acts simply-transitively on fibers of πrs].

(2) The projection τrs is W -equivariant.

Let g be a semi-simple Lie algebra of an algebraic C-group G, h ⊂ g a
Cartan subalgebra, W the Weyl group of g. Any semi-simple element x ∈ g
is conjugate to an element hx ∈ h under the adjoint action of G on g and the
W orbit hWx ⊂ h of hx does not depend on a choice of hx ∈ h. In other words
we have a well defined map r̃C : g(C) → h/W (C) of sets. On the other hand
any element x ∈ g can be written uniquely as the sum x = xs + xn where
xs, xn are commuting semi-simple and unipotent elements. So we can define
a map rC : g(C) → h/W (C) of sets where rC(x) := r̃C(xs). The Chevalley]
theorem says that this map is algebraic. To be more precise let S(g∨) and
S(h∨) be the rings of polynomials functions on g and h. We denote by
A ⊂ S(g∨) the subring of Ad-invariant polynomials and by Ch ⊂ S(h∨) the
subring of W -invariant polynomials. As we know we can identify the ring
Ch with the ring C of polynomial functions on the abstract Cartan algebra

h̃. It is clear [please check] that

(1) the restriction map defines a ring homomorphism rh : A → Ch.
(2) The induced ring homomorphism r : A → C does not depend on a

choice of a Cartan subalgebra h ⊂ g.

Theorem 0.11 ( Chevalley). The ring homomorphism r : A → C is an
isomorphism.

Proof. Since the set of semi simple elements is dense in g and any semi
simple element is conjugate to one in h we see that r is injective. To prove
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the surjectivity consider the ring Â of Ad-invariant regular on grs and the
ring Ĉ of W -invariant regular functions on g̃rs. As before we have a ring
homomorphism r̂ : Â → Ĉ.

Lemma 0.12. The ring homomorphism r̂ is an isomorphism.

Proof. We want to show that any f ∈ Ĉ is of the form r̂(F ) for F ∈ Â.
Let F ′ := τ⋆rs(f). As follows from Claim 2 the function F ′ is W -invariant

and therefore has a form F ′ = π⋆
rs(Ff ), Ff ∈ Â. But this implies that

f = r̂(Ff ). �
To finish the proof of the theorem it is sufficient to show that the function

Ff on grs extends to a regular function on g in the case when f extends to

a regular function on h̃. But this follows immediately from the properness
of π and the following well known result.

Claim 0.13. Let X be a smooth algebraic variety, Y ⊂ X a proper closed
subvariety F a regular function on X − Y which is bounded [as an analytic
function] near any point y ∈ Y . Then F extends to a regular function on
X.

[Please check that you know a proof of this Claim.] �


