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1 IntrodutionHelly's theorem asserts that if F is a �nite family of onvex sets in Rd inwhih every d+ 1 or fewer sets have a point in ommon then TF 6= ;. Ourstarting point, the (p; q) theorem, is a deep extension of Helly's theorem.It was onjetured by Hadwiger and Debrunner and proved by Alon andKleitman [3℄. Let p � q � 2 be integers. A family F of onvex sets in Rd issaid to have the (p; q) property if among every p sets of F , some q have apoint in ommon.Theorem 1 ((p; q) theorem, Alon & Kleitmen) For every p � q � d+1 there exists a number C = C(p; q; d) suh that whenever F is a �nite�Supported by a USA Israeli BSF grant, by a grant from the Israel Siene Foundationand by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University.ySupported by Charles University grants No. 158/99 and 159/99. Part of the researhwas done during visits to The Hebrew University of Jerusalem and to ETH Z�urih andsupported by these institutions.zSupported by the Israel Siene Foundation and by NSF grant No. CCR-99878451



family of onvex sets in Rd with the (p; q) property then there is a set of atmost C points interseting all the sets of F .Note that if we are only interested in the existene of C(p; q; d) and not inits preise value, it is suÆient to onsider the ase q = d+ 1.Here we onsider analogues and relatives of the (p; q) theorem for othersettings, both geometri and abstrat. The original proof of the (p; q) theo-rem uses two main tools: the frational Helly theorem and the weak epsilon-nets for onvex sets. Our main result (the union of Theorem 8 and Theorem9) shows that in an abstrat setting, the appropriate frational Helly prop-erty is suÆient to derive the existene of weak epsilon-nets and the validityof a (p; q) theorem. These notions and the preise formulation will be givenin Setion 3 and the theorem will be proved in Setions 4 and 5.One onsequene we derive is a \topologial (p; q)-theorem". A familyF of subsets of Rd , whose members are either all open or all losed, is a goodover if TF2G F is ontratible or empty for all G � F . Helly proved thathis theorem ontinues to hold for �nite good overs. Here we showTheorem 2 The assertion of the (p; q) theorem remains valid for all �nitegood overs in Rd .A ruial step in the proof of this theorem is of independent interest as itgives a homologial ondition for the edge-over number � of a hypergraph(equivalently, the simpliial omplex spanned by it) to be bounded as afuntion of the frational edge-over ��.A simpliial omplex K is alled d-Leray if the i-th homology of K andall of its indued subomplexes vanish when i � d.Theorem 3 For every d � 1 there are onstants 1 = 1(d) and 2 = 2(d)suh that for a d-Leray simpliial omplex K, �(K) � 1(��(K))2 .As a 1-Leray omplex K is simply the lique omplex of a hordal graphit follows that �(K) = ��(K) (sine hordal graphs are perfet). For d > 1our proof implies that 2(d) = dO(d) but we do not have examples showingthat 2 = 1 + � will not suÆe. In Setion 7 we desribe a 2-Leray omplexK whih satis�es �(K) = 
(��(K) log ��(K)).These topologial results will be proved in Setion 6.In Setion 8 we onsider onvex latties sets in Rd . Doignon proved [9℄that the Helly number for onvex lattie sets in Rd is 2d.2



Theorem 4 For p � q � 2d, the assertion of the (p; q) theorem applies toall �nite families of lattie onvex sets in Rd .Using a theorem of Hausel we an show that planar onvex lattie setssatisfy even a (p; 3)-theorem for every p.Conjeture 5 For p � q � d+1, the assertion of the (p; q) theorem appliesto all �nite families of lattie onvex sets in Rd .Reently, this onjeture was proved by B�ar�any and Matou�sek [6℄.Alon and Kalai [2℄ used the method of [3℄ to prove (p; q) theorems inseveral geometri situations, for example for piering onvex sets in Rd byhyperplanes. In Setion 9 we provide an example showing that no (p; q)theorem or a similar property, even in a weak sense, hold for stabbing onvexsets by lines in R3 .Proposition 6 For every integers m0 and k, there is a system C of morethan m0 onvex sets in R3 suh that every k sets of C have a line transversalbut no k + 4 of them have a line transversal.It seems that k + 4 ould be improved to k + 3, or perhaps k + 2, by amore areful analysis of our onstrution. But ahieving k + 1 seems morehallenging.It is often asked in onnetion of the (p; q) theorem to give some exampleswhere the (p; q) ondition holds. The following example is useful: Let � bea probability measure on Rd and onsider all onvex sets with measure atleast Æ. If Æ > q=p then this family satis�es the (p; q) property. The �rststep in the proof of Alon and Kleitman shows that if a family satis�es the(p; q) property then it has suh a form but for a muh smaller value of Æ.2 Transversal numbers of hypergraphsTransversals and mathings. Let F be a �nite set system on a (�niteor in�nite) setX (so F an also be regarded as a hypergraph). We reall thatthe transversal number of F , denoted by �(F), is the minimum ardinality ofa subset of X whih intersets all F 2 F . �(F) is also alled the vertex-overnumber of F .The frational transversal number ��(F) is the minimum of Px2X f(x)over all nonnegative funtions f :X ! [0; 1℄ that satisfy Px2F f(x) � 1 for3



all F 2 F . (If X is in�nite we only onsider funtions f attaining �nitelymany nonzero values.) Clearly always ��(F) � �(F).Let �d(F) denote the largest size of a subhypergraph M � F suhthat degM(x) � d for all x 2 X. The mathing number of F is �(F) =�1(F). Also note that the (p; q) property for the family F an be restatedas �q�1(F) < p.The frational mathing number ��(F) is the maximum of PS2F f(S)over all nonnegative real funtions f : F ! [0; 1℄ whih satisfy: Pff(S) : S 2F ; x 2 Sg � 1, for every x 2 X. Clearly, �(F) � ��(F) and it is easyto see that �d(F)=d � ��(F). Linear programming duality gives that��(F) = ��(F).There an be a large gap between the transversal number and frationaltransversal number. An example to keep in mind is the family Mm;n �[m℄n �of all n-subsets of a set of sizem. In this ase �� = m=n while � = m�n+1.Thus, when m = 2n we get �� = 2 and � = n+ 1.The dual of the hypergraph F is the hypergraph Fdual whose vertiesorrespond to the edges of F and whose edges orrespond to the verties ofF with inidene relation being reversed. The dual notion to the notion ofthe transversal number is the edge-over number, �(F), of a hypergraph F .It is the minimal number of edges required to over all verties. Similarly,the frational edge-over number is de�ned by ��(F) = ��(Fdual).Transversal numbers, frational transversal numbers and weak �-nets The relations between transversal numbers, frational transversalnumbers and mathing numbers is a topi of entral importane in om-binatoris. Call a lass of hypergraphs hereditary if it is losed under takingsubhypergraphs.Our work an be regarded as a ontribution towards understanding ofthe following question:Problem 7 1. For whih hereditary lass F of hypergraphs F is it true that� is bounded above by a funtion of ��?2. Let d be a �xed positive integer. For whih hereditary lass F ofhypergraphs F is it true that � is bounded by a funtion of �d?For a olletion F of subsets of X and a (multi-) subset Y � X a weak�-net for Y is a set Z � X so that every S 2 F with jS \ Y j � �jY j satis�esS \ Z 6= ;. (Z is alled an �-net if Z � Y .)4



It is easy to see that for a hypergraph F the following onditions areequivalent (with g(x) = f(1=x)):� � is uniformly bounded by a funtion g of �� for all subhypergraphsof F .� There is a funtion f suh that for every � and every Y there is a weak�-net of size at most f(�).We will all a hypergraph satisfying these onditions a hypergraph of�nite type or a hypergraph with the weak �-net property. (We will adoptthe same notion for a lass of hypergraphs (possibly all �nite) when thefuntion f(�) an be hosen uniformly for all hypergraphs in the lass.) Theombinatorial onditions for a hypergraph to be of a �nite type and thenature of the funtions f(�) for the size of the weak �-net whih an ariseare not understood.The orresponding questions for lasses of hypergraphs losed under re-stritions are well understood. (Equivalently these are the questions on therelations between � and �� for hereditary lasses of hypergraphs.) In orderthat � be bounded by a funtion of �� for all restritions of a hypergraphF to subsets X 0 of X it is neessary and suÆient that for every Y and� > 0 there is an �-net of size at most f(�) and this is equivalent to the VC-dimension of F being �nite. (When talking about a family of hypergraphsthe VC-dimension should be uniformly bounded.) Haussler and Welzl [14℄proved that f(�) = O(d(1=�) log(1=�)), where d is the VC-dimension, andKoml�os, Pah and Woeginger [19℄ gave examples showing this annot befurther improved. Ding, Seymour and Winkler [8℄ haraterized when � isbounded by a funtion of � for a hypergraph and all of its restritions.Having a �nite VC-dimension is losed under duality. (Thus, boundedVC dimension is a neessary and suÆient ondition for � being bounded asa funtion of �� for a hereditary lass of hypergraphs.) This is not the asefor being of �nite type. The lass of examples �[m℄n � is not of �nite type butthe lass of their duals is.3 The frational Helly theoremFrational Helly properties. The frational Helly theorem of Kathal-ski and Liu [18℄ states that if F1; F2; : : : ; Fn � Rd are onvex sets suh thenumber of (d + 1)-tuples I � [n℄ with Ti2I Fi 6= ; is at least �� nd+1� then5



there exists a point ommon to at least �n sets Fi. Here � 2 (0; 1℄ is a pa-rameter and the theorem asserts the existene of a � = �(d; �) > 0 for all �.(We will use �(d; �) to denote the best possible � for whih the theoremholds.) Kathalski and Liu proved �rst that �(d; �) � �=(d + 1) and alsopresented a better bound whih shows that � ! 1 when � ! 1. Kalai [16℄and Ekho� [10℄ proved that �(d; �) = 1� (1� �)1=(d+1).Let G be a (�nite or in�nite) family of sets. We write that G satis�esFH(k; �; �) if for every F1; F2; : : : ; Fn 2 G suh the number of k-tuples I �[n℄ with Ti2I Fi 6= ; is at least ��nk�, there exists a point ommon to at leastb�n of the Fi. We say that G has frational Helly number k if for every� 2 (0; 1) there exists � = �(�) > 0 suh that FH(k; �; �(�)) holds. If k isnot important we speak of the frational Helly property.1It may happen that we annot �nd a � > 0 for all � > 0 but there existsome � and � > 0 with FH(k; �; �). Then we speak of the weak frationalHelly property. The weakest among suh properties is with � = 1 and some� > 0. In partiular, the Helly property implies FH(k; 1; 1).In the �rst part of their proof of the (p; q) theorem for onvex sets, Alonand Kleitman showed, using the frational Helly theorem, that �� is boundedfor every family of onvex sets with the (p; d + 1)-property. The proof is asimple double ounting plus the linear-programming duality and it worksunhanged in the abstrat setting, thus showing that if F has frationalHelly number d + 1 then ��(F) is bounded by a funtion of �d(F); this ispart (i) of the following theorem. An additional observation employing theweak frational Helly property is expressed in part (ii).Theorem 8 (i) For every d and p there exists an � > 0 suh that thefollowing holds. For any �nite family F satisfying FH(d+1; �; �) with some� > 0 and having the (p; d+1) property (i.e. �d(F) < p), we have ��(F) � T ,where T depends only on p, d, and �.(ii) For every d, p, k � d+1, and �0 > 0 there exists an � > 0 suh thatthe following holds. For any �nite family F satisfying the weak frationalHelly property FH(d+1; 1; �0), the frational Helly property FH(k; �; �) withsome � > 0, and the (p; d+1) property, we have ��(F) � T , where T dependsonly on p; d; k; �0, and �.We give the proof in Setion 4. In Setion 7, we present an exampleshowing that the (3; 2) property and the 2-Helly property together are not1Stritly speaking, this de�nition only makes sense for in�nite families G, sine for a�nite family some �(�) depending on jGj always exists. When dealing with �nite families,we really mean that �(�) should be independent of the size of the family.6



suÆient to bound ��(F). At present we do not know whether the (3; 2)property plus FH(2; �; �) for some � < 1 and � > 0 are suÆient or not.Frational Helly and weak �-nets. In the seond main part of theproof of the (p; q) theorem for onvex sets, the existene of weak �-nets foronvex sets is used. This important notion was introdued by Haussler andWelzl [14℄ and further studied in several papers, suh as [1℄, [7℄.As far as we know, at least three di�erent proofs of existene of weak�-nets for onvex sets are known. Two are given in Alon et al [1℄: a diretgeometri argument, leading to a weak �-net of size O((1=�)�2d�1 ) for every�xed d, and an argument based on a seletion lemma of B�ar�any [5℄, givinga weak �-net of size O((1=�)d+1) for d �xed. Our subsequent generalizationis based on this latter proof. In [1℄, the bound is still slightly improved, byapplying a more sophistiated seletion lemma, and the urrent best bound,due to Chazelle et al. [7℄, is lose to O((1=�)d) and is obtained by anothergeometri argument. Finding the orret estimates for weak �-nets is, inour opinion, one of the truly important open problems in ombinatorialgeometry.The original argument about the existene of weak �-nets involving B�ar�any'sseletion lemma relies on several theorems in onvexity, suh as Tverberg'stheorem and the olorful Carath�eodory theorem. Here we show that a sim-ilar onlusion an be derived from a frational Helly property, but we haveto assume it not only for F but also for all intersetions of the sets of F .Theorem 9 For every integer d � 1 there exists � > 0 suh that the follow-ing holds. Let F be a �nite family of sets and let F\ = fTH : H � Fg bethe family of all intersetions of the sets in F . If F\ satis�es FH(d+1; �; �)with some � > 0 then we have�(F) � 1 � ��(F)2 ;where 1 and 2 depend only on d and �.Our proof yields muh worse estimates for 1 and 2 than those knownfor onvex sets; in fat, our exponent 2 is exponential in d. On the otherhand, in the strongest example we are aware of with the frational Hellyproperty for intersetions, even in the abstrat setting, � is only slightlysuperlinear in ��. A lower bound onerning onvex sets [21℄ shows that1 � e
(pd) is needed in the worst ase.7



4 The (p; q) Property and � �Here we prove Theorem 8. The statement (i) an be proved exatly as inAlon and Kleitman [2℄; for the reader's onveniene, we outline the argumenthere, a little simpli�ed but leading to slightly worse quantitative bounds.As we already mentioned it follows from linear programming dualitythat for every �nite hypergraph F we have ��(F) = ��(F). Reall thatthe frational mathing number, ��(F) is the maximum of PF2F g(F ) overall funtions g:F ! [0; 1℄ satisfying PF2F :x2F g(F ) � 1 for all x 2 X.Moreover, the maximum is attained by a rational-valued funtion g, forwhih we an write g(F ) = nFD for integers nF and D. Let fF1; F2; : : : ; Fngbe the multiset ontaining nF opies of eah F 2 F (so n =PF2F nF ).Suppose that �d(F) is bounded, i.e. F has a (p; d + 1) property. Thenthe multiset fF1; : : : ; Fng ertainly has the (p0; d + 1) property with p0 =(p� 1)d+1 sine among any p0 of its sets, the same set ours (d+1)-timesor there are at least p distint sets.For brevity, all an index set I � [n℄ good if Ti2I Fi 6= ; (i.e. I is inthe nerve of F). So for every I 2 �[n℄p0 � there is at least one good (d + 1)-tuple J � I, and hene the total number of good J 2 � [n℄d+1� is at least�np0�=�n�d�1p0�d�1� � �� nd+1� for a suitable � = �(p; d).By FH(d + 1; �; �), there is a point x in at least �n of the Fi. On theother hand, sine the multiset fF1; : : : ; Fng was de�ned using a frationalmathing, no point is in more than n��(F) of the sets Fi, and we onludethat ��(F) = ��(F) � 1� .In part (ii), we assume that F satis�es FH(d+ 1; 1; �0) and FH(k; �; �)with a suitable � > 0 and some � > 0, and has the (p; d + 1) property.We de�ne F1; : : : ; Fn using an optimal frational mathing as above, and itsuÆes to show that there is a point ommon to at least �n of the Fi.We want to show that there are at least ��nk� good index sets K 2 �[n℄k �,with � = �(p; d; k; �0) > 0; then we an use FH(k; �; �).To this end, let m = m(p; d; k; �0) be a suÆiently large integer (inde-pendent of n). It suÆes to prove that eah index set M 2 �[n℄m� ontains atleast one good k-element K, sine then the total number of good k-tuplesis at least �nm�=�n�km�k� � ��nk�. To exhibit a good k-tuple in a given m-tupleM , we use Ramsey's theorem.For eah I 2 �Mp0 �, we hoose a good (d + 1)-element J = J(I) � I(here we use the (p0; d + 1) property, where p0 is as in the proof of (i)).This J(I) has one of � p0d+1� types, where the type is given by the relative8



positions of the elements of J(I) among the elements of I (in the naturalordering of I). By Ramsey's theorem, if m is suÆiently large, there existsan r-element N �M , with r still large, suh that all I 2 �Np0� have the sametype. Let i1 < i2 < : : : < ir be the elements of N in the inreasing order, lets = br=p0, and let L = fip0 ; i2p0 ; : : : ; isp0g. Now all the J 2 � Ld+1� are good,sine for eah of them we an �nd an I 2 �Np0� with J(I) = J .By FH(d+1; 1; �0) applied to fFi : i 2 Lg, there are at least �0s amongthe sets indexed by L sharing a ommon point. If �0s � k, whih an beguaranteed by setting m suÆiently large, we have obtained a good k-tupleontained in M . This proves part (ii) of Theorem 8. 25 The Frational Helly Property and PieringIn this setion, we prove Theorem 9. Let : 2X ! 2X denote the losureoperation indued by the onsidered family F given by (A) = TfF : A �F 2 Fg, where (A) = X if no F 2 F ontains A ((A) is an abstratanalogue of the onvex hull). For a multiset fx1; : : : ; xmg � X and I � [m℄,put GI = (fxi : i 2 Ig).Proposition 10 (A Tverberg-type theorem) Let F be a �nite familyand suppose that F\ satis�es FH(d + 1; 14 ; �) for some � > 0. Then thereexist integers a = a(d; �) and b = b(d; �) suh that for every multisetfx1; : : : ; xabg � X there are d + 1 pairwise disjoint subsets I1; : : : ; Id+1 2�[ab℄a � with d+1\i=1GIi 6= ;: (1)That is, a suÆiently large (multi)set an be partitioned into d + 1 partswhose losures have a ommon point.Let us remark that � = 14 is used just for onreteness and it an bereplaed by any other onstant stritly below 1, if a and b are hosen suitably.Proof. Let b = dd=�e + 1 and a = bd. Let m = �aba � and onsider themultiset S = fGI : I 2 �[ab℄a �g; its sets are members of F\. We want toapply frational Helly to S and so we �rst need to show that at least 14 ofthe (d+ 1)-tuples of sets in S interset.We hek that, in fat, at least 14 of all (d + 1)-tuples (I1; I2; : : : ; Id+1)of pairwise distint a-element index sets Ii � [ab℄ satisfy Td+1i=1 Ii 6= ;. Intu-itively, this is beause d + 1 independent random a-element subsets of [ab℄9



are very likely to be all distint and to have a point in ommon, sine a isvery large ompared to b. Quantitatively, the relative fration of interseting(d+ 1)-tuples of distint a-element subsets of [ab℄ isjf(I1; : : : ; Id+1) 2 �[ab℄a �d+1 : Ii 6= Ij for i 6= j and Td+1i=1 Ii 6= ;gjm(m� 1) � � � (m� d)� jf(I1; : : : ; Id+1) 2 �[ab℄a �d+1 : Td+1i=1 Ii 6= ;gjm(m� 1) � � � (m� d)� md+1 �m(m� 1) � � � (m� d)m(m� 1) � � � (m� d)� ab�ab�1a�1 �d+1 � �ab2 ��ab�2a�2 �d+1md+1 � 14 � abd � a22b2d � 14 = 14 :By FH(d + 1; 14 ; �) applied to S, there exists an H � �[ab℄a � suh thatTI2HGI 6= ; and jHj � b�m > db aba !: (2)Thus H ontains a signi�ant fration of all possible a-tuples of indies, andsuh a large system has to ontain d + 1 disjoint a-tuples. With our pa-rameters, we an use a result of Frankl (Theorem 10.3 in [11℄), aording towhih (2) implies the existene of pairwise disjoint I1; : : : ; Id+1 2 H (but itis easy to derive a similar result with somewhat worse quantitative param-eters). 2B�ar�any [5℄ proved the following seletion lemma: if P � Rd is an n-point (multi)set, then there exists a point x ontained in the onvex hullsof at least d� nd+1� subsets of P of ardinality d + 1, where d > 0 dependson d but not on n. Here we derive an abstrat analogue (replaing theolored Carath�eodory theorem in B�ar�any's argument by the frational Hellyproperty).Proposition 11 (A seletion lemma) Let F be a �nite family suh thatF\ satis�es FH(d + 1; �; �) with a suitable � = �(d) > 0 and some � > 0.Then for any multiset fx1; : : : ; xng � X there exists a family H � �[n℄a � suhthat jHj � ��na� and \I2HGI 6= ;;where a = a(d; �) is as in Proposition 10 and � > 0 depends only on dand �. 10



Proof. Let S = fGI : I 2 �[n℄a �g; we want to show that a signi�ant frationof the (d+ 1)-tuples in S interset, in order to apply frational Helly.LetT = nfI1; : : : ; Id+1g : Ii 2 �[n℄a �; Ii \ Ij = ; for i 6= j and d+1\i=1 GIi 6= ;o:Proposition 10 implies that for eah subset J 2 �[n℄ab� there exist pairwisedisjoint I1; : : : ; Id+1 2 �Ja� suh that Td+1i=1 GIi 6= ;, and so eah J ontributesa (d + 1)-tuple in T . On the other hand, for any given fI1; : : : ; Id+1g 2 T ,the a(d + 1) indies in I1 [ � � � [ Id+1 are ontained in �n�a(d+1)ab�a(d+1)� of theab-tuples J . ThereforejT j � � nab�� n�a(d+1)ab�a(d+1)� � � nab�a(d+1) � 1(ab)a(d+1) �na�d+ 1!and Proposition 11 follows by FH(d+ 1; �; �) applied to S. 2Proof of Theorem 9. The value of ��(F), being the minimum of alinear funtion with rational oeÆients over a rational polytope, is attainedfor some rational-valued f :X ! [0; 1℄, whih is nonzero only at �nitelymany points, say x1; : : : ; xr. We write f(xi) = niD with integers ni andD, and we let Y = fy1; : : : ; yng be the multiset obtained by taking eahxi with multipliity ni. We have jY j = n = Pri=1 ni = ��(F) � D andjY \ F j � D = n=��(F) for all F 2 F .From now on, we exatly follow an argument in [1℄ for the existene of aweak �-net. Namely, we hoose a transversal Z for F by the following greedyalgorithm. Initially, Z is empty. Having already put z1; : : : ; zk into Z, wehek if there is a D-element subset J � [n℄ suh that GJ = (fyi : i 2Jg) ontains none of z1; : : : ; zk. If there is no suh J then the urrent Zintersets the losures of all D-element subsets of Y and, in partiular, it isa transversal for F . If suh a J exists, we apply Proposition 11 to the setfyi : i 2 Jg. This yields a point, whih we denote by zk+1, that is ontainedin GI for at least ��Da� a-tuples I � J . (We may assume D � a and thus��Da� > 0, for otherwise Y will do as a small transversal.) This �nishes thedesription of the algorithm.Call an a-tuple I � [n℄ alive if GI \fz1; : : : ; zkg = ; and dead otherwise.Initially, all the �na� a-tuples are alive, and adding zk+1 to Z kills at least��Da� of the a-tuples urrently alive. So the size of the transversal found by11



the algorithm is at most�na���Da � � 1��enD �a � ea� � ��(F)a: 26 The Frational Helly Property of Leray Com-plexesNext, we show that a frational Helly property, and onsequently a (p; q)theorem, are implied by a topologial ondition. We reall that the nerveN(F) of a hypergraph F is the simpliial omplex on the vertex set F whosesimplies are all � � F suh that TF2� F 6= ;.A simpliial omplex K is d-Leray if Hi(lk(K;�)) = 0 for all � 2 K andi � d, where Hi is the i-dimensional homology with integer oeÆients andlk(K;�) denotes the link of � in K. Equivalently K is d-Leray i� Hi(L) = 0for any indued subomplex L � K and i � d.A hypergraph F is d�-Leray if the nerve N(F) is d-Leray.Theorem 12 Let F be a �nite d�-Leray hypergraph and let F\ be the familyof all intersetions of the sets of F . Then F\ has frational Helly numberd + 1; more preisely, for all � 2 (0; 1), F satis�es FH(d + 1; �; �(�)) with�(�) = 1� (1� �)1=(d+1).The nerve of a family of subsets of Rd with the property that all non-empty intersetions of members of the family are ontratible must be d-Leray. This follows from standard nerve theorems in algebrai topologywhih assert that the homology of the nerve of suh a family is the same asthe homology of the union of the sets in the family. Theorem 2 thus followsfrom Theorems 8, 9 and 12. Theorems 12 and 9 imply at one Theorem 3.Wegner [26℄ proved that nerves of �nite families of onvex sets in Rdsatisfy the stronger d-ollapsibility property. Let � be a fae of dimensionat most k � 1 of a simpliial omplex X whih is ontained in a uniquemaximal fae � of X. The operation X ! Y = X � f� : � � � � �gis alled an elementary k-ollapse. X is k-ollapsible provided there is asequene of elementary k-ollapsesX = X1 ! X2 ! � � � ! Xm12



suh that dimXm � k � 1.Sine an elementary k-ollapse does not e�et the homology in dimen-sions at least k it follows that k-ollapsible omplexes are k-Leray. Kathal-ski and Liu's proof for their frational Helly theorem uses (impliitly) onlyd-ollapsibility. In fat, d-ollapsibility (or rather the �rst ollapse step) isimpliit in Hadwiger and Debrunner early paper on the (p; q) property [12℄.The main tool in the proof of Theorem 12 is the following onsequene ofKalai's Upper Bound Theorem for Leray omplexes, see [16, 17℄. Let fi(L)denote the number of i-dimensional faes of a simpliial omplex L.Theorem 13 (Kalai) Suppose L is d-Leray and f0(L) = m. Then fd(L) >� md+1�� �m�rd+1 � implies fd+r(L) > 0.As a onsequene we obtain that fd(L) � �� md+1� implies fb�(�)m(L) >0 , for � = 1� (1��)1=(d+1). Note that Theorem 13 is sharp even for nervesof onvex sets in Rd as seen by the family whih onsists of r opies of Rdand m� r hyperplanes in general position.The upper bound theorem for families of onvex sets, namely the as-sertion of Theorem 13 for nerves of families of onvex sets was onjeturedby Perles and Kathalski and was settled independently by Kalai and byEkho� [10℄. Kalai's proof applied for arbitrary d-ollapsible omplexes.Kalai further haraterized fae numbers of d-ollapsible omplexes whihwas onjetured by Ekho� using the tehnique of \algebrai shifting" andextended his proof to apply for all Leray omplexes where the ruial fatis that the Leray property is preserved under algebrai shifting.This fat also follows from a reent muh more general result of Aramovaand Herzog [4℄. As observed more reently by Kalai, d-Leray omplexes withomplete (d� 1)-skeleta (and there is no loss of generality to assume this isthe ase) are simply Alexander-duals of Cohen-Maaulay omplexes. (TheAlexander duality is not the duality between hypergraphs onsidered abovebut rather it is the same as the bloker onstrution in ombinatorial op-timization. The dual of a simpliial omplex K on a vertex set V is theset of all subsets S of V suh that V nS =2 K.) Sine Alexander dualityommutes with algebrai shifting this observation gives an easier deriva-tion that d-Leray simpliial omplexes are preserved under shifting fromthe orresponding fat for Cohen-Maaulay omplexes. Moreover, it givesa simple derivation for the haraterization of their fae numbers from theorresponding haraterization of f -vetors of Cohen-Maaulay simpliialomplexes disovered by Stanley in 1975 [25℄.13



We return now to the proof of Theorem 12. To apply Theorem 13, weneed two auxiliary onstrutions. Let K be a simpliial omplex on thevertex set V . For a vertex v 2 V and an integer l let Av;l(K) denote theomplex obtained from K by splitting v into l verties v1; : : : ; vl: The vertexset of Av;l(K) is V 0 = V n fvg [ fvigli=1. The faes are all �0 � V 0 suh thateither �0 2 K or �0 = � n fvg [ C where v 2 � 2 K and C � fv1; : : : ; vlg .Let B(K) denote the simpliial omplex whose verties are the non emptyfaes of K, and f�1; : : : ; �ng 2 B(K) if Sni=1 �i 2 K.Proposition 14 If K is d-Leray then(i) Av;l(K) is d-Leray, and(ii) B(K) is d-Leray.Proof. For part (i), let L � Av;l(K) be an indued subomplex on thevertex set V0 � V 0. The simpliial map that is the identity on V0nfv1; : : : ; vlgand that maps the verties in V0 \ fv1; : : : ; vlg (if any) to v is a homotopyequivalene of L onto an indued subomplex of K, and hene Hi(L) = 0for i � d.As for part (ii), we �rst note that any omplex L is homotopy equivalentto B(L). Let � = f�1; : : : ; �pg 2 B(L) where � = Spi=1 �i 2 L, and letz = Ppi=1 �i�i 2 jB(L)j, where jKj denotes the polyhedron of a simpliialomplex K. The mapping �: jB(L)j ! jLj given by�(z) = 1Ppi=1 �ij�ijXv2�� Xfi : v2�ig�i�vis the required retration of B(L) onto L.Next, let � = f�1; : : : ; �pg 2 B(K), where � = Spi=1 �i 2 K. ClearlySt(B(K); �) = B(St(K;�)) = nf�1; : : : ; �qg 2 B(K) : q[j=1 �j [ � 2 Ko:Thereforelk(B(K); �) = nf�1; : : : ; �qg 2 B(K) : Sqj=1 �j [ � 2 K;f�1; : : : ; �qg \ f�1; : : : ; �pg = ;o:We onsider two ases: 14



(a) f�1; : : : ; �pg 6= 2� n f;g .Let ; 6= � � � suh that � 62 f�1; : : : ; �pg. Then lk(B(K); �) is a oneon � and hene ontratible.(b) f�1; : : : ; �pg = 2� n f;g . Thenlk(B(K); �) = nf�1 [ 1; : : : ; �q [ qg : f�1; : : : ; �qg 2 B(lk(K;�));1; : : : ; q 2 2�o:Thus lk(B(K); �) is obtained from B(lk(K;�)) by replaing eah ver-tex of the latter by a (2j�j � 1)-dimensional simplex.The simpliial map lk(B(K); �)! B(lk(K;�)) given byf�1 [ 1; : : : ; �q [ qg 7! f�1; : : : ; �qgis learly a retration. It follows that lk(B(K); �) is homotopy equiv-alent to B(lk(K;�)) and hene to lk(K;�)). 2Proof of Theorem 12. By the assumption K = N(F) is d-Leray.Suppose S = fG1; : : : ; Gmg is a multiset in F\, and let �1; : : : ; �k be dis-tint simplies in K suh that S onsists of mi opies of TF2�i F for eahi = 1; 2; : : : ; k, Pki=1mi = m. Then L = N(S) is an indued subomplex ofA�1;m1 � � �A�k;mkB(K) . By Proposition 14, L is d-Leray, and hene Theo-rem 12 follows from Theorem 13. 27 Some examplesAn example with no weak �-net of linear sizeThe �rst issue we would like to disuss is the following: Given an (in�nite)hypergraph with the property that for every � > 0 and every set Y , Y admitsa weak-� net of size f(�) what kind of behavior f(�) might have.Reall that for onvex sets in Rd the known upper bounds are lose to(1=�)d but no superlinear lower bound is known. In the most abstrat aseof the problem we do not have better insight as we do not have an answereven to the following problem: 15



Problem 15 Find an example of an (in�nite) hypergraph H suh that f(�)exists and f(�)(1=�) log(1=�) !1:The fat that there are suh hypergraphs for whih f(�) � 
(1=�) log(1=�)follows from an example by Koml�os, Pah and Woeginger [19℄ for the aseof bounded VC-dimension. Here we present an interesting example (sim-ilar to an unpublished one found independently by Pah, who also raisedProblem 16 below) whih is also 2-Leray.We �rst laim, without trying to optimize the absolute onstants, thatfor every (large) prime power p there is a hypergraph whose verties are allpoints of a projetive plane P of order p, and whose edges, whih we allhalf lines, are subsets of the lines of P , where SL is a subset of the line L,suh that the following two onditions hold:(i) jSLj > 14p(p2 + p+ 1) for every line L.(ii) No subset of less than 0:1p log p points of the plane intersets all halflines.To prove this laim let eah SL be a random subset of L were eah pointis hosen, randomly and independently, with probability 1=2. It is easy tosee that (i) holds almost surely (that is, with probability that tends to 1as p tends to in�nity). To see that (ii) holds almost surely �x a set T of0:1p log p points of P . It is easy to see that there are more than p2=2 lines ofP eah of whih ontains at most 0:2 log p points of T . For eah suh line L,the probability that SL does not interset T is at least (1=2)0:2 log p = p�0:2and therefore the probability that T intersets all half lines is at most(1� p�0:2)p2=2 � e�p1:8=2:As the total number of hoies for a set T as above is only p2 + p+ 10:1p log p ! � eO(p log2 p)it follows that with high probability there is no set T of at most 0:1p log ppoints that intersets all half lines, establishing the laim.Consider, now, the disjoint union of all the hypergraphs above (for alllarge prime powers p). The VC dimension of this hypergraph is learly 2. IfX is the set of all points of the projetive plane of order p and � = 1=(4p),then the orresponding weak �-net has to interset all half-lines of the planeand by the laim above its size has to exeed 0:1p log p.16



To see that the nerve of this family is 2-Leray note that whenever wehave a pure subomplex of the nerve of dimension at least 2 then the setof its verties forms a simplex. No homology beyond dimension 2 is thuspossible. In fat, it is not diÆult to hek that this example is 2-ollapsibleas well.For this example, if we lose the set of edges under intersetion f(�) stillexists (as we have only added singletons). This shows that even if we requirethat the hypergraph is losed under intersetion the bound an be (slightly)superlinear.Problem 16 Can this example be realized by onvex sets in R2 or perhapsin R4 or R100? Can the simpliial omplex spanned by the lines in a �niteprojetive plane be realized as the nerve of a family of onvex sets in R2 orR100?Problem 17 Is there a funtion d0 = d0(d) so that every d-ollapsible om-plex (or even every d-Leray omplex) an be realized as the nerve of a familyof onvex sets in Rd0 ?In the following lass of examples � � (��)� for � > 1, but we do notknow if they are of �nite type. Consider the 3n leaves of the ternary tree ofdepth n. Given a set S of leaves we will de�ne reursively a set of verties�S � S of the ternary tree as follows: An internal vertex belongs to �S if atleast two of its sons belong to S. Our hypergraph will have as verties theleaves of the tree and as edges those subsets S of leaves suh that the rootof the ternary tree belongs to �S. In this example �� = (3=2)n and � = 2n.We do not know if this lass of hypergraphs is of �nite type.A hypergraph with Helly number 2 and yet not of �nite typeNext we disuss a onstrution, whih starts with a graph G and yields ahypergraph F suh that F\ has Helly number 2. By hoosing various G, weobtain examples showing that some of the assumptions in our results annotbe removed or weakened.Let G = (V;E) be a graph, and let � denote the system of all nonemptyindependent sets in G. We de�ne a family F with � as the ground set andwith the sets Fv = fA 2 � : v 2 Ag, v 2 V . The following properties areeasy to hek:� F , as well as F\, have Helly number 2, i.e. satisfy FH(2; 1; 1).17



� If G ontains no Kp as a subgraph then F has the (p; 2) property.� �(F) = �(G) (the usual hromati number) and ��(F) = �f (F) (thefrational hromati number).Let us remark that this onstrution an be made \geometri": thereexists a system of axis-parallel boxes in some Rm with the same nerve as F .This is beause every �nite graph G an be represented as the intersetiongraph of axis-parallel boxes in a suÆiently high dimension.First we give a result omplementary to Theorem 8.Proposition 18 There exist hypergraphs F with Helly number 2 and with�(F) � 2 (i.e. with the (3; 2) property) for whih ��(F) is arbitrarily large.Proof. In the above onstrution, it suÆes to hoose a triangle-free graphG with arbitrarily large frational hromati number. For the latter, it suf-�es that jV (G)j=�(G) is arbitrarily large, where �(G) is the independenenumber. There are many onstrutions of suh graphs, both probabilistiand expliit; for example, the well-known probabilisti onstrution of Erd}osof graphs with large girth and large hromati number works here. 2The next example is relevant to Theorem 9.Proposition 19 There exist hypergraphs F satisfying the (3; 2) propertyand the frational Helly property FH(2; 0; 13) (i.e. among any n sets, atleast n3 have a ommon point), suh that F\ has Helly number 2, and with��(F) � 3 and �(F) arbitrarily large.Proof. This time we let the starting graph G in the onstrution be aKneser graph with the vertex set �[m℄k � and with two k-tuples onneted byan edge i� they are disjoint. It is well-known that the hromati number ism � 2k + 2 [20℄, and if we set m = 3k � 1, it is easy to see that this G istriangle-free and �f < 3. Finally, to verify FH(2; 0; 13) for the onstruted setsystem, we need to hek that for every multiset fS1; : : : ; Sng, Si 2 �[3k�1℄k �,there is a subsystem of at least n3 k-tuples with a ommon intersetion.This is beause the sum of sizes of the Si is nk > n m3 and so some point isontained in at least n3 of the Si.Note that in fat as ��(F) � 3, for every multiset of its edges there is apoint in at least a 1=3 of them, that is, the property FH(2; 0; 1=��) alwaysholds. 218



8 Piering Convex Lattie SetsA onvex lattie set is any set of the form C \Zd, where C � Rd is a onvexset and Zd denotes the d-dimensional integer lattie. Doignon [9℄ provedthat onvex lattie sets in Zd have Helly number 2d. For a simpler proof see[23℄.Let p � q � 2d. The validity of the (p; q) theorem for �nite families ofonvex lattie sets in Zd (Theorem 4) is a onsequene of Theorems 8 and13 and the followingLemma 20 The nerve of a �nite family of onvex lattie sets in Zd is 2d�1ollapsible.Proof. We follow the method of Wegner [26℄ and Kathalski and Liu [18℄.Let � be a linear ordering on Zd suh that all initial segments are lattieonvex sets; for example, we an hoose a vetor a 2 Rd with no rationaldependene among the oordinates and de�ne x � y i� ha; xi � ha; yi.Write k = 2d � 1 and let F = fF1; : : : ; Fng be a family of onvex lattiesets in Zd. By interseting the sets with a large box, we preserve their nervebut make them bounded and thus �nite. For I � [n℄ let FI = \i2IFi andlet N(F) = fI � [n℄ : FI 6= ;g denote the nerve of F . For I 2 N(F) letxI = minFI . Choose a subset J of minimal ardinality suh that xJ =maxfxI : I 2 N(F)g. We laim that jJ j � k. Suppose to the ontrarythat jJ j � k + 1 = 2d. Let H = fx 2 Zd : x < xJg then the familyG = fFj : j 2 Jg [ fHg has empty intersetion, and so some subfamily of2d sets has empty intersetion by the Helly property. Sine H has to be oneof these 2d sets, it follows that there exists a J0 � J , jJ0j = 2d� 1 suh thatxJ = xJ0 , a ontradition. Clearly J is ontained in a unique maximal faeof N , namely J 0 = fi : xJ 2 Fig hene N ! N 0 = N � fI : J � I � J 0g isa legal k-ollapsing step. To omplete the proof we note that the resultingN 0 is again the nerve of the family of onvex lattie sets, namely fFj \H :j 2 Jg [ fFi : i 62 Jg 2Let us remark that in this ase we do not really need to invoke Theorem8 and, in fat, an get onsiderably better quantitative bounds by a morediret argument. Our quantitative bounds in the abstrat setting are largemainly beause the \Tverberg number" ab in Proposition 10 is large, but foronvex lattie sets, the Tverberg number an be bounded in a muh betterway. For the Radon number (i.e., the number that ensures a partition intotwo disjoint parts with interseting losures), the known bound is d(2d�1)+319



[24℄; see also Onn [22℄, and for an r-partition, an analogous argument ofJamison [15℄ yields the bound of (r � 1)(d + 1)2d + 1.We onjetured that onvex lattie sets in Zd atually have frationalHelly number d+ 1 (although the bound 2d for the Helly number is tight).As was mentioned in the introdution, this onjeture was reently provedin [6℄.Hausel [13℄ proved a Gallai-type theorem for planar onvex lattie sets:if F is a family of onvex lattie sets in Z2 suh that every 3 sets interset(i.e. share a lattie point), then �(F) � 2. This implies FH(3; 1; 12), and soby Theorem 8(ii), there is a (p; 3) theorem for planar onvex lattie sets.9 No Piering for Transversal Lines in SpaeA (p; d+1) theorem for hyperplane transversals for onvex bodies in Rd wasproved in [2℄: if C is a family of onvex bodies in Rd suh that among everyp of them, some d + 1 admit a hyperplane transversal (i.e. a hyperplaneinterseting all of them) then all bodies of C an be interseted by at mostC = C(d; p) hyperplanes. It is natural to ask whether a similar result ouldbe true for piering onvex bodies in Rd by j-ats with 1 � j � d � 2.Proposition 6 formulated for the simplest ase d = 3 and k = 1, shows thateven quite weak results of this type annot be expeted to hold. Proposition6 follows from the next lemma by hoosing a suitable �nite set system.Lemma 21 Let fS1; S2; : : : ; Smg be a system of subsets of [n℄. There areonvex sets C1; C2; : : : ; Cm in R3 suh that eah family Ci = fCj : i 2 Sjghas a line transversal, and whenever fCj : j 2 Jg is a family possessing aline transversal, then by removing at most 3 indies from the index set J ,we obtain an index set J0 with Tj2J0 Sj 6= ;.Proof of Proposition 6. Choose a family fS1; S2; : : : ; Smg suh thatevery k sets interset but no k+1 do; for example, set Si = fI 2 �[m℄k � : i 2 Ig.Proof of Lemma 21. The onstrution is based on the geometry of thehyperboli paraboloid z = xy, similar to many previous examples onerninglines in R3 , suh as an example of Aronov, Goodman, Pollak and Wengermentioned in Wenger's survey [27℄.Let � � R3 be the surfae with equation z = xy. For i 2 [n℄, let `ibe the line x = in , z = iny on �. Let 0 < "1 � "2 � � � � � "m � 1 besmall numbers ("m is suÆiently small in terms of n and eah "j is muh20



smaller than "j+1). Let �j be the vertial plane with equation y = jm + "jx.So �j is nearly perpendiular to the lines `i but it is tilted a little, and soits intersetion with the surfae � is a onvex paraboli ar within �j, withequation z = jm x+"jx2. We let pij = `i\�j, and we set Cj = onvfpij : i 2Sjg. Here is an illustration (with Cj = f1; 3; 4g):

x
yz

`1 `2 `3 `4
�j

p1j p2j p3j p4jCj
Eah Cj is a very thin onvex polygon. It lies vertially above � and belowthe segment onneting the points p0j and pnj. It an be easily alulatedthat the maximum vertial distane of a point of Cj from � is no larger than"j . We divide eah Cj into two regions: the low region onsists of points atvertial distane at most "j=100n2 from �, and the high region is the restof Cj. Calulation shows that the low region onsists of small triangle-likepiees near the points pij 2 Cj , as is indiated in the following drawing (thelow regions are drawn blak):

�CjThe line `i is a transversal for the subfamily Ci, and it remains to hekthe other assertion of the lemma. This is implied by the following two laims.Claim A. If a line � intersets at least two Cj in the low regions, then thesets met by � in the low regions are all met by some `i.21



Claim B. Any line � meets at most 3 of the Cj in the high regions.To prove Claim A, we note that if � intersets the low regions of Cj1and Cj2 near points pi1j1 and pi2j2 , respetively, and i1 6= i2, then � annotbe almost parallel to the surfae � and so if the "j are suÆiently small, nosuh � an meet more than two of the Cj .To prove Claim B, we note that if we parameterize the line � by they-oordinate, then the vertial distane of a point of � from the surfae � isa quadrati polynomial p�(y). Suppose that there are 4 intersetions withthe high regions, and let their y-oordinates be y1 < y2 < y3 < y4. Let ykorrespond to the intersetion with Cjk ; then yk is very lose to jkm . Sinethe intersetions are at high regions, we have"jk100n2 � p�(yk) � "jk : (3)We hek that if the "j derease suÆiently fast, this is impossible for aquadrati polynomial.Namely, we show that the inequality p�(y4) � "j4=100n2 is impossible if(3) holds for k = 1; 2; 3. Let p�(y) = ay2 + by+ ; then these onditions arelinear inequalities for a; b; . The oeÆient vetor (y24 ; y4; 1) of the inequalityay24 + by4 +  � "2j4=100n2 an be expressed as a linear ombination of thevetors (y2k; yk; 1), k = 1; 2; 3. The oeÆients in this linear ombinationan be written using Vandermonde determinants in the yk, and so they arebounded by a polynomial funtion of m (sine yk+1 � yk � 12m ). It followsthat the maximum value of p�(y4) is bounded by "j3 multiplied by a fatorpolynomial in m. Thus, if "j4 is suÆiently large ompared to "j3 , we get aontradition. 210 Further open problemsWe onlude with a few additional open problems:Does a weak form of frational Helly suÆe?1. Are FH(2; �; �) with some spei� � < 1 and � > 0 plus the (3; 2)property, say, suÆient to bound ��(F)?2. Is FH(2; �; �) with spei� � < 1 and � > 0, assumed for F\, suÆientto bound �(F) by a funtion of ��(F)?22



Is frational Helly for distint sets suÆient?Our proofs use frational Helly when some sets are repeated. Is this reallyneessary?In partiular, for frational Helly number 2 we an state this problemin terms of the \non-intersetion graph": suppose that a graph G is suhthat every k-vertex subgraph with at most (1 � �)�k2� edges ontains anindependent set of size �(�) � k. Is this still true if we replae eah vertex ofG by an independent set (maybe with smaller �0(�))?Polytopes, Cohen-Maaulay omplexesIs � bounded by a funtion of �� uniformly for all polytopes, namely, forall hypergraphs whose verties are the verties of some polytope and whoseedges orrespond to faets of the polytope ?Is � bounded by a funtion of �� uniformly for all Cohen-Maaulay om-plexes?Aknowledgment We would like to thank Shmuel Onn for helpful disus-sions.Referenes[1℄ N. Alon, I. B�ar�any, Z. F�uredi, and D. Kleitman, Point seletions andweak "-nets for onvex hulls. Combin., Probab. Comput., 1(1992), 189{200.[2℄ N. Alon and G. Kalai, Bounding the piering number,Disrete Comput.Geom. 13(1995), 245{256.[3℄ N. Alon and D. J. Kleitman, Piering onvex sets and the HadwigerDebrunner (p; q)-problem, Adv. Math. 96 (1992), 103{112.[4℄ A. Aramova and J. Herzog, Almost regular sequenes and Betti num-bers, Amer. J. Math. 122 (2000), 689-719.[5℄ I. B�ar�any, A generalization of Carath�eodory's theorem. Disrete Math.,40(1982), 141{152.[6℄ I. B�ar�any and J. Matou�sek, A Frational Helly theorem for onvexlattie sets. Sumbitted, 2001. 23
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