Definition 0.1. Let E be a finite-dimensional Euclidean vector space, with the standard Euclidean inner product denoted by (\cdot, \cdot). A [reduced] root system in E is a finite set Φ of vectors (called roots) that satisfy the following conditions:

1. The set Φ spans E.
2. The only scalar multiples of a root $\alpha \in \Phi$ that belong to Φ are α and $-\alpha$.
3. For every root $\alpha \in \Phi$, the set Φ is closed under reflection σ_α through the hyperplane perpendicular to α where
 \[\sigma_\alpha(v) := v - 2\frac{(\alpha, v)}{(\alpha, \alpha)}\alpha, \quad v \in E \]
4. For any roots $\alpha, \beta \in \Phi$ we have $a_{\alpha, \beta} := (\alpha^\vee, \beta) \in \mathbb{Z}$ where $\alpha^\vee := \frac{2}{(\alpha, \alpha)}\alpha \in E$ is the corresponding coroot. So $\sigma_\alpha(v) = v - (\alpha^\vee, v)\alpha$.

Definition 0.2. (1) A subset Φ^+ of Φ is a set of positive roots if
 (a) for each root $\alpha \in \Phi$ exactly one of the roots $-\alpha, \alpha$ belongs to Φ^+ and
 (b) for any $\alpha, \beta \in \Phi^+$ such that $\alpha + \beta \in \Phi$, we have $\alpha + \beta \in \Phi^+$.
2. The group of isometries of V generated by reflections $\sigma_\alpha, \alpha \in \Phi$ is called the Weyl group W_Φ of Φ. As the group W_Φ acts faithfully on the finite set Φ we see that it is finite.
3. If a subset of positive roots Φ^+ is chosen, elements of $-\Phi^+$ are called negative roots.
4. A positive root is simple if it cannot be written as the sum of two positive roots. We denote by $\Delta \subset \Phi^+$ the set of simple roots.
5. The rank of root system $\Phi \subset E$ is the dimension of E.

Low rank examples.

There is only one root system of rank 1, consisting of two nonzero vectors $\{\alpha, -\alpha\}$ such that $(\alpha, \alpha) = 2$. This root system is called A_1.

In rank 2 there are four possibilities, which are called $A_1 \times A_1, A_2, B_2$ and G_2. The root system $A_1 \times A_1$ is of the form $\{\pm \alpha, \pm \beta\}$ where $\alpha, \beta \in V$ are orthogonal vectors. The set Δ of simple roots for systems A_2, B_2 and G_2 consists of vectors $\alpha, \beta \in V$ such that $a_{\alpha, \alpha} = 1, a_{\alpha, \beta} = -1, -2$ or -3 correspondingly, $(\alpha, \alpha) = 1, (\beta, \beta) = -a_{\alpha, \beta}$. Therefore $\sigma_\alpha(\beta) = \beta + n\alpha$, where $n = 1, 2, 3$ and $\sigma_\beta(\alpha) = \alpha + \beta$.

Whenever Φ is a root system in E, and U is a subspace of E spanned by $\Psi = \Phi \cap U$ then Ψ is a root system in U. Thus, the exhaustive list of four root systems of rank 2 shows that any two roots meet at an angle of 0, 30, 45, 60, 90, 120, 135, 150 or 180 degrees.

Claim 0.3. (1) Given a root system Φ we can always choose a set Φ^+ of positive roots.
2. The Weyl group W_Φ acts simply-transitively on the set $\{\Phi^+\}$ of subsets of positive roots.
The set Δ of simple roots is a basis of E with the property that every vector in Φ^+ is a linear combination of elements of Δ with integral non-negative coefficients.

(4) For any two different simple roots $\alpha, \beta \in \Phi^+$ we have $-(\alpha, \beta) \in \{0, 1, 2, 3\}$.

(5) The group W_Φ is generated by reflections $s_\alpha, \alpha \in \Delta$ and relations
\[
s_\alpha^2 = e, \alpha \in \Delta, (s_\alpha s_\beta)^{m_{\alpha, \beta}} = e, \alpha \neq \beta \in \Delta
\]
where $m_{\alpha, \beta} = 2, 3, 4$ or 6 in the case when $-(\alpha, \beta) = 0, 1, 2$ or 3.

(6) For any two different roots $\alpha, \beta \in \Phi$ the roots of the form $\alpha + k\beta, k \in \mathbb{Z}$ form an unbroken chain $\{\alpha - r\beta, \ldots, \alpha, \ldots, \alpha + s\beta\}$ where $r, s \in \mathbb{Z}^+$ and $r + s \leq 4$.

(7) For any $\beta \in \Phi^+$ there exists $\alpha \in \Delta$ such that $(\alpha^\vee, \beta) \in \mathbb{Z}^+$

(8) The set $\{\alpha^\vee\}, \alpha \in \Phi$ of coroots forms the dual root system Φ^\vee in V.

(9) $s_{\alpha^\vee} = s_\alpha$ for all $\alpha \in \Phi$. So both root systems Φ and Φ^\vee have the same Weyl group.

(10) Any reflection $s \in W$ is equal to s_α for some $\alpha \in \Phi$.

Let \mathfrak{g} be a semi-simple Lie algebra, $\mathfrak{h} \subset \mathfrak{g}$ a Cartan subalgebra. The Killing form of \mathfrak{g} induces the Euclidean inner product $(,)_{\mathfrak{h}}$ on the dual space \mathfrak{h}^\vee. For any $\alpha \in \mathfrak{h}^\vee$ we define $\mathfrak{g}_\alpha := \{x \in \mathfrak{g}|[h, x] = \alpha(h)x, h \in \mathfrak{h}\}$. Let $\Phi_\mathfrak{g} \subset \mathfrak{h}^\vee$ be the the set of non-zero functionals $\alpha \in \mathfrak{h}^\vee$ such that $\mathfrak{g}_\alpha \neq \{0\}$.

Theorem 0.4.
1. $\dim(\mathfrak{g}_\alpha) = 1$ for all $\alpha \in \Phi_\mathfrak{g}$.
2. $\Phi_\mathfrak{g} \subset \mathfrak{h}^\vee$ is a root system.
3. Let $\mathfrak{g}, \mathfrak{g}'$ be semi-simple Lie algebras $\mathfrak{g}, \mathfrak{g}'$ such that the root systems $\Phi_\mathfrak{g}, \Phi_\mathfrak{g}'$ are isomorphic. Then the Lie algebras $\mathfrak{g}, \mathfrak{g}'$ are isomorphic.
4. For any root system Φ in a vector space V there exists a semi-simple Lie algebra \mathfrak{g} such that $\mathfrak{h} = V$ and $\Phi_\mathfrak{g} = \Phi$. Moreover the Lie algebra \mathfrak{g} is generated by elements $h_i, e_i, f_i, i \in \Delta$ and the Chevalley-Serre relations:

\[
\begin{align*}
1. [h_i, h_j] &= 0 \\
2. [e_i, f_j] &= h_i \text{ if } [e_i, f_j] = 0 \text{ if } i \neq j \\
3. [h_i, e_j] &= a_{ij}e_j \\
4. [h_i, f_j] &= -a_{ij}f_j \\
5. ad(e_i)^{1-a_{ij}}(e_j) &= 0 \\
6. ad(f_i)^{1-a_{ij}}(f_j) &= 0.
\end{align*}
\]

Definition 0.5. Let $\Phi \subset E$ be a root system and Φ^+ be a set of positive roots.

1. For any positive root $\beta = \sum_{\alpha \in \Delta} c_\alpha \alpha$ we define $ht(\beta) := \sum_{\alpha \in \Delta} c_\alpha$.
2. The root lattice Λ_r is the span in E of the set Φ.
3. The weight lattice Λ is defined by
 \[
 \Lambda := \{\lambda \in E|(\alpha^\vee, \lambda) \in \mathbb{Z}\} \text{ for all } \alpha \in \Delta.
 \]

Remark 0.6. It is clear that $\Lambda_r \subset \Lambda$.

Example 0.7 (The root system A_{n-1}). Let \mathbb{R}^n be the standard n-dimensional Euclidean vector space with the basis $e_i, 1 \leq i \leq n, E \subset \mathbb{R}^n$ be the subspace of vectors $\sum c_ie_i, c_i \in \mathbb{R}$ such that $\sum c_i = 0; \Phi \subset E$ be the set of vectors of the form $\alpha_{i,j} := e_i - e_j, 1 \leq i \neq j \leq n$ and $\Phi^+ \subset \Phi$ be the subset of vectors of the form $\alpha_{i,j}, 1 \leq i < j \leq n$. Then Φ is a root system in $E, \Phi^+ \subset \Phi$ is a set of positive roots, $\Delta = \{ \alpha_i \}, 1 \leq i < n$ where $\alpha_i := e_i - e_{i+1}, W_\Phi = S_n, \Lambda_r = \mathbb{Z}^n \cap E$ and Λ is the span of Λ_r and any one of vectors $v_k := e_k - 1/n \sum e_i, 1 \leq k \leq n$. So $\Lambda/\Lambda_r = \mathbb{Z}/n\mathbb{Z}$. We have $m_{\alpha_i, \alpha_j} = 2$ if $|i - j| > 1$ and $m_{\alpha_i, \alpha_j} = 3$ if $|i - j| = 1$. The rank of the root system A_{n-1} is equal to $n - 1$ and $ht(\alpha_{i,j}) = j - i$

Problem 0.8. Let S_n the symmetric group on n elements. The Weyl group W of the Lie algebra of $n \times n$-matrices is equal to S_n.

1. For any permutation $w \in S_n$ and a pair $(i, j), 1 \leq i, j \leq n$ we define $w[i; j]$ as the number of elements $k, 1 \leq k \leq i$ such that $w(i) \leq j$.

 Show that $w' \leq w; w', w \in W$ iff $w[i; j] \leq w'[i; j]$ for all pairs $(i, j), 1 \leq i, j \leq n$.

2. Let $\kappa : W \hookrightarrow SL_n(\mathbb{C})$ be the imbedding of S_n as the subgroup of permutation matrices. For any $w \in W$ we define $O_w := B_wB \subset SL_n(\mathbb{C})$ where $B \subset SL_n(\mathbb{C})$ is the subgroup of upper-triangular matrices. Show that $w' \leq w; w', w \in W$ iff $O_{w'} \subset O_w$ where O_w is the closure of O_w in $SL_n(\mathbb{C})$.

Definition 0.9.

1. Let \mathfrak{g} be a semi-simple Lie algebra of a connected algebraic \mathbb{C}-group G which acts by conjugation on \mathfrak{g}. We denote by \mathcal{B} the flag variety of Borel subalgebras of \mathfrak{g}.

2. For any $\mathfrak{b} \in \mathcal{B}$ we denote by $\mathfrak{h}_\mathfrak{b}$ the quotient of \mathfrak{b} by the unipotent radical and by $q_\mathfrak{b}$ the projection $q_\mathfrak{b} : \mathfrak{b} \to \mathfrak{h}_\mathfrak{b}$.

3. For any $\mathfrak{b} \in \mathcal{B}$ we denote by $B_\mathfrak{b} \subset G$ the stabilizer of \mathfrak{b} in G. As well known $B_\mathfrak{b}$ is a Borel subgroup of G.

4. For any pair $\mathfrak{b}, \mathfrak{b}' \in \mathcal{B}$ there exist $g \in G$ such that $Ad(g)(\mathfrak{b}') = \mathfrak{b}$ and such element g defines an isomorphism i_g between and $\mathfrak{h}_\mathfrak{b}$ and $\mathfrak{h}_\mathfrak{b}'$. Since g is uniquely defined up to a left multiplication by an elements of the Borel subgroup $B_\mathfrak{b}$ which acts trivially on the quotient $\mathfrak{h}_\mathfrak{b}$ we see that the isomorphism i_g does not depend on a choice of g. So we have a canonical identification of commutative Lie algebras $\mathfrak{h}_\mathfrak{b}, \mathfrak{b} \in \mathcal{B}$. We denote this Lie algebra \mathfrak{h} and call it the abstract Cartan algebra.

5. One can define the Weyl group W as the set of G-orbits on $\mathcal{B} \times \mathcal{B}$. Given a representative $(\mathfrak{b}, \mathfrak{b}')$ of $w \in W$ the restrictions of the projections $q_\mathfrak{b}, q_{\mathfrak{b}'}$ to the intersection $\mathfrak{b} \cap \mathfrak{b}'$ defines isomorphisms $t : (\mathfrak{b} \cap \mathfrak{b}')/\mathfrak{n} \to \mathfrak{h}_\mathfrak{b}$ and $t' : (\mathfrak{b} \cap \mathfrak{b}')/\mathfrak{n} \to \mathfrak{h}_{\mathfrak{b}'}$ where \mathfrak{n} is the nilpotent radical of the Lie algebra $\mathfrak{b} \cap \mathfrak{b}'$ and therefore an isomorphism $h \to h_w := t' \circ t(h), h \in \mathfrak{h}$. There exists unique group structure on W such that the map $w \to \hat{w}$ is an action of the group W on \mathfrak{h}.

(6) For any Cartan subalgebra \(\mathfrak{h} \subset \mathfrak{g} \) a choice of a Borel subalgebra \(\mathfrak{b} \) defines an isomorphism \(\mathfrak{h} \rightarrow \mathfrak{b} \) well defined up to a composition with \(w \in W \).

(7) As well known the characteristic polynomial of \(ad(x) \in \text{End}(\mathfrak{g}) \), \(x \in \mathfrak{g} \) is divisible by \(t^r \), \(r := \dim(\mathfrak{h}) \) and so has a form \(t^r D(x, t) \) where \(D(x, t) \) is a polynomial in \(t \) of degree \(\dim(\mathfrak{g}) - r \). Moreover [please check] \(D(x, t) \) is polynomial function on \(\mathfrak{g} \times \mathbb{A}^1 \) and we define \(D(x) := D(x, 0) \).

(8) We define \(\mathfrak{g}_{rs} := \{ x \in \mathfrak{g} \mid D(x) \neq 0 \} \), \(\mathfrak{h}_{rs} := \mathfrak{g}_{rs} \cap \mathfrak{h} \) and use the identification of \(\mathfrak{h} \) with the abstract Cartan algebra \(\mathfrak{h} \) to define the open subset \(\mathfrak{h}_{rs} \) of \(\mathfrak{h} \). Please check that
\[
\mathfrak{h}_{rs} = \{ h \in \mathfrak{h} \mid St_W(h) = \{ e \} \}
\]

(9) We define \(\mathfrak{g} \) as the subvariety in \(\mathfrak{g} \times \mathcal{B} \) of pairs \((x, b) \subset \mathfrak{g} \times \mathcal{B} \) such \(x \in \mathfrak{b} \) and denote by \(\pi : \mathfrak{g} \rightarrow \mathfrak{g} \) and by \(\tau : \mathfrak{g} \rightarrow \mathfrak{h} \) the natural projections. Since the space \(\mathcal{B} \) is compact we see that the morphism \(\pi \) is proper.

(10) We define \(\tilde{\mathfrak{h}}_{rs} := \pi^{-1}(\mathfrak{g}_{rs}) \) and denote by \(\pi_{rs}, \tau_{rs} \) the restrictions of \(\pi \) and \(\tau \) on \(\tilde{\mathfrak{h}}_{rs} \).

Claim 0.10.
(1) The Weyl group \(W \) acts freely on \(\tilde{\mathfrak{g}}_{rs} \) and \(\pi_{rs} \) is a \(W \)-torsor [that it \(W \) acts simply transitively on fibers of \(\pi_{rs} \)].

(2) The projection \(\tau_{rs} \) is \(W \)-equivariant.

Let \(\mathfrak{g} \) be a semi-simple Lie algebra of an algebraic \(\mathbb{C} \)-group \(G, \mathfrak{h} \subset \mathfrak{g} \) a Cartan subalgebra, \(W \) the Weyl group of \(\mathfrak{g} \). Any semi-simple element \(x \in \mathfrak{g} \) is conjugate to an element \(h_x \in \mathfrak{h} \) under the adjoint action of \(G \) on \(\mathfrak{g} \) and the \(W \) orbit \(h_x^W \subset \mathfrak{h} \) of \(h_x \) does not depend on a choice of \(h_x \in \mathfrak{h} \). In other words we have a well defined map \(\tilde{r}_C : \mathfrak{g}(\mathbb{C}) \rightarrow \mathfrak{h}/W(\mathbb{C}) \) of sets. On the other hand any element \(x \in \mathfrak{g} \) can be written uniquely as the sum \(x = x_s + x_u \) where \(x_s, x_u \) are commuting semi-simple and unipotent elements. So we can define a map \(r_C : \mathfrak{g}(\mathbb{C}) \rightarrow \tilde{\mathfrak{h}}/W(\mathbb{C}) \) of sets where \(r_C(x) := \tilde{r}_C(x_s) \). The Chevalley theorem says that this map is algebraic. To be more precise let \(S(\mathfrak{g}^\vee) \) and \(S(\mathfrak{h}^\vee) \) be the rings of polynomials functions on \(\mathfrak{g} \) and \(\mathfrak{h} \). We denote by \(A \subset S(\mathfrak{g}^\vee) \) the subring of \(Ad \)-invariant polynomials and by \(C_\mathfrak{h} \subset S(\mathfrak{h}^\vee) \) the subring of \(W \)-invariant polynomials. As we know we can identify the ring \(C_\mathfrak{h} \) with the ring \(C \) of polynomial functions on the abstract Cartan algebra \(\tilde{\mathfrak{h}} \). It is clear [please check] that

1. the restriction map defines a ring homomorphism \(r_\mathfrak{h} : A \rightarrow C_\mathfrak{h} \).

2. The induced ring homomorphism \(r : A \rightarrow C \) does not depend on a choice of a Cartan subalgebra \(\mathfrak{h} \subset \mathfrak{g} \).

Theorem 0.11 (Chevalley). The ring homomorphism \(r : A \rightarrow C \) is an isomorphism.

Proof. Since the set of semi simple elements is dense in \(\mathfrak{g} \) and any semi simple element is conjugate to one in \(\mathfrak{h} \) we see that \(r \) is injective. To prove
the surjectivity consider the ring \hat{A} of Ad-invariant regular on \mathfrak{g}_{rs} and the ring \hat{C} of W-invariant regular functions on $\tilde{\mathfrak{g}}_{rs}$. As before we have a ring homomorphism $\hat{r} : \hat{A} \to \hat{C}$.

Lemma 0.12. The ring homomorphism \hat{r} is an isomorphism.

Proof. We want to show that any $f \in \hat{C}$ is of the form $\hat{r}(F)$ for $F \in \hat{A}$. Let $F' := \tau_{rs}^*(f)$. As follows from Claim 2 the function F' is W-invariant and therefore has a form $F' = \pi_{rs}^*(F_f), F_f \in \hat{A}$. But this implies that $f = \hat{r}(F_f)$.

To finish the proof of the theorem it is sufficient to show that the function F_f on \mathfrak{g}_{rs} extends to a regular function on \mathfrak{g} in the case when f extends to a regular function on \mathfrak{h}. But this follows immediately from the properness of π and the following well known result.

Claim 0.13. Let X be a smooth algebraic variety, $Y \subset X$ a proper closed subvariety F a regular function on $X - Y$ which is bounded [as an analytic function] near any point $y \in Y$. Then F extends to a regular function on X.

[Please check that you know a proof of this Claim.]