DEFINITION 0.1. Let F be a finite-dimensional Euclidean vector space,
with the standard Euclidean inner product denoted by (-,-). A [reduced]
root system in FE is a finite set ® of vectors (called roots) that satisfy the
following conditions:

(1) The set ® spans E.

(2) The only scalar multiples of a root o € ® that belong to ¢ are «
and -a.

(3) For every root a € @, the set @ is closed under reflection o, through
the hyperplane perpendicular to a where

(@, v)
(@, )

(4) For any roots «, 3 € ® we have an 5 := (a’, ) € Z where o" :=

@12704)0‘ € F is the corresponding coroot. So o4 (v) =v — (a¥,v)a.

Oa(v) :=v—2 a,vel

DEFINITION 0.2. (1) A subset @ of @ is a set of positive roots if
(a) for each root a € ® exactly one of the roots -a, a belongs to
d* and
(b) for any a, 8 € &t such that a + 3 € ®, we have a + 3 € +.
(2) The group of isometries of V' generated by reflections o4, € ® is
called the Weyl group Wg of ®. As the group Wg acts faithfully
on the finite set ¢ we see that it is finite.
(3) If a subset of positive roots @ is chosen, elements of —®* are
called negative roots.
(4) A positive root is simple if it cannot be written as the sum of two
positive roots. We denote by A C ®* the set of simple roots.
(5) The rank of root system ® C E is the dimension of F.

Low rank examples.

There is only one root system of rank 1, consisting of two nonzero vectors
{a, —a} such that (a,a) = 2. This root system is called A;.

In rank 2 there are four possibilities, which are called A1 x A1, Ao, By
and Gg. The root system A; x Aj is of the form {+«, +5} where o, € V
are orthogonal vectors. The set A of simple roots for systems Ay, By and
Go consists of vectors a, 3 € V such that ag, = 1,a03 = —1,—2 or —3
correspondingly, (a,a) = 1,(8,5) = —aq. Therefore o,(8) = B + na,
where n = 1,2,3 and og(a) = 8+ a.

Whenever @ is a root system in F, and U is a subspace of E spanned
by ¥ = ®NU then ¥ is a root system in U. Thus, the exhaustive list of
four root systems of rank 2 shows that any two roots meet at an angle of
0, 30,45, 60, 90,120, 135, 150 or 180 degrees.

CramM 0.3. (1) Given a root system ® we can always choose a set
®T of positive roots.
(2) The Weyl group We acts simply-transitively on the set {®T} of
subsets of positive Toots.



(3) The set A of simple roots is a basis of E with the property that
every vector in ® is a linear combination of elements of A with
integral non-negative coefficients.

(4) For any two different simple roots o, 3 € ®T we have —(a, ) €
{0,1,2,3}.

(5) The group Wg is generated by reflections s, € A and relations

2 =e,a €, (sasg)™? =e,a# €A

(0%

where Mg, = 2,3,4 or 6 in the case when —(o, ) =0,1,2 or 3.

(6) For any two different roots «, 5 € ® the roots of the form a+kB, k €
Z form an unbroken chain {a—rp, ..., ...,a+sB} wherer,s € Z*
and r + s < 4.

(7) For any B € @7 there exists « € A such that (aV,3) € ZT

(8) The set {a¥},a € ® of coroots forms the dual root system ®V in
V.

(9) Sov = 84 for all a € ®. So both root systems ® and ®V have the
same Weyl group.

(10) Any reflection s € W is equal to sq for some o € .

Let g be a semi-simple Lie algebra, h C g a Cartan subalgebra. The
Killing form of g induces the Euclidean inner product (,) on the dual space
hY. For any a € hY we define g, := {z € g|[h,2] = a(h)z,h € h. Let
Py C Y be the the set of non-zero functionals o € h¥ such that g, # {0}.

THEOREM 0.4. (1) dim(ga) =1 for all a € Dy.

(2) @4 C b is a root system.

(3) Let g,g" be semi-simple Lie algebras g, g such that the root systems
g, @y are isomorphic. Then the Lie algebras g, g’ are isomorphic.

(4) For any root system ® in a vector space V there exists a semi-
simple Lie algebra g such that b = V and &3 = ®. Moreover
the Lie algebra g is generated by elements h;,e;, fi,i € A and the
Chevalley-Serre relations:

1.[hi, ;] = 0
2.[61‘, fl] = hz‘ and [6i,fj] =0 ’ifi 75]
3.[}7,1‘, 6j] = Q;5€4
4.[hi, f5] = —ai; fj
5.ad(e;) 7% (ej) = 0
6.ad(f;)' =" (f;) = 0.
DEFINITION 0.5. Let ® C E be a root system and ®* be a set of positive
roots.
(1) For any positive root =) A cacx we define ht(5) := 3 A Ca-
(2) The root lattice A, is the span in E of the set ®
(3) The weight lattice A is defined by
A:={)€ E|(a¥,\) € Z} for all a € A.

REMARK 0.6. It is clear that A, C A.
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ExAMPLE 0.7 (The root system A,_1). Let R™ be the standard n-
dimensional Euclidean vector space with the basis ¢;,1 <7 < n,E C R"
be the subspace of vectors ), cje;,¢; € R such that ), ¢; = 0,® C E be
the set of vectors of the form «;; = ¢; —e;,1 < i # j <nand &+ C ®
be the subset of vectors of the form «;;,1 < i < j < n. Then ® is a root
system in E, & C @ is a set of positive roots, A = {a;},1 < i < n where
o; :=e; —ei11, Wo = S, A, =Z" N E and A is the span of A, and any one
of vectors vy == e, —1/nd ;" e;,1 <k <n. So A/A, = Z/nZ. We have
Ma;,0; = 2 if [i = j| > 1 and mq, o; = 3 if |1 — j| = 1. The rank of the root
system A,_1 is equal to n — 1 and ht(o; ;) =j — i

PrROBLEM 0.8. Let S, the symmetric group on n elements. The Weyl
group W of the Lie algebra of n x n-matrices is equal to .S,,.

(1) For any permutation w € S, and a pair (i,7),1 < i,7 < n we define

wli; j] as the number of elements k, 1 < k < i such that w(z) < j.
Show that w' < w;w',w € W iff w[i; j] < w'[4; 4] for all pairs
(i,§),1 <i,j <n.

(2) Let k : W — SL,(C) be the imbedding of S,, as the subgroup of
permutation matrices. For any w € W we define O,, := BkB C
SL,(C) where B C SL,(C) is the subgroup of upper-triangular
matrices. Show that v’ < w;w',w € W iff O,y C O, where O, is
the closure of O, in SL,(C).

DEFINITION 0.9. (1) Let g be a semi-simple Lie algebra of a con-
nected algebraic C-group G' which acts by conjugation on g. We
denote by B the flag variety of Borel subalgebras of g.

(2) For any b € B we denote by by the quotient of b by the unipotent
radical and by gp the projection g, : b — .

(3) For any b € B we denote by B, C G the stabilizer of b in G. As
well known By is a Borel subgroup of G.

(4) For any pair b, b’ € B there exist g € G such that Ad(g)(b’) = b and
such element g defines an isomorphism i, between and by and by.
Since g is uniquely defined up to a left multiplication by an elements
of the Borel subgroup By which acts trivially on the quotient b, we
see that the isomorphism i, does not depend on a choice of g.
So we have a canonical identification of commutative Lie algebras
be,b € B. We denote this Lie algebra h and call it the abstract
Cartan algebra.

(5) One can define the Weyl group W as the set of G-orbits on B x B.
Given a representative (b,b’) of w € W the restrictions of the
projections qp, gy to the intersection b N b’ defines isomorphisms
t:(bNb)/n— by and t': (bNb")/n — by where n is the nilpotent
radical of the Lie algebra b N b’ and therefore an isomorphism h —
h* :=t ot(h),h € h. There exists unique group structure on W
such that the map w — w is an action of the group W on b.



(6) For any Cartan subalgebra h C g a choice of a Borel subalgebra
b defines an isomorphism § — b well defined up to a composition
with w € W.

(7) As well known the characteristic polynomial of ad(x) € End(g),z €
g is divisible by ", r := dim(h) and so has a form ¢"D(z,t) where
D(z,t) is a polynomial in ¢ of degree dim(g) — r. Moreover [please
check] D(xz,t) is polynomial function on g x A! and we define
D(x) := D(x,0).

(8) We define g,s := {z € g|D(x) # 0},b,s := grs N'h and use the
identification of h with the abstract Cartan algebra h to define the
open subset §,5 of . Please check that

brs = {h € b[Stw (h) = {e}}

(9) We define g as the subvariety in g x B of pairs (z,b) C g x B
such z € b and denote by 7 : § — g and by 7 : § — b the natural
projections. Since the space B is compact we see that the morphism
T is proper.

(10) We define g, := 7 '(g,s) and denote by 7., 7,s the restrictions of
mand 7T on gps.

Cramm 0.10. (1) The Weyl group W acts freely on g,s and 7y is a
W -torsor [that it W acts simply-transitively on fibers of mys].
(2) The projection 7,5 is W -equivariant.

Let g be a semi-simple Lie algebra of an algebraic C-group G,h C g a
Cartan subalgebra, W the Weyl group of g. Any semi-simple element x € g
is conjugate to an element h, € h under the adjoint action of G on g and the
W orbit hYV' C b of h, does not depend on a choice of h, € b. In other words
we have a well defined map 7¢ : g(C) — h/W(C) of sets. On the other hand
any element x € g can be written uniquely as the sum z = x5 + x,, where
Ts, T, are commuting semi-simple and unipotent elements. So we can define
a map rc : g(C) — h/W(C) of sets where rc(z) := 7c(zs). The Chevalley]
theorem says that this map is algebraic. To be more precise let S(g¥) and
S(hY) be the rings of polynomials functions on g and h. We denote by
A C S(g¥) the subring of Ad-invariant polynomials and by Cy C S(h") the
subring of W-invariant polynomials. As we know we can identify the ring
Cy with the ring C' of polynomial functions on the abstract Cartan algebra
b. It is clear [please check] that

(1) the restriction map defines a ring homomorphism ry : A — Cj.
(2) The induced ring homomorphism r : A — C' does not depend on a
choice of a Cartan subalgebra h C g.

THEOREM 0.11 ( Chevalley). The ring homomorphism r : A — C' is an
isomorphism.

PROOF. Since the set of semi simple elements is dense in g and any semi
simple element is conjugate to one in h we see that r is injective. To prove
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the surjectivity consider the ring A of Ad-invariant regular on g,s and the
ring C' of W-invariant regular functions on g,;. As before we have a ring
homomorphism 7 : A — C.

LEMMA 0.12. The ring homomorphism 7 is an isomorphism.

PROOF. We want to show that any f € C is of the form #(F) for F € A.
Let F' := 77,(f). As follows from Claim 2 the function F’ is W-invariant
and therefore has a form F' = w7 (Ff),F; € A. But this implies that
f=7(Fy). 0

To finish the proof of the theorem it is sufficient to show that the function
Fy on g,s extends to a regular function on g in the case when f extends to

a regular function on h. But this follows immediately from the properness
of m and the following well known result.

Cram 0.13. Let X be a smooth algebraic variety, Y C X a proper closed
subvariety F' a regular function on X —Y which is bounded [as an analytic

function] near any point y € Y. Then F extends to a reqular function on
X.

[Please check that you know a proof of this Claim.] O



