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Abstract. Witztum, Rips and Rosenberg [9] describe the outcomes of two experiments

which purport to statistically prove the existence of a hidden code in the Book of Genesis.

We show that these two experiments, viewed as two random samples from the same pop-

ulation, yielded numerical outcomes which are more similar to each other than expected.

We also show that the distributions obtained in some control experiments performed by

Witztum et al. are atter than expected. Our hypothesis is that Witztum et al. tailored

their experimental procedures to meet naive expectations regarding how outcomes of ex-

perimental replication and experimental controls should look. We give some statistical

and empirical evidence supporting this hypothesis.

Contents

1. Introduction 2

2. The present hypothesis 3

3. Similarity of the outcomes of the two experiments 3

3.1. The p-values 3

3.2. The distance distributions 4

4. How did it happen? 4

4.1. The p-values: a process model 4

4.2. The distance distributions: a motive 5

5. Changes in the pairwise distances 7

6. Intuitive judgement 7

6.1. The p-value 7

6.2. The distance distributions 8

7. Uniformity in control experiments 8

8. Gans' experiment 9

9. Conclusion 10

Acknowledgments 10

References 10

1



2 GIL KALAI, BRENDAN MCKAY, AND MAYA BAR-HILLEL

1. Introduction

Witztum, Rips and Rosenberg (WRR, for short) describe two experiments they carried

out on the Book of Genesis, which they claim to have statistically proven the existence

of a hidden code in that book [9]. This code consists of words appearing in the form of

equidistant letter sequences (ELSs, for short). An ELS is a sequence of letters chosen from

the text at equal spacing. (Spaces between words, and punctuation, are ignored.) WRR

de�ned a pairwise distance function c(a; b) which, in some sense, measures the proximity

of the ELSs of word a to the ELSs of word b. The value of c(a; b) may be unde�ned, or

may be a fraction between 1/125 and 1. Smaller values of c(a,b) are taken as meaning

that the words a and b are \closer".

WRR's �rst experiment (1986) consisted of pairing 34 famous Jewish rabbis with their

known dates of death or birth. These rabbis lived between the 7th and the 18th century

(millennia after Genesis was written), and were known by many di�erent names and ap-

pellations (much as Lady Diana was known as Diana Spencer, Princess of Wales, Lady

Di, Diana, etc.) Their dates were written in three di�erent forms (roughly corresponding

to \July 4", \4th of July", and \on July 4", but bearing in mind that Hebrew dates can

be written using only letters and no numerals). Pairing all the di�erent names with all

the dates for each rabbi yielded a total of 152 word pairs for which the pairwise distances

were de�ned. WRR's \hidden code" hypothesis suggested that these distances should be

inordinately small, rather than uniformly distributed as they imagined would happen by

chance. Their calculations showed that the pairwise distances were indeed smaller than

what they expected by chance, to a highly signi�cant level.

Sometime in 1986, Harvard's Persi Diaconis was asked to evaluate this work. He sug-

gested that WRR run a second test on a fresh sample, and that they compare its perfor-

mance with a control test based on a random cyclic pairing of the rabbis with dates of

other rabbis. In the latter case, of course, no e�ect is expected. WRR's second experiment

consisted of 32 new rabbis, who yielded a total of 163 pairwise distances between these

rabbis' various names and appellations and their respective date forms. The results of

the new sample were strikingly similar to those of the �rst. The result of the control test

showed no e�ect. These two experiments are sometimes referred to as \the famous rabbis

experiments". Details of the experiments, as well as the actual lists, can be found in [9].

Even more details can be found in a 1987 preprint [8], which tabulates all 315 c(a; b)

values. By contrast, [9] gives the pairwise distances only in the form of two histograms,

corresponding to the two lists. Both histograms show a strong skew towards small c(a; b)

values (see Figure 1).

---Figure 1 about here---

Skeptics have always supposed that WRR's amazing results are the outcome of an

intentional or unintentional optimization process in the selection of the measurement tools

or in the selection of the data themselves. A major turning point came when a search of

the rabbinical literature, and of Bar-Ilan University's \Responsa" database, uncovered the

fact that the 66 rabbis in WRR's lists were known by a total of at least twice as many

names and appellations as were actually included in the lists. McKay, Bar-Natan and

Bar-Hillel (MBB, for short) [6] showed that WRR's guidelines governing the �rst list were

lax enough to enable the selection of a second list of appellations to succeed spectacularly

on \War and Peace", a text on which no e�ect was expected. MBB also showed that

WRR's lists exhibited many traces of bias in their data selection.



THE TWO FAMOUS RABBIS EXPERIMENTS: HOW SIMILAR IS TOO SIMILAR? 3

The present analysis complements that of MBB from the same skeptical point of view.

Unlike that paper, however, it does not deal with the mathematical, grammatical, or

historical choices made by WRR, and for the most part requires no computations on the

Book of Genesis or on any other text. It uses mainly the 152+163 pairwise distances given

in [8] (and available for downloading from [12]). These numbers are in agreement with the

histograms in [9] except for a few minor changes.

2. The present hypothesis

Long before the Statistical Science paper was published, the results of the famous rabbis

experiments were being touted, primarily in public lectures, but also in print (see, e.g.,

[10]). In these forums, the results were typically summarized two ways: by the alleged

statistical signi�cance values of the two lists and by the histograms. The prominence of

these measures thus makes them salient ones.

Witztum and Rips themselves pointed out that the outcomes of the two experiments

were very similar. Indeed, the two p-values for the statistical signi�cance of the two

experiments which appear in [8] are remarkably close and eyeballing the two histograms

for the Genesis results (see Figure 1) also shows them to be quite similar.

Having similar outcomes for two experiments purporting to measure the same phe-

nomenon is welcome. But when two measurements are much closer than the size of the

measurement error allows us to expect, it might be suspiciously good|too good to be true,

if you will. Our suspicion that the two p-values were closer than normatively expected

arose after WRR on several occasions made minor corrections in their lists, which resulted

in dramatic changes in the p-value. This suggested that it is a volatile measure.

We decided to subject our suspicion to a quantitative test. We tested the null hypothesis

that the two p-values were as close as they were due to mere coincidence. The alternative

hypothesis was that the closeness was the intended consequence of a awed experimental

procedure. Later we will put forth a concrete model for such a procedure, as well as

possible motivation for using it. We will show that our model is compatible with what

has been previously conjectured regarding WRR's data-selection process [6]. In addition,

we will show excessive similarity to a uniform distribution in the outcome of the control

test suggested by Diaconis. Finally, we will show that another famous rabbis experiment,

reported by Gans [4], also came out \too good to be true".

3. Similarity of the outcomes of the two experiments

3.1. The p-values. A principal measure of statistical signi�cance used by WRR in [8, 10]

is their P

2

score: the probability that the product of uniformly distributed independent

random variables is smaller than the product of the numbers observed in the experiment.

After Diaconis pointed out that the assumption of uniformity and independence does not

hold, WRR adopted a di�erent p-value [9] (albeit one still based on P

2

). For our purpose,

the P

2

value remains pertinent, since any bias in the data selection occurred at a time

when it served as the principal measure of signi�cance.

The p-values corresponding to the P

2

scores of the two experiments given in [8] are

1:29 � 10

�9

and 1:15 � 10

�9

, respectively. The ratio between them is 1.12. We will

presently see that in view of the instability of the P

2

-statistic, such a small ratio is quite

surprising.

Since we don't have a sampling distribution for this ratio, we assessed the probability of

�nding a ratio this close to 1 by the following procedure. Suppose we lump all 66 rabbis



4 GIL KALAI, BRENDAN MCKAY, AND MAYA BAR-HILLEL

from the two lists together, and then repartition them randomly into 34 and 32 rabbis.

For each such partition, we can calculate the two P

2

scores and the ratio of the larger P

2

score to the smaller P

2

score. In a Monte Carlo simulation of the sampling distribution of

the P

2

ratio, we found that less than one ratio in a hundred was 1.12 or smaller.

Is it legitimate to compare the original partition of 34 and 32 rabbis to random parti-

tions? We claim it is, inasmuch as this comparison is biased, if at all, against us. The

�rst list of rabbis was drawn from rabbis who have upwards of 3 columns of text in the

Encyclopedia of Great Men of Israel [5], and the second list was drawn from rabbis who

have between 1.5 and 3 columns of text. These two sets of rabbis di�er in terms of their

fame and greatness, which was the reason for looking at rabbis in the �rst place. A random

partition of the 66 rabbis creates two sets with more variance within, but less variance

between, than the original partition. Hence the P

2

ratio should, if anything, be larger for

the original partition than for random ones.

To get a feeling for the variance of the distribution of the P

2

-ratio for random partitions,

note that the median value of this ratio is around 700. The distribution of the logarithm

of the ratio is close to uniform below the median. This allows another, though cruder,

estimate for the probability of obtaining such a small ratio: 2 log 700= log 1:12 = 0:0088

much like the Monte Carlo estimate (0.0092).

3.2. The distance distributions. At the heart of each of WRR's two experiments were

the pairwise distances for all the pairs of appellations versus dates. The histograms, of

course, are derived from these distances. So, we examined the similarity of the distributions

of the pairwise distances between the two experiments. A common measure of distance

between two distributions is the supremum norm of their di�erence (Kolmogorov-Smirnov

distance) [11, Ch. 14]. The sup-norm distance between the two distributions of pairwise

distances in the original partition is 0.05489. Figure 2 shows the cumulative pairwise

distance distributions of the two experiments.

--Figure 2 about here----

In a Monte Carlo simulation, we compared the proximity between the distributions of the

pairwise distances for the original partition of 66 rabbis with those for random partitions

into 34 and 32. The Monte Carlo derived probability that the sup-norm distance between

the two distributions of pairwise distances will be smaller than or equal to 0.05489 is 0.035.

4. How did it happen?

Having shown that the similarity of the two P

2

scores, and of the two pairwise distances

distributions, are extraordinary (in the sense that rarely are such similarities encountered

by chance), we are now prepared to suggest how this similarity came about. Since the

de�nitions of the P

2

score and c(a; b) function were already �xed by the �rst experiment,

we need to account for the similarity by a process involving only the second experiment.

Our explanations will attribute to WRR practices from which these similarities follow

either as byproducts, or as a consequence of direct intention.

4.1. The p-values: a process model. Recall that MBB have shown that the second list

was not really drawn up in quite as rigorous and objective a manner as WRR would have

us believe. Rather, some manner of judgement or discretion was exercised when deciding

which names and appellations to include in the second list, and which to reject ([6] Section

5.4). Of course, there wasn't complete freedom of choice with regard to the selection of

names and appellations. Some names are \compulsory": they are so closely identi�ed with
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a rabbi that their absence would be noticed at once. The exibility therefore applies only

to the subset of \elective" names and appellations

1

.

Our model supposes that the elective names and appellations are considered one by one,

with those contributing to a small P

2

value added, and those increasing it deleted, until

the P

2

level of the �rst experiment is �rst surpassed. We will now show that the observed

P

2

-ratio is compatible with several possible variations of this process. By \compatible" we

mean that there is a reasonably large probability of obtaining the results actually observed.

We analyzed two such variations, and simulated some others.

1. Consider a process whereby one starts with the minimal set of compulsory appella-

tions, and from among the elective appellations one only adds favorable appellations, in

a random order. For every appellation i in the second list, let x

i

be its e�ect on the P

2

score. By the e�ect of an appellation a we mean the P

2

score of all the pairwise distances

(163 in our case) divided by the P

2

score of all the pairwise distances except those yielded

by a. For convenience we will discuss the log e�ects. It is reasonable to assume that

the probability that the critical appellation was i is proportional to log x

i

and is 0 when

log x

i

< 0. To see this, reverse the order so that �rst the process is carried out for all

the elective appellations, and only later the critical value is determined (at random), see

Figure 3.

---Figure 3 about here---

The probability of a log P

2

-ratio which is as small as log 1:12 is 1 if log x

c

� log 1:12 and

is log 1:12= logx

c

if log x

c

> log 1:12, where c is the critical appellation. Based on these

assumptions and a computation of the e�ect of all individual appellations, we estimated

the percentile of 1.12 in the distribution of P

2

-ratios yielded by such a process to be 19.

2. Consider a process whereby one starts with all known appellations and successively

deletes elective unfavorable appellations, in random order. Using the same computation,

and basing it on the appellations with the negative e�ect, we estimate the percentile of

the observed P

2

ratio, 1.12, to be 30.

3. In the context of WRR's experiment it is reasonable to suppose that appellations with

larger impact were treated earlier, rather than in random order. We considered especially a

model where unfavorable elective appellations were deleted in the order of their P

2

-values.

For simulations based on this model, the percentile of a P

2

-ratio of 1.12 ranged between 40

and 70, depending on various parameters of the process. It is interesting to note that the

limit distributions of pairwise distances we obtained from these simulations were rather

close (in the sup-norm sense) to those of WRR's experiments.

4.2. The distance distributions: a motive. The fact that the two lists of pairwise

distances from the two experiments are as similar as they are was no doubt welcomed by

WRR, but risked arousing some unease if we take into account the major volatility and non-

robustness of WRR's phenomenon (see [6]). We could think of no simple process model,

of the kind just presented, that could give rise to such a similarity. If WRR used similar

optimization processes in selecting the data for the two experiments, this can explain why

the two lists of pairwise distances look like two samples from the same distribution, but

not why they are even more similar than most pairs of samples from the same distribution.

Could there have been, in addition to biased selection, also some intervention in the

c(a; b) values, to foster the similarity of list 2 to list 1?

1

We neither want to, nor can, clearly separate the set of available names and appellations into \com-

pulsory" and \elective".



6 GIL KALAI, BRENDAN MCKAY, AND MAYA BAR-HILLEL

Since the pairwise distances were typically given to audiences (including the later au-

dience of Statistical Science readers) by the histograms summarizing them, we tested the

possibility of intervention indirectly by checking for signs of intervention towards similar

histograms. Our measure of proximity between two distributions, namely their sup-norm

distance, is independent of this particular way of presentation. Suppose the similarity

between the two c(a; b) lists, however striking it may or may not be, was arrived at by

mere chance. Then the similarity between various histograms representing these two lists,

respectively, should not depend on particulars of the histogram display. In particular, the

actual histograms displayed in [9] should not enjoy any systematic advantage over other

similar histograms. We tested whether this was so.

Recall that WRR chose to display the pairwise distances as 25-bin histograms, where

the i-th bin corresponds to pairwise distances in the interval (0:04(i� 1); 0:04i]. (Thus the

second bin, for example, corresponds to all pairwise distances which are bigger than 0.04

and smaller than or equal to 0.08.)

LetH

a

= (a

1

; a

2

; : : : ; a

25

) andH

b

= (b

1

; b

2

; : : : ; b

25

) be the vectors represented by WRR's

two histograms. Thus, a

i

; b

i

1 � i � 25 are the number of pairwise distances in the i-th bin

for the �rst and second experiments, respectively. Let c

i

= a

i

+ b

i

, let r

a

=

P

a

i

=(

P

c

i

)

(= 153=315), and let r

b

= 1� r

a

. A standard measure of the proximity between the two

pairwise distance distributions in terms of their histograms is the \binomial homogeneity

test" [3], which asymptotically behaves (in the case of independent samples) like �

2

with

24 degrees of freedom, and is given by:

D(H

a

; H

b

) =

25

X

i=1

((a

i

� r

a

c

i

)

2

=r

a

c

i

+ (b

i

� r

b

c

i

)

2

=r

b

c

i

):

The value of D(H

a

; H

b

) for histograms based on the pairwise distances tables of WRR's

two experiments is 16.15

2

. In order to study the dependence of this similarity measure on

the particulars of the histograms, holding the c(a; b) values constant, we introduced a small

shift r, �0:02 � r � +0:02; and put the pairwise distance data into the 25 bins of the

histograms, but based on the arti�cial \intervals" (r + 0:04(i� 1); r + 0:04i] (modulo 1).

(For r 6= 0, one of these \intervals" is actually a union of the two endpoint intervals,

one containing 0 and the other containing 1.) Of course, the histograms WRR chose are

the only natural ones with 25 bins. Our shift is just a mathematical device to study the

proximity between the histograms.

Let H

a

[r] = (a

1

[r]; a

2

[r]; : : : ; a

25

[r]) and H

b

= (b

1

[r]; b

2

[r]; : : : ; b

25

[r]), where a

i

[r],

1 � i � 25, is the number of pairwise distances of the �rst experiment in the interval

(r + 0:04(i� 1); r + 0:04i] (modulo 1) and b

i

[r] is the number of pairwise distances of the

second experiment in that interval. We calculated the values of D(H

a

[r]; H

b

[r]) for all

histogram shifts r between �0:02 and +0:02. We were interested in checking for which

histogram shifts r, D(H

a

[r]; H

b

[r]) is smaller than or equal to to 16.15. It turned out to

be true for all of them, since the minimum of the function D(H

a

[r]; H

b

[r]) is attained for

r = 0, which is the original presentation. Moreover, the values of r for which the minimum

is attained consist of the very small subinterval [0; 0:00034] of [�0:02;+0:02]. See Figure 4.

---Figure 4 about here---

Thus, we see that the natural histograms exploit the similarity between the distributions

to the maximum possible. No other 25-bin histograms presenting the same two sets of

2

Recall that there were minor di�erences between the tables in [8], the histograms in [8] and the

histograms from [9]. Our analysis requires the full tables.
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numbers are quite as similar. We are not saying that WRR chose their histograms from

among the ones we just studied in order to maximize their similarity. Clearly theirs

was the only natural choice. Rather, we are saying that the striking advantage of their

histograms over shifted histograms suggests intervention motivated towards increasing

these histograms' visual similarity.

Note that by itself the similarity of the two histograms in terms of D(H

a

; H

b

), 16.15, is

not very impressive. Two histograms H

0

a

and H

0

b

obtained by randomly partitioning the

66 rabbis into a set of 34 and a set of 32 and presenting the pairwise distances of the two

parts will satisfy D(H

0

a

; H

0

b

) � 16:15 with probability 0.07.

5. Changes in the pairwise distances

WRR provide their own computer program els1.c for computing pairwise distances

c(a; b). To our surprise, the values di�ered in many instances from the values listed in [8].

Consequently it gave di�erent histograms as well. It turned out that, while the numerical

analysis in [9] was based on els1.c, the histograms (for Genesis), although presented in

the 1994 paper, were actually based on defunct programs which WRR claim no longer

exist.

---Figure 5 about here-----

Comparing Figure 1 to Figure 5, we observe that the two versions di�er for 28 distances

in the �rst experiment and 42 distances in the second. The excessive similarity between the

two distributions disappears for the outcomes of els1.c. The sup-norm distance between

the two distributions and the distance between the histograms are both quite close to the

median values for random partitions of the set of 66 rabbis.

In all cases, we have used the distances in [8] for those experiments in this paper which

only needed those distances, and els1.c for experiments needing other distances.

6. Intuitive judgement

What could WRR's motivation have been to achieve a replication so similar to the

original experiment as to arouse suspicion? Possibly, WRR did not realize that their

optimizations were leaving telltale signs, and thought that the results they showed for

the second experiment were just what one should have expected, rather than better than

expected. Such a view is congruent with �ndings about peoples' intuitive judgment under

uncertainty in the psychological literature (see, e.g., [1])

6.1. The p-value. Tversky and Kahneman studied people as intuitive statisticians. One

of their studies concerned scientists' conceptions of replication [7]. They showed that if

an experimental sample is characterized only in terms of the statistical signi�cance of its

results, and then a replication is planned, people have inated intuitive expectations of

achieving the same signi�cance in the replication. In one of their questions they presented a

scenario where, because of a smaller sample size, the replication had only 50% probability

of yielding a signi�cant result, yet the median respondent thought the probability was

about 85%. In another scenario people regarded a smaller signi�cance value in a second

experiment as a failure to replicate the �rst one, although this smaller signi�cance was

not surprising even given the e�ect in light of the sampling error in that scenario. The

respondents to these questions were statistically savvy mathematical psychologists.

When WRR aimed to replicate the statistical signi�cance of their �rst list, they may

have been unaware that the resulting 12% gap is unreasonably small. Indeed, realizing

that this gap is too small requires considerable analysis.
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6.2. The distance distributions. Tversky and Kahneman [2] also showed that people

often expect even small samples to resemble their parent population (hence each other),

more than they typically do. We decided to check peoples' perceptions in the present case

directly.

Forty four persons (35 undergraduate students and 9 of their teachers in the Department

of Computer Science at the Australian National University) were given a sheet of paper

on which they saw two pairs of histograms: those from Figure 1 and Figure 5. They read

the following question:

\There is a large barrel �lled with millions of colored balls, of 25 di�erent colors. Take

out about 150 balls at random and draw a histogram of the number of balls of each color.

Then take out a similar number of balls at random again and draw the histogram for

them. Now you have two histograms. Below are two pairs of histograms. Which pair best

matches your intuition of what your two histograms might look like?"

The published histograms were preferred to those generated by els1.c, by about 70%

of the respondents. The students and teachers answered similarly. When we ran the same

experiment on 53 students at Yale University, about 50% of the respondents preferred each

one of the two pairs of histograms. These experiments tend to con�rm that the published

defunct histograms in [9] indeed meet peoples' expectations but, are inconclusive as to

whether they are closer to peoples' expectations than the els1.c histograms.

7. Uniformity in control experiments

Recall that Diaconis had asked WRR to test a random cyclic pairing of rabbis with

dates of di�erent rabbis. The results of this control test were not presented in [9], but

they were in [8]. WRR chose a particular cyclic shift: pairing rabbi i to the dates of

rabbi i + 1 (modulo 32)

3

. We refer to this control experiment as A. WRR based their

early statistical analyses on the assumption that without the e�ect of the hidden code,

the pairwise distances are uniformly distributed. Therefore they expected this control

experiment to yield a uniform pairwise-distance distribution. The 25-bin histogram for

the pairwise distances of A (Figure 6(a)) is indeed quite at.

To see what distributions cyclic date shifts really produce, we considered the combined

distribution for all cyclic shifts, namely all the pairwise distances of rabbi i versus dates

of rabbi j for j 6= i. Figure 7 shows an unexpected skew towards small pairwise distances.

---Figures 6 and 7 about here----

What can explain this skew? The c(a; b) function contains elements that depend not

only on how close a is to b, but also on qualities of a and b in themselves. Therefore, if

a �xed word a generates a small c(a; b) with some word b it will tend to generate smaller

c(a; b) with any word b. WRR refer to such words as charismatic. The skeptics' hypothesis

of biased appellation-selection suggests that WRR selection process favored charismatic

appellations. Given this observation, it is not surprising that Figure 7 is not at; rather

it is surprising that WRR's histogram for A does look at.

We used the �

2

statistic of the histogram (relative to the uniform distribution) as a

measure of atness. Histogram A was atter than the histogram for any other cyclic

shift. To estimate the probability for a histogram as at as or atter than A using a

Monte-Carlo simulation, we sampled a large number of (general) permutations without

3

This choice involved a technical di�culty, since in a few cases two di�erent rabbis were both called

\Rabbi so-and-so". Rather than avoid the few cyclic shifts where this problem arises, WRR solved it by

omitting all appellations of the form \Rabbi X".
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�xed points. The probability for a random permutation without �xed points to generate

a sample with a �

2

value equal to or smaller than A's is 0.003

4

.

The preprint [8] contains histograms for three additional control tests (denoted by S,

M and R) in which the �rst list was run on three di�erent texts (see Figure 6(b,c,d)). The

histograms for S andM are surprisingly at: the probabilities for histograms of the uniform

distribution being as at or atter according to �

2

are 0.004 and 0.015, respectively.

5

In

the case of M , it turned out that the histogram in [8] is atter (by about 5 times on the

same scale) than the data in [8] actually gives. In the case of S, the Samaritan version of

Genesis, our requests to WRR for the text were not successful, and the closest we could

obtain (another edition) does not give a at histogram at all.

To show that WRR's overly at histograms are not intuitively perceived as overly at,

the same respondents mentioned earlier were also given eight histograms, the four his-

tograms for the control tests from [8] and four random histograms of the same size. They

read the following question:

\Now suppose the number of balls of each color in the barrel is exactly the same. Take

out 100-150 balls at random and draw a histogram of the number of balls of each color.

Below are eight histograms. Mark which four best match your intuition of what your

histogram might look like?"

About 70% of the respondents included A in their choice set, and a similar percentage

included the histograms for S and M . R was chosen by only about 25%. Altogether A,

M , S and R were chosen 104 times as compared to 62 times for the other histograms.

This time, the Yale students answered similarly.

8. Gans' experiment

More recently, another famous rabbis experiment was conducted [4]. WRR's 66 rabbis

were paired with their places of birth and/or death rather than with their dates. A very

low p-value was reported by Gans, and is commonly cited as evidence for the integrity

of WRR's list of appellations. Skeptics will note, however, that Gans' experiment also

su�ered from too much room for data selection. Gans, who does not speak Hebrew,

received the various names and spellings for the places from a colleague of Witztum. He

developed his own measure of proximity, but it is strongly correlated with WRR's function

c(a; b). His overall p-value was based on a permutation test using his new measure.

This gave us an opportunity to check whether this new data also showed evidence of

having been selected to generate overly similar experimental results for the two lists.

The p-values for the two lists that Gans analyzed were less than 2% apart, even smaller

than the gap for WRR's p-values. We thank Dror Bar-Natan for computing these p-values

and for doing the Monte Carlo simulation which provided an estimate of the probability

that a random partition of the 66 rabbis into sets of 34 and 32 would yield two p-values

as close as that or closer. This probability was around 1/500. Bar-Natan's p-values di�er

from Gans', because his analysis was based on the assumption that insofar as data selection

occurred (and MBB gave evidence that it did), it was geared towards WRR's proximity

measure and not Gans'. He used the permutation rank of P

2

rather than the value of P

2

for the same reason: it was the measure of success employed at the time by WRR.

4

If we follow WRR's decision to exclude the \Rabbi X" appellations the probability for such a at

histogram is 0.02.

5

Although the observations here are not independent, tests we did with a large number of arti�cial

texts failed to detect any general trend towards atness.
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9. Conclusion

WRR's fantastic claims raise the question whether the outcomes they describe express

their own wishes rather than any real phenomenon. This paper claims that WRR's results

stretch credibility, even without challenging the validity of their hidden code hypothesis.

Our analysis of the results of their replication and control experiments show them to

express naive expectations rather than statistical reality.

Note that our case is presented as a whole, and does not rest on any particular claim.

Indeed, some of the phenomena we observed may well have been the result of chance or

of some indirect mechanism we have not identi�ed. However, the combined weight of the

evidence appears to us to be considerable.
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