
Linear Programming, the Simplex Algorithm and Simple PolytopesGil KalaiInstitute of Mathematics, Hebrew University of Jerusalem, Jerusalem, Israele:mail: kalai@math.huji.ac.ilMay 6, 1997AbstractIn the �rst part of the paper we survey some far-reaching applications of the basic factsof linear programming to the combinatorial theory of simple polytopes. In the second part wediscuss some recent developments concerning the simplex algorithm. We describe subexponentialrandomized pivot rules and upper bounds on the diameter of graphs of polytopes.1 Introduction:A convex polyhedron is the intersection P of a �nite number of closed halfspaces in Rd. P is ad-dimensional polyhedron (briey, a d-polyhedron) if the points in P a�nely span Rd. A convexd-dimensional polytope (briey, a d-polytope) is a bounded convex d-polyhedron. Alternatively, aconvex d-polytope is the convex hull of a �nite set of points which a�nely span Rd.A (nontrivial) face F of a d-polyhedron P is the intersection of P with a supporting hyperplane.F itself is a polyhedron of some lower dimension. If the dimension of F is k we call F a k-face ofP . The empty set and P itself are regarded as trivial faces. 0-faces of P are called vertices, 1-facesare called edges and (d� 1)-faces are called facets. For material on convex polytopes and for manyreferences see Ziegler's recent book [32].The set of vertices and (bounded) edges of P can be regarded as an abstract graph called thegraph of P and denoted by G(P ).



We will denote by fk(P ) the number of k-faces of P . The vector (f0(P ); f1(P ); : : : ; fd(P )) iscalled the f -vector of P . Euler's famous formula V � E + F = 2 gives a connection between thenumbers V;E; F of vertices, edges and 2-faces of every 3-polytope.A convex d-polytope (or polyhedron) is called simple if every vertex of P belongs to preciselyd edges. Simple polyhedra correspond to non-degenerate linear programming problems. When youcut a simple polytope P near a vertex v with a hyperplane H which intersect the interior of P , theintersection P \ H is a (d � 1)-dimensional simplex S. The vertices of S are the intersections ofedges of P which contain v with H and the (k � 1)-dimensional faces of S are the intersection ofk-faces of P with H. The following basic property of simple polytopes follows:� Let P be a simple d-polytope and let v be a vertex of P . Every set of k edges adjacent to vdetermines a k-dimensional face of P which contains the vertex v.In particular there are precisely �dk� k-faces in P containing v and altogether 2d faces (of alldimensions) which contain v.Linear programming and the simplex algorithmLinear programming is the problem of maximizing a linear objective function � subject to a �niteset of linear inequalities. The relevance of convex polyhedra to linear programming is clear. Theset P of feasible solutions for a linear programming problem is a polyhedron.There are two fundamental facts concerning linear programming the reader should keep in mind:� If � is bounded from above on P then the maximum of � on P is attained at a face of P , inparticular there is a vertex v for which the maximum is attained. If � is not bounded fromabove on P then there is an edge of P on which � is not bounded from above.� A su�cient condition for v to be a vertex of P on which � is maximal is that v is a localmaximum, namely �(v) is bigger or equal than �(w) for every vertex w which is a neighborof v.



The simplex algorithm is a method to solve a linear programming problem by repeatedly movingfrom one vertex v to an adjacent vertex w of the feasible polyhedron so that in each step the valueof the objective function is increased. The speci�c way to choose w given v is called the pivot rule.The d-dimensional simplex and the d-dimensional cubeThe d-dimensional simplex Sd is the convex hull of d + 1 a�nely independent points in Rd. Thefaces of Sd are themselves simplices. In fact, the convex hull of every subset of vertices of a simplexis a face and therefore fk(Sd) = �d+1k+1�: The graph of Sd is the complete graph on d+ 1 vertices.The d-dimensional cube Cd is the set of all points (x1; x2; � � � ; xd) in Rd such that for every i0 � xi � 1. The vertices of Cd are all the (0; 1) vectors of length d and two vertices are adjacent(in the graph of Cd) if they agree in all but one coordinates. fk(Cd) = 2d�k � �dk�:2 Applications of the fundamental properties of linear program-ming to the combinatorial theory of simple polytopesLet P be a simple d-polytope, and let � be linear objective function which attains di�erent valueson di�erent vertices of P . Call such a linear objective function generic. (Actually it will be enoughto assume only that � is not constant on any edge of P .)The fundamental fact concerning linear programming is that the maximum of � on P is attainedat a vertex v and that a su�cient condition for v to be the vertex of P on which � is maximal isthat v is a local maximum, namely �(v) is strictly bigger than �(w) for every vertex w which is aneighbor of v.Every face F of P is itself a polytope and � attains di�erent values on distinct vertices of F .Among the vertices of F there is a vertex on which � is maximal and again this vertex is the onlyvertex in F which is a local maximum of � in the face F .These considerations have far-reaching applications on the understanding of the combinatorialstructure of simple polytopes. We refer the reader to Ziegler's book [32] for historical notes and forreferences to the original papers. Our presentation is also quite close to that in [26]. We hope that



the theory of h-numbers described below will reect back on linear programming but this is left tobe seen.Degrees and h-numbersLet P be a simple d-polytope and let � be a generic linear objective function. For a vertex v of Pde�ne the degree of v denoted by deg(v) to be the number of its neighboring vertices with smallervalue of the objective function. Clearly, 0 � deg(v) � d.De�ne now hk(P ) to be the number of vertices of P of degree k. This number as we de�ned itdepends on the objective function � but we will soon see that it is actually independent from �.We can see one sign for this already; no matter what � is there will always be precisely one vertexof degree d (on which � attains the maximum) and one vertex of degree 0 (on which � attains theminimum). This follows at once from the fact that local maximum=global maximum.To continue we will count pairs of the form (F; v); where F is a k-face of P and v is a vertex ofF which is a local maximum (hence a global maximum) of � in F .On the one hand the number of such pairs is precisely fk(P ) - the number of k-faces of P . Thisis because every k-face has a unique local maximum.On the other hand, let us compute how many pairs contain a given vertex v of P . This dependsonly on the degree of v. Assume that deg(v) = r and consider the set of edges of PT = f[v; w] : �(v) > �(w)g:Thus jT j = r. As we mentioned above every set S of k edges containing v determines a k-face F (S)containing v. In this face the set of edges containing v is precisely S. In order for v to be a localmaximum in this face it is necessary and su�cient that for every edge [v; w] in S, �(v) > �(w).This occurs if and only if S � T . Therefore, the number of k-faces containing v for which v is alocal maximum is precisely the number of subsets of T of size k, namely �rk�.Summing over all vertices v of P and recalling that hk(P ) denotes the number of vertices ofdegree k we obtain



(�) dXr=0hr(P ) rk! = fk(P ); k = 0; 1; : : : ; d:Note that this formula describes the f -vector of P - (f0(P ); f1(P ); : : : ; fd(P )) as an uppertriangular matrix (with ones on the diagonal) times the h-vector of P - (h0(P ); h1(P ); : : : ; hd(P )).Therefore, the h-numbers are in fact linear combinations of the face numbers, and in particularthey do not depend on the linear objective function �.Put FP (x) = dXk=0 fk(P )xk;and HP (x) = dXk=0hk(P )xk:Relation (�) gives HP (x+ 1) = dXr=0hr(P )(x+ 1)r:= dXk=0( dXr=0hr(P ) rk!)xk = dXk=0 fk(P )xk = FP (x):Therefore, HP (x) = FP (x� 1) andhk(P ) = dXr=0(�1)r�kfr(P ) rk!:In particular, h0(P ) = f0(P )� f1(P ) + f2(P )� � � � + (�1)dfd(P );h1(P ) = f1(P )� 2f2(P ) + 3f3(P )� � � �+ (�1)d�1dfd(P );h2(P ) = f2(P )� 3f3(P ) + 6f4(P )� � � � + (�1)d�2 d2!fd(P );hd(P ) = fd(P ) (= 1);hd�1(P ) = fd�1(P )� d;hd�2(P ) = fd�2(P )� (d� 1)fd�1(P ) +  d2!:



For the simplex Sd; hk = 1 for every k. The graph of Sd is the complete graph on d+1 verticesand for every generic objective function there will by precisely one vertex of degree k for 1 � k � d.For the cube Cd , hk = �dk�. To see this consider the objective function � which is the sum of thecoordinates. (This is not a generic objective function but it is not constant on edges of the polytopeand this is su�cient for our purposes.) The vertices of degree k are precisely those having �(v) = kand there are �dk� such vertices.Euler Formula and the Dehn-Sommerville RelationsFor a generic linear objective function there is a unique maximal vertex and a unique minimalvertex. Therefore, h0(P ) = hd(P ) and by the formulas above we obtain f0(P ) � f1(P ) + f2(P ) �� � �+ (�1)dfd(P ) = 1, which is Euler Formula usually written:f0(P )� f1(P ) + f2(P )� � � �+ (�1)d�1fd�1(P ) = 1� (�1)d:More generally, if � is a generic linear objective function then so is ��. However, if v is a vertexof a simple polytope P and v has degree k w.r.t. � then v has degree d� k w.r.t. ��.This gives the Dehn-Sommerville relationshk(P ) = hd�k(P ):The Dehn-Sommerville relations are the only linear equalities among face numbers of simpled-polytopes.The cyclic polytopesThe cyclic d-polytope with n vertices C(d; n) is the convex hull of n distinct point on the momentcurve x(t) = (t; t2; : : : ; td) � Rd. This is a remarkable class of polytopes and the reader shouldconsult [10, 26, 32] for their properties. C�(d; n) will denote a polar polytope to C(d; n). (For thede�nition of polarity see [10, 26, 32].) C�(d; n) is a simple d-polytope with n facets.



The upper bound theoremMotzkin conjectured that the maximal number of vertices (and more generally of k-dimensionalfaces) for d-polytopes with n facets is attained by C�(d; n), the polar-to-cyclic d-polytopes with nfacets. This conjecture was proved by McMullen [23]. It is easy to reduce this conjecture to simplepolytopes, and to calculate the h-numbers of C�(d; n), see [32, 26]. This giveshk(C�(d; n)) = hd�k(C�(d; n)) =  n� d+ k � 1k !;for 1 � k � [d=2].Since the face numbers are linear combination of h numbers with nonnegative coe�cients theupper bound theorem follows from the following relations (and the Dehn-Somerville relations):hd�k(P ) �  n� d+ k � 1k ! 1 � k � [d=2]:Proof: Consider a generic linear objective function � which gives higher values to vertices in afacet F than to all other vertices. (To construct such an objective function start with an objectivefunction whose maximum is attained precisely on the facet F and then make a slight perturbationto make it generic.) Every vertex v of degree k � 1 in F has precisely one neighbor not in F andtherefore the degree of v in P is k. This gives(�) hk�1(F ) � hk(P ):Next, (��) Xhk(F ) = (k + 1)hk+1(P ) + (d� k)hk(P );where the sum is over all facets F of P .To prove (**) consider a vertex v of degree k in P . The vertex v is adjacent to d edges and everysubset of d � 1 out of them determine a facet. The degree of v is k � 1 in every facet determinedby d� 1 edges adjacent to v where one of the k edges pointing down (w.r.t. �) is deleted and thereare k such facets. The degree of v is k in the remaining d� k facets.



(*) and (**) gives the upper bound relations hd�k(P ) � �n�d+k�1k � by induction on k. For k = 1we have equality hd�1 = n� d. For k � 1 we obtain(d� k + 1)hd�k+1(P ) + khd�k(P ) =Xhd�k(F ) � n � hd�k+1(P )Therefore k � hd�k(P ) � (n� d+ k � 1) � hd�k+1(P ) i.e. hd�k(P ) � n�d+k�1k � hd�k+1(P ). Andassuming the upper bound relation for k � 1 we obtain for khd�k(P ) � n� d+ k � 1k  n� d+ kk � 1 ! =  n� d+ k � 1k !:Abstract objective functions and telling the polytope from its graphConsider an ordering � of the vertices of a simple d-polytope P . For a nonempty face F we say thata vertex v of F is a local maximum in F if v is larger w.r.t. the ordering � than all its neighboringvertices in F . An abstract objective function (AOF) of a simple d-polytope is an ordering whichsatis�es the basic property of linear objective functions -� Every nonempty face F of P has a unique local maximum vertex.If P is a simple d-polytope and � is a linear ordering of the vertices we de�ne, as before, thedegree of a vertex v w.r.t. the ordering as the number of adjacent vertices to v that are smallerthan v w.r.t �. Thus, the degree of a vertex is a nonnegative number between 0 and d. Let h�k bethe number of vertices of degree k. Finally, put F (P ) to be the total number of nonempty faces ofP . Claim 1: dXr=0 2kh�k � F (P );and equality hold if and only if the ordering � is a AOF.Proof: Count pairs (F; v) where F is a non-empty face of P (of any dimension) and v is avertex which is local maximum in F w.r.t. the ordering �. On the one hand every vertex v ofdegree k contributes precisely 2k pairs (F; v) corresponding to all subsets of edges from v leadingto smaller vertices w.r.t. �. Therefore the number of pairs is precisely Pdr=0 2kh�k . On the other



hand, the number of such pairs is at least F (P ) (every face has at least one local maximum) andit is equal to F (P ) i� every face has exactly one local maximum i.e if the ordering is an AOF.Claim 2: A connected k-regular subgraph H of G(P ) is the graph of a k-face, if and only ifthere is an AOF in which all vertices in H are smaller than all vertices not in H.Proof: If H is the graph of a k-face F of P then consider a linear objective function  whichattains its minimum precisely at the points in F . (By de�nition for every non-trivial face such alinear objective function exists.) Now perturb  a little to get a generic linear objective function �in which all vertices of H have smaller values than all other vertices.On the other hand if there is an AOF � in which all vertices in H are smaller than all verticesnot in H, consider the vertex v of H which is the largest w.r.t. �. There is a k-face F of Pdetermined by the k-edges in H adjacent to v and v is a local maximum in this face. Since theordering is an AOF v must be larger than all vertices of F hence the vertices of F are containedin H and the graph of F is a subgraph of H. But the only k-regular subgraph of a connectedk-regular graph is the graph itself and therefore H is the graph of F .Claims 1 and 2 provide a proof to a theorem of Blind and Mani [3].Theorem 2.1 The combinatorial structure of a simple polytope is determined by its graph.Indeed, claim 1 allows us to determine just from the graph all the orderings which are AOF's.Using this, claim 2 allows to determine which sets of vertices form the vertices of some k-dimensionalface. Let us mention that the proof gives a very poor algorithm (exponential in the number ofvertices) and it is an open problem to �nd better algorithms.Further facts without such simple geometric proofsOne of the most important development in the theory of convex polytopes is the complete descrip-tion of h-vectors of simple d-polytopes, conjectured by McMullen and proved by Stanley and Billeraand Lee. See [2, 30, 24].A crucial part of this characterization is the following: For every simple d-polytope



h1(P ) � h2(P ) � ::: � h[d=2](P ):In words: the number of vertices of degree k is smaller or equal than the number of vertices ofdegree k+ 1, when k � [d=2]. It is a challenging problem to �nd a direct geometrical proof for thisinequality. (The existing proofs have algebraic ingredients and are very di�cult.)The e�ect of a single random pivot step on the degreeOne possible measure for the progress of a certain pivot rule of the simplex algorithm would be viathe degree of the vertices. Unfortunately, it seems di�cult to predict how the degrees of verticeswill behave in a path of vertices given by some pivot rule.Starting with a random vertex of a simple polytope it is possible to say what will be the e�ect onthe degree of a single random pivot step. By a random pivot step we mean the following: Startingwith a vertex v we choose at random one of the d neighboring vertices w. If �(w) > �(v) we moveto w and otherwise we stay at v.The average degree E0(P ) of vertices in a simple d-polytope (which is the expected degree of arandom vertex) is by the Dehn-Sommerville relations d=2. The average degree E1(P ) of a vertexof P obtained by a single random pivot step (as described above) starting from a random vertexv is: 1 + 2f2(P )=f1(P ). For example, for the d-cube E1(P ) = d2 + 12 . (Similar formulas exist if wechoose at random an r-face containing v and move from v to its highest vertex.)To prove the formula for E1(P ) note that the probability that after one random pivot step wereach a (speci�c) vertex w of degree k is 1f0(P ) � 2k=d. Indeed, if we start at w (this occurs withprobability 1=f0(P )) then with probability k=d we stay at w. If we start with one of the k "lower"neighbors of w (altogether this occur with probability k=f0(P ) ) then we reach w after one stepwith probability 1=d. It follows thatE1(P ) = 1f0(P ) � dXk=0(2k2=d)hk(P );which equals 1 + 2f2(P )=f1(P ) by the formulas above. Note that E1(P ) does not depend on theobjective function. This is no longer true if we are interested in E2(P ) the average degree after two



random pivot steps. The following problem (of independent interest) naturally arises.Problem: Let P be a simple d-polytope and � be a generic linear objective function. Let hi;jbe the numbers of pairs of adjacent vertices v; w such that �(v) < �(w) and deg(v) = i; deg(w) = j.What can be said about the collection of numbers (hi;j : 1 �; i; j � d).This array of numbers depends on the objective function and not only on the polytope. It willbe interesting to describe the possible hi;j numbers even for the special case when the polytope iscombinatorially isomorphic to the d-dimensional cube. (The question is interesting also for abstractobjective functions.)ArrangementsWe would like to close this section with the following remark: Consider an arrangement of nhyperplanes in general position in Rd, and a generic linear objective function �. This arrangementdivides Rd into simple d-polyhedra. The average value of hk(P ) over all these polyhedra is �dk�.To see this just note that every vertex v in the arrangement belongs to 2d d-polyhedra and hasdegree k in �dk� of these polyhedra. Similarly, the average h-vector over r-dimensional faces of thearrangement is the h-vector of the r-dimensional cube.3 The Hirsch conjecture and subexponential randomized pivotrules for the simplex algorithmIn this section we describe recent developments concerning the simplex algorithm. We describesubexponential randomized pivot rules and recent upper bounds for the diameter of graphs ofpolytopes. The algorithms we consider should be regarded in the general context of LP algorithmsdiscovered by Megiddo [25], Clarkson [5], Seidel [28], Dyer, Dyer and Frieze [7] and many others.But we will not attempt giving this general picture here. For the use of randomized algorithms incomputational geometry the reader is referred to Mulmuly's book [26]. Another word of warningis that the language we use is quite di�erent than the usual LP terminology, and we leave it to theinterested reader to make the translation.



The complexity of linear programmingGiven a linear programmax < b; x > subject to Ax � c with n inequalities in d variables, we denoteby L the total input size of the problem when the coe�cients are described in binary. We denoteby CA(d; n; L) the number of arithmetic operations needed - in the worst case - by an algorithmA to solve a linear programming problem with d variables, n inequalities and input size L. The(worst-case) complexity of linear programming is (roughly) the function C(d; n; L) which describesfor every value of d; n; L the smallest possible value of CA(d; n; L) over all possible algorithms.Khachiyan's breakthrough result [12] was that the complexity of the ellipsoid method E is apolynomial function of d; n and L, namely CE(d; n; L) � p(d; n)�L. Other algorithms which improveon Khachiyan's original bound (and also had immense practical impact on the subject) were foundby Karmarkar and many others.By considering solutions to all subsets of d from the n inequalities we can easily see thatC(d; n; L) � f(d; n) , i.e., linear programming can be solved by a number of arithmetic operationswhich is a function of d and n and independent of the input size L. It is an outstanding open problemto �nd a strongly polynomial algorithm for linear programming; that is to �nd an algorithm whichrequires a polynomial number in d and n of arithmetic operations which is independent from L.Klee and Minty [18] and subsequently others have shown that several common pivot rules forthe simplex algorithm are exponential in the worst case.Explaining the excellent performance of the simplex algorithm in practice (especially in viewof the exponential worst-case behavior of various pivot rules) is a major challenge. The results onthe average case behavior of the simplex algorithm provide one such explanation. (See Borgwardt'sbook [4] for a description of his work and for references to other works, or [29].) The fact that thecomplexity of linear programming is polynomial (by Khachiyan's result) even if not via the simplexalgorithm provides another partial explanation.Of course, �nding a pivot rule which requires a polynomial number of steps in the worst caseor even proving that there are always a polynomial number of pivot steps leading to the optimalvertex (without prescribing an algorithm to �nd these steps) are very desirable.



Using randomness for pivot rulesWe will consider now randomized algorithms. Namely, algorithms which depend on internal randomchoices. Given such a randomized algorithm A we denote by CRA (d; n) the expected number ofarithmetic operation needed -in the worst case - by A on a LP-problem with d variables and ninequalities. CR(d; n) will be the minimal value of CRA (d; n) over all possible algorithms A. ClearlyCR(d; n) � C(d; n). (Note: We are interested in a worst case analysis of the average running timewhere the randomization is internal to the algorithm. This is in contrast with average case analysiswhere the LP problem itself is random.)Perhaps the simplest random pivot rule is to choose at each step at random with equal proba-bilities a neighboring vertex with a higher value of the objective function. Unfortunately, it seemsvery di�cult to analyze this rule for general problems. Recently, G�artner, Henk and Ziegler [9]managed to analyze the behavior of random pivoting on the "Klee-Minty cube".The Hirsch conjectureLet �(d; n) denotes the maximal diameter of the graphs of d-polyhedra P with n facets and �b(d; n)denotes the maximal diameter of the graphs of d-polytopes with n vertices.Given a d-polyhedron P , a linear objective function � which is bounded from above on P and avertex v of P , denote by m(v) the minimal length of a monotone path in G(P ) from v to a vertexof P on which � attains its maximum. Let H(d; n) be the maximum of m(v) over all d-polyhedraP with n facets, all linear functionals � on Rd and all vertices v of P . (A monotone path is a pathin G(P ) on which � is increasing.)LetM(d; n) be the maximal number of vertices in a monotone path in G(P ) over all d-polyhedraP with n facets and all linear functionals � on Rd.Clearly �(d; n) � H(d; n) �M(d; n):H(d; n) can be regarded as the number of pivot steps needed by the simplex algorithm whenthe pivots are chosen by an oracle in the best possible way. M(d; n) can be regarded as the number



of pivot steps needed when the pivots are chosen by an adversary in the worst possible way.In 1957 Hirsch conjectured [6] that �(d; n) � n� d. Klee and Walkup showed that the Hirschconjecture is false for unbounded polyhedra. The Hirsch conjecture for polytopes is still open. Thespecial case asserting that �b(d; 2d) = d is called the d-step conjecture and it was shown by Kleeand Walkup to imply the general case.Theorem 3.1 (Klee and Walkup [19], 1967)�(d; n) � n� d+minf[d=4]; [(n � d)=4]g:Theorem 3.2 (Holt and Klee, [11] 1997) . For all d >= 14 and n > d�b(d; n) � n� d:Theorem 3.3 (Larman, [20] 1970) �(d; n) � n2d�3:Theorem 3.4 (Kalai and Kleitman, 1992)�(d; n) � n �  log n+ dlog n ! � nlog d+1:Klee and Minty [18] considered a certain geometric realization of the d-cube (called now the"Klee-Minty cube") to show thatTheorem 3.5 (Klee and Minty,1972) M(d; 2d) � 2dSubexponential randomized pivot rulesWe will assume (and there is no loss of generality assuming this) that the LP problem is non-degenerate (i.e. the feasible polyhedron is simple) and that a vertex v of the feasible polyhedron isgiven. With a slight change of terminology all the algorithms and results we describe apply to thedegenerate case.Several years ago the author [16] and independently Matou�sek, Sharir and Welzl [22] found arandomized subexponential pivot rule for LP . thus proving that



CR(d; n) � exp(Kpd log n).(Slightly sharper bounds are described below.) In my paper various variants of the algorithmwere presented and we will see here two variants. The �rst and simplest variant is one of my originaland is equivalent (in a dual-setting) to the Sharir-Welzl algorithm [27] on which [22] is based. Thesecond variant presented here is a joint work with Martin Dyer and Nimrod Megiddo. It is a betterand simpli�ed version of other variants from [16]. All these algorithms apply to abstract objectivefunctions and even more general settings. See also G�artner's paper [8].Consider an LP problem of optimizing a linear objective function � over a d-polyhedron P anda vertex v of P . Our aim is to reach top(P ) which is a vertex of P on which the objective functionis maximal or an edge of P on which the objective function is unbounded from above.ALGORITHM I :� Given a vertex v 2 P choose a facet F containing v at random.� Apply the algorithm on F until reaching w = top(F ).� repeat the algorithm from w.Remark: The algorithm terminates if v = top(P ). If v = top(F 0) for some facet F 0 containingv (in which case v has only one improving edge) we choose F at random from the other d�1 facetscontaining F . (Unless v = top(P ) there is at most one such facet F 0.)ALGORITHM II :Choose at random an ordering of the facets F�(1); F�(2); :::; F�(n).� Phase I : Apply the algorithm until you reach a vertex in F�(1) (or reach top(P )).� Phase II : Apply the algorithm recursively inside F1 until reaching w = top(F1)� Phase III : Delete the facet F�(1) from the ordering and continue to run the algorithm fromw.Phase I and phase III are performed w.r.t. the initial random ordering of the n inequalities butin phase II you have to �nd again a new random ordering of the facets.



Analysis of the rulesWe say that a facet F of P is active w.r.t. the vertex v if �(v) < maxf�(x) : x 2 Fg. We willstudy the number of pivot steps as a function of the number of variables d and the number of activefacets n. The number of pivot steps will not depend on the total number of facets N . However, wedo not assume that we know while running the algorithm which facets are active and the numberof arithmetic operations per pivot step depends therefore (polynomially) also on N . Note that inAlgorithm II only the ordering of the active facets matters.For a linear programming problem U with d variables and N inequalities and a feasible vertexv for U such that there are n active facets w.r.t. v, we denote by f(U; v) the expected number ofpivot steps needed by algorithm I on the problem U starting with the vertex v. f(d; n) denotes themaximal value of f(U; v) over all problems U and vertices v. The function f(d; n) is not decreasingwith n. Similarly, g(d; n) will be the average number of pivot steps in the worst case problem forAlgorithm II.Analysis of Algorithm I:We start with a situation where there are n active facets. Let F1; F2; : : : ; Fd be the facetscontaining v, ordered such that �(top(F1) � �((top(F2)) � : : : � �(top(Fd)) Note that (unlessv = top(P )) at most one (namely only F1) of these facets can be non-active. The average numberof steps needed to reach top(F ) from v is at most f(d� 1; n� 1).If F1 is active then with probability 1=d the chosen random facet F equals Fi for i = 1; 2; : : : ; dand then after reaching w = top(F ) there are at most n� i active facets remaining and the averagenumber of steps needed to reach top(P ) from w is at most f(d; n� i+ 1). Averaging over i we getthat the average number of steps needed to reach top(P ) from w is at most 1=dPdi=1 f(d; n� i).If F1 is not active then F = Fi with probability 1=d�1 for i = 2; 3; : : : ; d, and by the same tokenthe average number of steps needed to reach top(P ) from w is at most 1=(d � 1)Pd�1i=1 f(d; n� i).This is (slightly) higher than the previous expression by the monotonicity of f(d; n) as a functionof n. In sum, f(d; n) � f(d� 1; n� 1) + 1d� 1 d�1Xi=1 f(d; n� i):



This gives f(d; n) � exp(Kpn log d), see [22].Analysis of Algorithm II:For phase II we need at most g(d� 1; n� 1) steps on the average. For phase III we can repeatthe argument of the previous algorithm. With probability 1/n there are (at most) n � i activefacets left after reaching top(F�(1)), for i = 1; 2; : : : ; n. So the average number of pivot step for thisphase is at most 1nPni=1 g(d� 1; i): We claim now that the average number of pivot steps for phaseI is also 1nPni=1 g(d� 1; i):To see this note:� As long as we run the algorithm from v meeting only vertices in r active facets we can regardourself running the algorithm from v in the LP-problem obtained by deleting the inequalitiescorresponding to the other active facets. This LP problem has only r active facets. Since theaverage number of pivot steps needed for this problem is at most g(d; r) we conclude thatafter an average number of g(d; r) pivot steps we either reach top(P ) or reach vertices in morethan r active facets.� The pivot steps taken running the algorithm while meeting vertices on r active facets do notdepend on the ordering of the remaining active facets. Therefore the identity of the activefacet to be the next we meet (which is a probability distribution on the remaining activefacets) does not depend on the ordering of the remaining n� r active facets.It follows that with probability 1=n the facets F�(1) will be the i-th active facet to be met,i = 1; 2; : : : ; n.So we get, g(d; n) � g(d � 1; n� 1) + 2n nXi=1 g(d; n � i):This relation implies the following:1. g(d; n) � eKpd log n2. If d and n are comparable we get a better estimate: g(d;Bd) � eK(B)pd. (K(B) is a constantdepending on B.)



3. The following estimates are useful when t = n� d is small w.r.t. n. g(d; d + t) � K(1+�� )td�and g(d; d + t) � K(log d)t�1. These bounds apply to f(d; d+ t) as well.4. The following estimates are useful when d is small w.r.t. n. g(d; n) � K(2+�� )d n1+�, for every� > 0 and g(d; n) � K(log n)d�1 � n.It is possible to use generating function techniques to get precise asymptotic for f(d; n) andg(d; n). It follows from the recursion that n!g(d; n) is bounded above by b(d; n) - the number ofpermutations of f1; 2; : : : ; ng such that each cycle in the permutation (considered as a product ofdisjoint cycles) is decorated by a nonnegative integer and by a plus or minus sign such that thesum of the integers is d. For b(d; n) there is the closed formula b(d; n) =P 2k c(n; k)�d+k�1k�1 �; wherec(n; k) is the number of permutations of f1; 2; : : : ; ng with k cycles. (c(n; k) is the absolute value ofthe Stirling number of the �rst kind.) However, for the asymptotic facts described above (withoutgetting the precise constants), the simplest proofs are by direct estimations.Remark: Matou�sek [21] found remarkable classes of abstract objective functions on the d-dimensional cube for which the expected number of pivot steps for Algorithm I described aboveis indeed exp(Cpd). Further understanding of similar examples may shed light on some of theproblems described in this section.LP dualityLP duality allows us to move from a problem with d variables and n inequalities to the dual problemwith n � d variables and n inequalities. Note that the running time of the algorithms as well asthe bounds on the diameter are not invariant under LP duality. The upper bounds on �(d; n) aswell as on the running time for the algorithms described here agree with the common wisdom thatwhen n is large w.r.t. d it is better to move to the dual problem. However, note that the averagenumber of pivot steps of Algorithm II is rather small (close to linear) even when d is �xed and ntends to in�nity.It is an interesting problem to study the relations between the combinatorics (e.g. the facenumbers, h-numbers etc.) of the feasible polyhedra for an LP problem and for its dual.



Non-deterministic analysis of the rule and application to the Hirsch problemNow let us consider again Algorithm II but this time let us assume that the random choices aremade by a friendly oracle, and that we can instruct the oracle to make as good as possible choices.Studying non-deterministic performance of randomized algorithms is important for understandingthe algorithm, but in this case this is of particular importance since it is immediately related tothe Hirsch problem discussed above.First we order the active facets F1; � � �Fn so that �(top(F1) � �((top(F2)) � : : : � �(top(Fn)).The instructions for the oracle are as follows: The only condition on the �rst active facet F = F�(1)is that top(F ) is above the median. So when you run the algorithm you declare the �rst facet Fyou reach with top(F ) above the median as F�(1). Of course, this instruction applies recursivelyfor the �rst and last stages as well as when you run the algorithm inside F�(1).Let h(d; n) is the number of pivot steps made with the help of our friendly oracle instructedabove. in phase I we need at most h(d; n=2) steps. Indeed, as long as we met vertices only onm active facets we can consider ourselves as running the algorithm in the polyhedra where theinequalities correspond to the other active facets are deleted and the number of pivot steps is atmost h(d;m). So in 1+h(d; n=2) pivot steps we must reach (either top(P ) or) vertices in more thann=2 active facets and hence we must reach a vertex in a facet F with top(F ) above the median.When we reach top(F ) then the number of remaining active facets is smaller than d=2. Thereforealso in step III we need at most h(d; n=2) steps. Thus,h(d; n) � 2h(d; n=2) + h(d� 1; n� 1) + 1:This recursion gives h(d; n) � n �  log n+ dlog n ! � nlog d+1:How clever should the oracle be? Not so much! The oracle should be able to run LP problemsand this is polynomial via Khachiyan. By a well-known result of Tardos [31] we do not even needto consider the objective function in the input size. So we getTheorem 3.6 Let P be a d-polytope with n facets described by a system of inequalities with input



size L. Let v be a vertex of P and � be a linear objective function. Then there is an algorithmwhich �nds in T � h(d; n) steps a monotone path of length T from v to top(P ) and each step isperformed by a polynomial number (in d, n and L) of arithmetic operations.ConclusionThe situation concerning the Hirsch conjecture and the (worst-case) complexity of the simplexalgorithm is rather frustrating. We are short of polynomial bounds for the diameter, and despitethe simplicity of the proofs for the known bounds we cannot push them any further. For n = 2dwe cannot �nd a randomized pivot rule which will require exp(d1=2��) pivot steps for some � > 0,even if the feasible polytope is combinatorially equivalent to a d-dimensional cube. And we cannot�nd a deterministic pivot rule (without randomization) which is not exponential. We leave thesetasks for you the reader.References[1] N. Amenta and G. Ziegler, Deformed products and maximal shadows, Preprint 502/1996, TUBerlin, to appear.[2] L. J. Billera and C. W. Lee, A proof of the su�ciency of McMullen's conditions for f -vectorsof simplicial convex polytopes, J. Combin. Th. Ser. A 31 (1981), 237-255.[3] R. Blind and P. Mani, On puzzles and polytope isomorphism, Aequationes Math. 34 (1987),287-297.[4] K. H. Borgwardt, The Simplex Method, a Probabilistic Analysis, Algorithms and Combina-torics 1, Springer-Verlag, Berlin, 1987.[5] K. L. Clarkson, A Las Vegas Algorithm for linear programming when the dimension is small,J. ACM 42(2) (1995) 488{499.[6] G. B. Dantzig, Linear Programming and Extensions, Princeton University Press, Princeton,N.J., 1963.
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