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Abstract

A simplicial complex X is d-Leray if H̃i(Y ; Q) = 0 for all induced
subcomplexes Y ⊂ X and i ≥ d. Let L(X) denote the minimal d such
that X is d-Leray.

Theorem: Let X,Y be simplicial complexes on the same vertex set.
Then

L(X ∩ Y ) ≤ L(X) + L(Y ) ,

L(X ∪ Y ) ≤ L(X) + L(Y ) + 1 .

1 Introduction

Let X be a simplicial complex on the vertex set V . The induced subcomplex
on a subset of vertices S ⊂ V is X[S] = {σ ∈ X : σ ⊂ S}. The link of a
simplex σ ∈ X is lk(X, σ) = {τ ∈ X : τ ∩ σ = ∅ , τ ∪ σ ∈ X } . All
(co)homology groups considered in this note are with rational coefficients.

A simplicial complex X is d-Leray if H̃i(Y ) = 0 for all induced subcom-
plexes Y ⊂ X and i ≥ d. Equivalently X is d-Leray if H̃i(lk(X, σ)) = 0 for
all σ ∈ X and i ≥ d. Let L(X) denote the minimal d such that X is d-Leray.
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Note that L(X) = 0 iff X is a simplex. L(X) ≤ 1 iff X is the clique complex
of a chordal graph.

The class Ld of d-Leray complexes arises naturally in the context of Helly
type theorems [3]. The Helly number h(F) of a family of sets F is the
minimal positive integer h such that if K ⊂ F is finite and

⋂

K∈K′ K 6= ∅
for all K′ ⊂ K of cardinality ≤ h, then

⋂

K∈K K 6= ∅. The nerve N(K) of a
family of sets K, is the simplicial complex whose vertex set is K and whose
simplices are all K′ ⊂ K such that

⋂

K∈K′ K 6= ∅. It is easy to see that

h(F) ≤ 1 + L(N(F)).

For example, if F is a finite family of convex sets in Rd, then by the Nerve
Lemma (see e.g. [2]) N(F) is d-Leray, hence follows Helly’s Theorem: h(F) ≤
d+1. This argument actually proves the Topological Helly Theorem: If F is
a finite family of closed sets in Rd such that the intersection of any subfamily
of F is either empty or contractible, then h(F) ≤ d + 1.

Nerves of families of convex sets however satisfy a stronger combinatorial
property called d-collapsibility [7], that leads to some of the deeper exten-
sions of Helly’s Theorem. It is of considerable interest to understand which
combinatorial properties of nerves of families of convex sets in Rd extend to
arbitrary d-Leray complexes. For some recent work in this direction see [1, 4].

In this note we are concerned with unions and intersections of Leray
complexes.

Theorem 1.1. Let X1, . . . , Xr be simplicial complexes on the same finite
vertex set. Then

L
(

r
⋂

i=1

Xi

)

≤
r

∑

i=1

L(Xi) (1)

L
(

r
⋃

i=1

Xi

)

≤
r

∑

i=1

L(Xi) + r − 1 (2)

Example: Let V1, . . . , Vr be disjoint sets of cardinalities |Vi| = ai, and let
V =

⋃r

i=1 Vi. Consider the complexes Xi = {σ ⊂ V : σ 6⊃ Vi}. Then
L(Xi) = ai − 1 , L(∩r

i=1Xi) =
∑r

i=1 ai − r and L(∪r
i=1Xi) =

∑r

i=1 ai − 1 ,
so equality is attained in both (1) and (2).

Define the rational homological dimension of a complex X by

hd(X) = max{i ≥ 0 : H i(X) 6= 0}
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where by convention hd(∅) = −1. If X is not a simplex, then

L(X) = 1 + max{hd(X[S]) : S ⊂ V } = 1 + max{hd(lk(X, σ)) : σ ∈ X}.

Theorem 1.1 is a consequence of the following

Theorem 1.2. Let X, Y be complexes on the same finite vertex set. Then

hd(X ∩ Y ) ≤ 1 + max
σ∈Y

{

hd(X[σ]) + hd(lk(Y, σ))
}

.

Our main result (Proposition 2.1) gives a spectral sequence for the co-
homology of the intersection of two complexes, which directly implies The-
orems 1.2 and 1.1. The derivation of this sequence involves a simple use
of the method of simplicial resolutions. For more advanced applications of
simplicial resolutions see Vassiliev’s papers [6, 5].

2 A Spectral Sequence for H∗(X ∩ Y )

Let K be a simplicial complex. The subdivision sd(K) is the order complex
of the set of simplices of K ordered by inclusion. For σ ∈ K let DK(σ)
denote the order complex of the interval [σ, ·] = {τ ∈ K : τ ⊃ σ}. DK(σ) is

called the dual cell of σ. Let
.

DK(σ) denote the order complex of the interval

(σ, ·] = {τ ∈ K : τ % σ}. Note that
.

DK(σ) is isomorphic to sd(lk(K, σ))
via the simplicial map τ → τ − σ. Since DK(σ) is contractible, it follows

that H i(DK(σ),
.

DK(σ)) ∼= H̃ i−1(lk(K, σ)) for all i ≥ 0. Write K(p) for the
family of p-dimensional simplices in K.
Our main observation is the following

Proposition 2.1. For two complexes X and Y on the same finite vertex set,
there exists a spectral sequence {Er} converging to H∗(X ∩ Y ) such that

E
p,q
1 =

⊕

σ∈Y (n−p)

⊕

i,j≥0
i+j=p+q

H i(X[σ]) ⊗ H̃j−1(lk(Y, σ)) .

Proof: Let
K =

⋃

σ∈Y

X[σ] × DY (σ) ⊂ X × sd(Y )
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and let
π : K →

⋃

σ∈Y

X[σ] = X ∩ Y

denote the projection on the first coordinate. For z ∈ X ∩Y , let τ = supp(z)
denote the minimal simplex in X∩Y containing z. The fiber π−1(z) = {z}×
DY (τ) is a cone, hence π is a homotopy equivalence. For 0 ≤ p ≤ dim Y = n

let
Fp =

⋃

σ∈Y
dim σ≥n−p

X[σ] × DY (σ) .

By excision

H∗
(

Fp, Fp−1) ∼= H∗(
⋃

σ∈Y (n−p)

X[σ] × DY (σ),
⋃

σ∈Y (n−p)

X[σ] ×
.

DY (σ)
)

. (3)

Next note that for distinct σ, τ ∈ Y (n − p)

(

X[σ] × DY (σ) − X[σ] ×
.

DY (σ)
)

∩ X[τ ] × DY (τ) = ∅ .

Together with (3) this implies a direct sum decomposition

H∗(Fp, Fp−1) ∼=
⊕

σ∈Y (n−p)

H∗(X[σ] × DY (σ), X[σ] ×
.

DY (σ)) . (4)

Let {Er} be the cohomology spectral sequence associated with the filtration
∅ ⊂ F0 ⊂ · · · ⊂ Fn = K. Then by (4) and the Künneth formula

E
p,q
1 = Hp+q(Fp, Fp−1) ∼=

⊕

σ∈Y (n−p)

Hp+q(X[σ] × DY (σ), X[σ] ×
.

DY (σ)) ∼=

⊕

σ∈Y (n−p)

⊕

i,j≥0
i+j=p+q

H i(X[σ]) ⊗ Hj(DY (σ),
.

DY (σ)) ∼=

⊕

σ∈Y (n−p)

⊕

i,j≥0
i+j=p+q

H i(X[σ]) ⊗ H̃j−1(
.

DY (σ)) ∼=

⊕

σ∈Y (n−p)

⊕

i,j≥0
i+j=p+q

H i(X[σ]) ⊗ H̃j−1(lk(Y, σ)) .
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Proof of Theorem 1.2: We have to show that Hk(X ∩ Y ) = 0 for k ≥
2 + max

{

hd(X[σ]) + hd(lk(Y, σ)) : σ ∈ Y
}

. By Proposition 2.1 it suffices to
check that

H i(X[σ]) ⊗ H̃j−1(lk(Y, σ)) = 0

for all σ ∈ Y and i, j ≥ 0 such that i + j = k. Indeed, if i ≥ 1 + hd(X[σ])
then H i(X[σ]) = 0. Otherwise j ≥ 2 + hd(lk(Y, σ)) and H̃j−1(lk(Y, σ)) = 0.

2

Remark: For an r-tuple (X1, . . . , Xr) of simplicial complexes on the same
finite vertex set V , let F denote the set of all chains

∅ = σ1 ≺ σ2 ≺ . . . ≺ σr ≺ σr+1 = V

such that σi ∈ Xi for all 1 ≤ i ≤ r. Iterating Theorem 1.2 we obtain the
following

Theorem 2.2.

hd
(

r
⋂

i=1

Xi

)

≤ max
(σ1,...,σr+1)∈F

r
∑

i=1

hd
(

lk(Xi[σi+1], σi)
)

+ r − 1 .

2

Proof of Theorem 1.1: By induction it suffices to consider the r = 2 case.
If X or Y are simplices, then L(X ∩ Y ) ≤ max{L(X), L(Y )}. We may thus
assume that neither X nor Y are simplices. By Theorem 1.2

hd(X ∩ Y ) ≤ 1 + max
σ∈Y

(

hd(X[σ]) + hd(lk(Y, σ))
)

≤ L(X) + L(Y ) − 1.

Hence, by the monotonicity of L

L(X ∩ Y ) ≤ L(X) + L(Y ) . (5)

Next, let k ≥ L(X)+L(Y )+1. Then by (5) and the Mayer-Vietoris sequence

→ H̃k−1(X ∩ Y ) → Hk(X ∪ Y ) → Hk(X) ⊕ Hk(Y ) →

it follows that Hk(X ∪ Y ) = 0. Again by monotonicity we obtain

L(X ∪ Y ) ≤ L(X) + L(Y ) + 1.

2
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