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1 Introdu
tionHelly's theorem asserts that if F is a �nite family of 
onvex sets in Rd inwhi
h every d+ 1 or fewer sets have a point in 
ommon then TF 6= ;. Ourstarting point, the (p; q) theorem, is a deep extension of Helly's theorem.It was 
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tured by Hadwiger and Debrunner and proved by Alon andKleitman [3℄. Let p � q � 2 be integers. A family F of 
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family of 
onvex sets in Rd with the (p; q) property then there is a set of atmost C points interse
ting all the sets of F .Note that if we are only interested in the existen
e of C(p; q; d) and not inits pre
ise value, it is suÆ
ient to 
onsider the 
ase q = d+ 1.Here we 
onsider analogues and relatives of the (p; q) theorem for othersettings, both geometri
 and abstra
t. The original proof of the (p; q) theo-rem uses two main tools: the fra
tional Helly theorem and the weak epsilon-nets for 
onvex sets. Our main result (the union of Theorem 8 and Theorem9) shows that in an abstra
t setting, the appropriate fra
tional Helly prop-erty is suÆ
ient to derive the existen
e of weak epsilon-nets and the validityof a (p; q) theorem. These notions and the pre
ise formulation will be givenin Se
tion 3 and the theorem will be proved in Se
tions 4 and 5.One 
onsequen
e we derive is a \topologi
al (p; q)-theorem". A familyF of subsets of Rd , whose members are either all open or all 
losed, is a good
over if TF2G F is 
ontra
tible or empty for all G � F . Helly proved thathis theorem 
ontinues to hold for �nite good 
overs. Here we showTheorem 2 The assertion of the (p; q) theorem remains valid for all �nitegood 
overs in Rd .A 
ru
ial step in the proof of this theorem is of independent interest as itgives a homologi
al 
ondition for the edge-
over number � of a hypergraph(equivalently, the simpli
ial 
omplex spanned by it) to be bounded as afun
tion of the fra
tional edge-
over ��.A simpli
ial 
omplex K is 
alled d-Leray if the i-th homology of K andall of its indu
ed sub
omplexes vanish when i � d.Theorem 3 For every d � 1 there are 
onstants 
1 = 
1(d) and 
2 = 
2(d)su
h that for a d-Leray simpli
ial 
omplex K, �(K) � 
1(��(K))
2 .As a 1-Leray 
omplex K is simply the 
lique 
omplex of a 
hordal graphit follows that �(K) = ��(K) (sin
e 
hordal graphs are perfe
t). For d > 1our proof implies that 
2(d) = dO(d) but we do not have examples showingthat 
2 = 1 + � will not suÆ
e. In Se
tion 7 we des
ribe a 2-Leray 
omplexK whi
h satis�es �(K) = 
(��(K) log ��(K)).These topologi
al results will be proved in Se
tion 6.In Se
tion 8 we 
onsider 
onvex latti
es sets in Rd . Doignon proved [9℄that the Helly number for 
onvex latti
e sets in Rd is 2d.2



Theorem 4 For p � q � 2d, the assertion of the (p; q) theorem applies toall �nite families of latti
e 
onvex sets in Rd .Using a theorem of Hausel we 
an show that planar 
onvex latti
e setssatisfy even a (p; 3)-theorem for every p.Conje
ture 5 For p � q � d+1, the assertion of the (p; q) theorem appliesto all �nite families of latti
e 
onvex sets in Rd .Re
ently, this 
onje
ture was proved by B�ar�any and Matou�sek [6℄.Alon and Kalai [2℄ used the method of [3℄ to prove (p; q) theorems inseveral geometri
 situations, for example for pier
ing 
onvex sets in Rd byhyperplanes. In Se
tion 9 we provide an example showing that no (p; q)theorem or a similar property, even in a weak sense, hold for stabbing 
onvexsets by lines in R3 .Proposition 6 For every integers m0 and k, there is a system C of morethan m0 
onvex sets in R3 su
h that every k sets of C have a line transversalbut no k + 4 of them have a line transversal.It seems that k + 4 
ould be improved to k + 3, or perhaps k + 2, by amore 
areful analysis of our 
onstru
tion. But a
hieving k + 1 seems more
hallenging.It is often asked in 
onne
tion of the (p; q) theorem to give some exampleswhere the (p; q) 
ondition holds. The following example is useful: Let � bea probability measure on Rd and 
onsider all 
onvex sets with measure atleast Æ. If Æ > q=p then this family satis�es the (p; q) property. The �rststep in the proof of Alon and Kleitman shows that if a family satis�es the(p; q) property then it has su
h a form but for a mu
h smaller value of Æ.2 Transversal numbers of hypergraphsTransversals and mat
hings. Let F be a �nite set system on a (�niteor in�nite) setX (so F 
an also be regarded as a hypergraph). We re
all thatthe transversal number of F , denoted by �(F), is the minimum 
ardinality ofa subset of X whi
h interse
ts all F 2 F . �(F) is also 
alled the vertex-
overnumber of F .The fra
tional transversal number ��(F) is the minimum of Px2X f(x)over all nonnegative fun
tions f :X ! [0; 1℄ that satisfy Px2F f(x) � 1 for3



all F 2 F . (If X is in�nite we only 
onsider fun
tions f attaining �nitelymany nonzero values.) Clearly always ��(F) � �(F).Let �d(F) denote the largest size of a subhypergraph M � F su
hthat degM(x) � d for all x 2 X. The mat
hing number of F is �(F) =�1(F). Also note that the (p; q) property for the family F 
an be restatedas �q�1(F) < p.The fra
tional mat
hing number ��(F) is the maximum of PS2F f(S)over all nonnegative real fun
tions f : F ! [0; 1℄ whi
h satisfy: Pff(S) : S 2F ; x 2 Sg � 1, for every x 2 X. Clearly, �(F) � ��(F) and it is easyto see that �d(F)=d � ��(F). Linear programming duality gives that��(F) = ��(F).There 
an be a large gap between the transversal number and fra
tionaltransversal number. An example to keep in mind is the family Mm;n �[m℄n �of all n-subsets of a set of sizem. In this 
ase �� = m=n while � = m�n+1.Thus, when m = 2n we get �� = 2 and � = n+ 1.The dual of the hypergraph F is the hypergraph Fdual whose verti
es
orrespond to the edges of F and whose edges 
orrespond to the verti
es ofF with in
iden
e relation being reversed. The dual notion to the notion ofthe transversal number is the edge-
over number, �(F), of a hypergraph F .It is the minimal number of edges required to 
over all verti
es. Similarly,the fra
tional edge-
over number is de�ned by ��(F) = ��(Fdual).Transversal numbers, fra
tional transversal numbers and weak �-nets The relations between transversal numbers, fra
tional transversalnumbers and mat
hing numbers is a topi
 of 
entral importan
e in 
om-binatori
s. Call a 
lass of hypergraphs hereditary if it is 
losed under takingsubhypergraphs.Our work 
an be regarded as a 
ontribution towards understanding ofthe following question:Problem 7 1. For whi
h hereditary 
lass F of hypergraphs F is it true that� is bounded above by a fun
tion of ��?2. Let d be a �xed positive integer. For whi
h hereditary 
lass F ofhypergraphs F is it true that � is bounded by a fun
tion of �d?For a 
olle
tion F of subsets of X and a (multi-) subset Y � X a weak�-net for Y is a set Z � X so that every S 2 F with jS \ Y j � �jY j satis�esS \ Z 6= ;. (Z is 
alled an �-net if Z � Y .)4



It is easy to see that for a hypergraph F the following 
onditions areequivalent (with g(x) = f(1=x)):� � is uniformly bounded by a fun
tion g of �� for all subhypergraphsof F .� There is a fun
tion f su
h that for every � and every Y there is a weak�-net of size at most f(�).We will 
all a hypergraph satisfying these 
onditions a hypergraph of�nite type or a hypergraph with the weak �-net property. (We will adoptthe same notion for a 
lass of hypergraphs (possibly all �nite) when thefun
tion f(�) 
an be 
hosen uniformly for all hypergraphs in the 
lass.) The
ombinatorial 
onditions for a hypergraph to be of a �nite type and thenature of the fun
tions f(�) for the size of the weak �-net whi
h 
an ariseare not understood.The 
orresponding questions for 
lasses of hypergraphs 
losed under re-stri
tions are well understood. (Equivalently these are the questions on therelations between � and �� for hereditary 
lasses of hypergraphs.) In orderthat � be bounded by a fun
tion of �� for all restri
tions of a hypergraphF to subsets X 0 of X it is ne
essary and suÆ
ient that for every Y and� > 0 there is an �-net of size at most f(�) and this is equivalent to the VC-dimension of F being �nite. (When talking about a family of hypergraphsthe VC-dimension should be uniformly bounded.) Haussler and Welzl [14℄proved that f(�) = O(d(1=�) log(1=�)), where d is the VC-dimension, andKoml�os, Pa
h and Woeginger [19℄ gave examples showing this 
annot befurther improved. Ding, Seymour and Winkler [8℄ 
hara
terized when � isbounded by a fun
tion of � for a hypergraph and all of its restri
tions.Having a �nite VC-dimension is 
losed under duality. (Thus, boundedVC dimension is a ne
essary and suÆ
ient 
ondition for � being bounded asa fun
tion of �� for a hereditary 
lass of hypergraphs.) This is not the 
asefor being of �nite type. The 
lass of examples �[m℄n � is not of �nite type butthe 
lass of their duals is.3 The fra
tional Helly theoremFra
tional Helly properties. The fra
tional Helly theorem of Kat
hal-ski and Liu [18℄ states that if F1; F2; : : : ; Fn � Rd are 
onvex sets su
h thenumber of (d + 1)-tuples I � [n℄ with Ti2I Fi 6= ; is at least �� nd+1� then5



there exists a point 
ommon to at least �n sets Fi. Here � 2 (0; 1℄ is a pa-rameter and the theorem asserts the existen
e of a � = �(d; �) > 0 for all �.(We will use �(d; �) to denote the best possible � for whi
h the theoremholds.) Kat
halski and Liu proved �rst that �(d; �) � �=(d + 1) and alsopresented a better bound whi
h shows that � ! 1 when � ! 1. Kalai [16℄and E
kho� [10℄ proved that �(d; �) = 1� (1� �)1=(d+1).Let G be a (�nite or in�nite) family of sets. We write that G satis�esFH(k; �; �) if for every F1; F2; : : : ; Fn 2 G su
h the number of k-tuples I �[n℄ with Ti2I Fi 6= ; is at least ��nk�, there exists a point 
ommon to at leastb�n
 of the Fi. We say that G has fra
tional Helly number k if for every� 2 (0; 1) there exists � = �(�) > 0 su
h that FH(k; �; �(�)) holds. If k isnot important we speak of the fra
tional Helly property.1It may happen that we 
annot �nd a � > 0 for all � > 0 but there existsome � and � > 0 with FH(k; �; �). Then we speak of the weak fra
tionalHelly property. The weakest among su
h properties is with � = 1 and some� > 0. In parti
ular, the Helly property implies FH(k; 1; 1).In the �rst part of their proof of the (p; q) theorem for 
onvex sets, Alonand Kleitman showed, using the fra
tional Helly theorem, that �� is boundedfor every family of 
onvex sets with the (p; d + 1)-property. The proof is asimple double 
ounting plus the linear-programming duality and it worksun
hanged in the abstra
t setting, thus showing that if F has fra
tionalHelly number d + 1 then ��(F) is bounded by a fun
tion of �d(F); this ispart (i) of the following theorem. An additional observation employing theweak fra
tional Helly property is expressed in part (ii).Theorem 8 (i) For every d and p there exists an � > 0 su
h that thefollowing holds. For any �nite family F satisfying FH(d+1; �; �) with some� > 0 and having the (p; d+1) property (i.e. �d(F) < p), we have ��(F) � T ,where T depends only on p, d, and �.(ii) For every d, p, k � d+1, and �0 > 0 there exists an � > 0 su
h thatthe following holds. For any �nite family F satisfying the weak fra
tionalHelly property FH(d+1; 1; �0), the fra
tional Helly property FH(k; �; �) withsome � > 0, and the (p; d+1) property, we have ��(F) � T , where T dependsonly on p; d; k; �0, and �.We give the proof in Se
tion 4. In Se
tion 7, we present an exampleshowing that the (3; 2) property and the 2-Helly property together are not1Stri
tly speaking, this de�nition only makes sense for in�nite families G, sin
e for a�nite family some �(�) depending on jGj always exists. When dealing with �nite families,we really mean that �(�) should be independent of the size of the family.6



suÆ
ient to bound ��(F). At present we do not know whether the (3; 2)property plus FH(2; �; �) for some � < 1 and � > 0 are suÆ
ient or not.Fra
tional Helly and weak �-nets. In the se
ond main part of theproof of the (p; q) theorem for 
onvex sets, the existen
e of weak �-nets for
onvex sets is used. This important notion was introdu
ed by Haussler andWelzl [14℄ and further studied in several papers, su
h as [1℄, [7℄.As far as we know, at least three di�erent proofs of existen
e of weak�-nets for 
onvex sets are known. Two are given in Alon et al [1℄: a dire
tgeometri
 argument, leading to a weak �-net of size O((1=�)�2d�1 ) for every�xed d, and an argument based on a sele
tion lemma of B�ar�any [5℄, givinga weak �-net of size O((1=�)d+1) for d �xed. Our subsequent generalizationis based on this latter proof. In [1℄, the bound is still slightly improved, byapplying a more sophisti
ated sele
tion lemma, and the 
urrent best bound,due to Chazelle et al. [7℄, is 
lose to O((1=�)d) and is obtained by anothergeometri
 argument. Finding the 
orre
t estimates for weak �-nets is, inour opinion, one of the truly important open problems in 
ombinatorialgeometry.The original argument about the existen
e of weak �-nets involving B�ar�any'ssele
tion lemma relies on several theorems in 
onvexity, su
h as Tverberg'stheorem and the 
olorful Carath�eodory theorem. Here we show that a sim-ilar 
on
lusion 
an be derived from a fra
tional Helly property, but we haveto assume it not only for F but also for all interse
tions of the sets of F .Theorem 9 For every integer d � 1 there exists � > 0 su
h that the follow-ing holds. Let F be a �nite family of sets and let F\ = fTH : H � Fg bethe family of all interse
tions of the sets in F . If F\ satis�es FH(d+1; �; �)with some � > 0 then we have�(F) � 
1 � ��(F)
2 ;where 
1 and 
2 depend only on d and �.Our proof yields mu
h worse estimates for 
1 and 
2 than those knownfor 
onvex sets; in fa
t, our exponent 
2 is exponential in d. On the otherhand, in the strongest example we are aware of with the fra
tional Hellyproperty for interse
tions, even in the abstra
t setting, � is only slightlysuperlinear in ��. A lower bound 
on
erning 
onvex sets [21℄ shows that
1 � e
(pd) is needed in the worst 
ase.7



4 The (p; q) Property and � �Here we prove Theorem 8. The statement (i) 
an be proved exa
tly as inAlon and Kleitman [2℄; for the reader's 
onvenien
e, we outline the argumenthere, a little simpli�ed but leading to slightly worse quantitative bounds.As we already mentioned it follows from linear programming dualitythat for every �nite hypergraph F we have ��(F) = ��(F). Re
all thatthe fra
tional mat
hing number, ��(F) is the maximum of PF2F g(F ) overall fun
tions g:F ! [0; 1℄ satisfying PF2F :x2F g(F ) � 1 for all x 2 X.Moreover, the maximum is attained by a rational-valued fun
tion g, forwhi
h we 
an write g(F ) = nFD for integers nF and D. Let fF1; F2; : : : ; Fngbe the multiset 
ontaining nF 
opies of ea
h F 2 F (so n =PF2F nF ).Suppose that �d(F) is bounded, i.e. F has a (p; d + 1) property. Thenthe multiset fF1; : : : ; Fng 
ertainly has the (p0; d + 1) property with p0 =(p� 1)d+1 sin
e among any p0 of its sets, the same set o

urs (d+1)-timesor there are at least p distin
t sets.For brevity, 
all an index set I � [n℄ good if Ti2I Fi 6= ; (i.e. I is inthe nerve of F). So for every I 2 �[n℄p0 � there is at least one good (d + 1)-tuple J � I, and hen
e the total number of good J 2 � [n℄d+1� is at least�np0�=�n�d�1p0�d�1� � �� nd+1� for a suitable � = �(p; d).By FH(d + 1; �; �), there is a point x in at least �n of the Fi. On theother hand, sin
e the multiset fF1; : : : ; Fng was de�ned using a fra
tionalmat
hing, no point is in more than n��(F) of the sets Fi, and we 
on
ludethat ��(F) = ��(F) � 1� .In part (ii), we assume that F satis�es FH(d+ 1; 1; �0) and FH(k; �; �)with a suitable � > 0 and some � > 0, and has the (p; d + 1) property.We de�ne F1; : : : ; Fn using an optimal fra
tional mat
hing as above, and itsuÆ
es to show that there is a point 
ommon to at least �n of the Fi.We want to show that there are at least ��nk� good index sets K 2 �[n℄k �,with � = �(p; d; k; �0) > 0; then we 
an use FH(k; �; �).To this end, let m = m(p; d; k; �0) be a suÆ
iently large integer (inde-pendent of n). It suÆ
es to prove that ea
h index set M 2 �[n℄m� 
ontains atleast one good k-element K, sin
e then the total number of good k-tuplesis at least �nm�=�n�km�k� � ��nk�. To exhibit a good k-tuple in a given m-tupleM , we use Ramsey's theorem.For ea
h I 2 �Mp0 �, we 
hoose a good (d + 1)-element J = J(I) � I(here we use the (p0; d + 1) property, where p0 is as in the proof of (i)).This J(I) has one of � p0d+1� types, where the type is given by the relative8



positions of the elements of J(I) among the elements of I (in the naturalordering of I). By Ramsey's theorem, if m is suÆ
iently large, there existsan r-element N �M , with r still large, su
h that all I 2 �Np0� have the sametype. Let i1 < i2 < : : : < ir be the elements of N in the in
reasing order, lets = br=p0
, and let L = fip0 ; i2p0 ; : : : ; isp0g. Now all the J 2 � Ld+1� are good,sin
e for ea
h of them we 
an �nd an I 2 �Np0� with J(I) = J .By FH(d+1; 1; �0) applied to fFi : i 2 Lg, there are at least �0s amongthe sets indexed by L sharing a 
ommon point. If �0s � k, whi
h 
an beguaranteed by setting m suÆ
iently large, we have obtained a good k-tuple
ontained in M . This proves part (ii) of Theorem 8. 25 The Fra
tional Helly Property and Pier
ingIn this se
tion, we prove Theorem 9. Let 
: 2X ! 2X denote the 
losureoperation indu
ed by the 
onsidered family F given by 
(A) = TfF : A �F 2 Fg, where 
(A) = X if no F 2 F 
ontains A (
(A) is an abstra
tanalogue of the 
onvex hull). For a multiset fx1; : : : ; xmg � X and I � [m℄,put GI = 
(fxi : i 2 Ig).Proposition 10 (A Tverberg-type theorem) Let F be a �nite familyand suppose that F\ satis�es FH(d + 1; 14 ; �) for some � > 0. Then thereexist integers a = a(d; �) and b = b(d; �) su
h that for every multisetfx1; : : : ; xabg � X there are d + 1 pairwise disjoint subsets I1; : : : ; Id+1 2�[ab℄a � with d+1\i=1GIi 6= ;: (1)That is, a suÆ
iently large (multi)set 
an be partitioned into d + 1 partswhose 
losures have a 
ommon point.Let us remark that � = 14 is used just for 
on
reteness and it 
an berepla
ed by any other 
onstant stri
tly below 1, if a and b are 
hosen suitably.Proof. Let b = dd=�e + 1 and a = bd. Let m = �aba � and 
onsider themultiset S = fGI : I 2 �[ab℄a �g; its sets are members of F\. We want toapply fra
tional Helly to S and so we �rst need to show that at least 14 ofthe (d+ 1)-tuples of sets in S interse
t.We 
he
k that, in fa
t, at least 14 of all (d + 1)-tuples (I1; I2; : : : ; Id+1)of pairwise distin
t a-element index sets Ii � [ab℄ satisfy Td+1i=1 Ii 6= ;. Intu-itively, this is be
ause d + 1 independent random a-element subsets of [ab℄9



are very likely to be all distin
t and to have a point in 
ommon, sin
e a isvery large 
ompared to b. Quantitatively, the relative fra
tion of interse
ting(d+ 1)-tuples of distin
t a-element subsets of [ab℄ isjf(I1; : : : ; Id+1) 2 �[ab℄a �d+1 : Ii 6= Ij for i 6= j and Td+1i=1 Ii 6= ;gjm(m� 1) � � � (m� d)� jf(I1; : : : ; Id+1) 2 �[ab℄a �d+1 : Td+1i=1 Ii 6= ;gjm(m� 1) � � � (m� d)� md+1 �m(m� 1) � � � (m� d)m(m� 1) � � � (m� d)� ab�ab�1a�1 �d+1 � �ab2 ��ab�2a�2 �d+1md+1 � 14 � abd � a22b2d � 14 = 14 :By FH(d + 1; 14 ; �) applied to S, there exists an H � �[ab℄a � su
h thatTI2HGI 6= ; and jHj � b�m
 > db aba !: (2)Thus H 
ontains a signi�
ant fra
tion of all possible a-tuples of indi
es, andsu
h a large system has to 
ontain d + 1 disjoint a-tuples. With our pa-rameters, we 
an use a result of Frankl (Theorem 10.3 in [11℄), a

ording towhi
h (2) implies the existen
e of pairwise disjoint I1; : : : ; Id+1 2 H (but itis easy to derive a similar result with somewhat worse quantitative param-eters). 2B�ar�any [5℄ proved the following sele
tion lemma: if P � Rd is an n-point (multi)set, then there exists a point x 
ontained in the 
onvex hullsof at least 
d� nd+1� subsets of P of 
ardinality d + 1, where 
d > 0 dependson d but not on n. Here we derive an abstra
t analogue (repla
ing the
olored Carath�eodory theorem in B�ar�any's argument by the fra
tional Hellyproperty).Proposition 11 (A sele
tion lemma) Let F be a �nite family su
h thatF\ satis�es FH(d + 1; �; �) with a suitable � = �(d) > 0 and some � > 0.Then for any multiset fx1; : : : ; xng � X there exists a family H � �[n℄a � su
hthat jHj � ��na� and \I2HGI 6= ;;where a = a(d; �) is as in Proposition 10 and � > 0 depends only on dand �. 10



Proof. Let S = fGI : I 2 �[n℄a �g; we want to show that a signi�
ant fra
tionof the (d+ 1)-tuples in S interse
t, in order to apply fra
tional Helly.LetT = nfI1; : : : ; Id+1g : Ii 2 �[n℄a �; Ii \ Ij = ; for i 6= j and d+1\i=1 GIi 6= ;o:Proposition 10 implies that for ea
h subset J 2 �[n℄ab� there exist pairwisedisjoint I1; : : : ; Id+1 2 �Ja� su
h that Td+1i=1 GIi 6= ;, and so ea
h J 
ontributesa (d + 1)-tuple in T . On the other hand, for any given fI1; : : : ; Id+1g 2 T ,the a(d + 1) indi
es in I1 [ � � � [ Id+1 are 
ontained in �n�a(d+1)ab�a(d+1)� of theab-tuples J . ThereforejT j � � nab�� n�a(d+1)ab�a(d+1)� � � nab�a(d+1) � 1(ab)a(d+1) �na�d+ 1!and Proposition 11 follows by FH(d+ 1; �; �) applied to S. 2Proof of Theorem 9. The value of ��(F), being the minimum of alinear fun
tion with rational 
oeÆ
ients over a rational polytope, is attainedfor some rational-valued f :X ! [0; 1℄, whi
h is nonzero only at �nitelymany points, say x1; : : : ; xr. We write f(xi) = niD with integers ni andD, and we let Y = fy1; : : : ; yng be the multiset obtained by taking ea
hxi with multipli
ity ni. We have jY j = n = Pri=1 ni = ��(F) � D andjY \ F j � D = n=��(F) for all F 2 F .From now on, we exa
tly follow an argument in [1℄ for the existen
e of aweak �-net. Namely, we 
hoose a transversal Z for F by the following greedyalgorithm. Initially, Z is empty. Having already put z1; : : : ; zk into Z, we
he
k if there is a D-element subset J � [n℄ su
h that GJ = 
(fyi : i 2Jg) 
ontains none of z1; : : : ; zk. If there is no su
h J then the 
urrent Zinterse
ts the 
losures of all D-element subsets of Y and, in parti
ular, it isa transversal for F . If su
h a J exists, we apply Proposition 11 to the setfyi : i 2 Jg. This yields a point, whi
h we denote by zk+1, that is 
ontainedin GI for at least ��Da� a-tuples I � J . (We may assume D � a and thus��Da� > 0, for otherwise Y will do as a small transversal.) This �nishes thedes
ription of the algorithm.Call an a-tuple I � [n℄ alive if GI \fz1; : : : ; zkg = ; and dead otherwise.Initially, all the �na� a-tuples are alive, and adding zk+1 to Z kills at least��Da� of the a-tuples 
urrently alive. So the size of the transversal found by11



the algorithm is at most�na���Da � � 1��enD �a � ea� � ��(F)a: 26 The Fra
tional Helly Property of Leray Com-plexesNext, we show that a fra
tional Helly property, and 
onsequently a (p; q)theorem, are implied by a topologi
al 
ondition. We re
all that the nerveN(F) of a hypergraph F is the simpli
ial 
omplex on the vertex set F whosesimpli
es are all � � F su
h that TF2� F 6= ;.A simpli
ial 
omplex K is d-Leray if Hi(lk(K;�)) = 0 for all � 2 K andi � d, where Hi is the i-dimensional homology with integer 
oeÆ
ients andlk(K;�) denotes the link of � in K. Equivalently K is d-Leray i� Hi(L) = 0for any indu
ed sub
omplex L � K and i � d.A hypergraph F is d�-Leray if the nerve N(F) is d-Leray.Theorem 12 Let F be a �nite d�-Leray hypergraph and let F\ be the familyof all interse
tions of the sets of F . Then F\ has fra
tional Helly numberd + 1; more pre
isely, for all � 2 (0; 1), F satis�es FH(d + 1; �; �(�)) with�(�) = 1� (1� �)1=(d+1).The nerve of a family of subsets of Rd with the property that all non-empty interse
tions of members of the family are 
ontra
tible must be d-Leray. This follows from standard nerve theorems in algebrai
 topologywhi
h assert that the homology of the nerve of su
h a family is the same asthe homology of the union of the sets in the family. Theorem 2 thus followsfrom Theorems 8, 9 and 12. Theorems 12 and 9 imply at on
e Theorem 3.Wegner [26℄ proved that nerves of �nite families of 
onvex sets in Rdsatisfy the stronger d-
ollapsibility property. Let � be a fa
e of dimensionat most k � 1 of a simpli
ial 
omplex X whi
h is 
ontained in a uniquemaximal fa
e � of X. The operation X ! Y = X � f� : � � � � �gis 
alled an elementary k-
ollapse. X is k-
ollapsible provided there is asequen
e of elementary k-
ollapsesX = X1 ! X2 ! � � � ! Xm12



su
h that dimXm � k � 1.Sin
e an elementary k-
ollapse does not e�e
t the homology in dimen-sions at least k it follows that k-
ollapsible 
omplexes are k-Leray. Kat
hal-ski and Liu's proof for their fra
tional Helly theorem uses (impli
itly) onlyd-
ollapsibility. In fa
t, d-
ollapsibility (or rather the �rst 
ollapse step) isimpli
it in Hadwiger and Debrunner early paper on the (p; q) property [12℄.The main tool in the proof of Theorem 12 is the following 
onsequen
e ofKalai's Upper Bound Theorem for Leray 
omplexes, see [16, 17℄. Let fi(L)denote the number of i-dimensional fa
es of a simpli
ial 
omplex L.Theorem 13 (Kalai) Suppose L is d-Leray and f0(L) = m. Then fd(L) >� md+1�� �m�rd+1 � implies fd+r(L) > 0.As a 
onsequen
e we obtain that fd(L) � �� md+1� implies fb�(�)m
(L) >0 , for � = 1� (1��)1=(d+1). Note that Theorem 13 is sharp even for nervesof 
onvex sets in Rd as seen by the family whi
h 
onsists of r 
opies of Rdand m� r hyperplanes in general position.The upper bound theorem for families of 
onvex sets, namely the as-sertion of Theorem 13 for nerves of families of 
onvex sets was 
onje
turedby Perles and Kat
halski and was settled independently by Kalai and byE
kho� [10℄. Kalai's proof applied for arbitrary d-
ollapsible 
omplexes.Kalai further 
hara
terized fa
e numbers of d-
ollapsible 
omplexes whi
hwas 
onje
tured by E
kho� using the te
hnique of \algebrai
 shifting" andextended his proof to apply for all Leray 
omplexes where the 
ru
ial fa
tis that the Leray property is preserved under algebrai
 shifting.This fa
t also follows from a re
ent mu
h more general result of Aramovaand Herzog [4℄. As observed more re
ently by Kalai, d-Leray 
omplexes with
omplete (d� 1)-skeleta (and there is no loss of generality to assume this isthe 
ase) are simply Alexander-duals of Cohen-Ma
aulay 
omplexes. (TheAlexander duality is not the duality between hypergraphs 
onsidered abovebut rather it is the same as the blo
ker 
onstru
tion in 
ombinatorial op-timization. The dual of a simpli
ial 
omplex K on a vertex set V is theset of all subsets S of V su
h that V nS =2 K.) Sin
e Alexander duality
ommutes with algebrai
 shifting this observation gives an easier deriva-tion that d-Leray simpli
ial 
omplexes are preserved under shifting fromthe 
orresponding fa
t for Cohen-Ma
aulay 
omplexes. Moreover, it givesa simple derivation for the 
hara
terization of their fa
e numbers from the
orresponding 
hara
terization of f -ve
tors of Cohen-Ma
aulay simpli
ial
omplexes dis
overed by Stanley in 1975 [25℄.13



We return now to the proof of Theorem 12. To apply Theorem 13, weneed two auxiliary 
onstru
tions. Let K be a simpli
ial 
omplex on thevertex set V . For a vertex v 2 V and an integer l let Av;l(K) denote the
omplex obtained from K by splitting v into l verti
es v1; : : : ; vl: The vertexset of Av;l(K) is V 0 = V n fvg [ fvigli=1. The fa
es are all �0 � V 0 su
h thateither �0 2 K or �0 = � n fvg [ C where v 2 � 2 K and C � fv1; : : : ; vlg .Let B(K) denote the simpli
ial 
omplex whose verti
es are the non emptyfa
es of K, and f�1; : : : ; �ng 2 B(K) if Sni=1 �i 2 K.Proposition 14 If K is d-Leray then(i) Av;l(K) is d-Leray, and(ii) B(K) is d-Leray.Proof. For part (i), let L � Av;l(K) be an indu
ed sub
omplex on thevertex set V0 � V 0. The simpli
ial map that is the identity on V0nfv1; : : : ; vlgand that maps the verti
es in V0 \ fv1; : : : ; vlg (if any) to v is a homotopyequivalen
e of L onto an indu
ed sub
omplex of K, and hen
e Hi(L) = 0for i � d.As for part (ii), we �rst note that any 
omplex L is homotopy equivalentto B(L). Let � = f�1; : : : ; �pg 2 B(L) where � = Spi=1 �i 2 L, and letz = Ppi=1 �i�i 2 jB(L)j, where jKj denotes the polyhedron of a simpli
ial
omplex K. The mapping �: jB(L)j ! jLj given by�(z) = 1Ppi=1 �ij�ijXv2�� Xfi : v2�ig�i�vis the required retra
tion of B(L) onto L.Next, let � = f�1; : : : ; �pg 2 B(K), where � = Spi=1 �i 2 K. ClearlySt(B(K); �) = B(St(K;�)) = nf�1; : : : ; �qg 2 B(K) : q[j=1 �j [ � 2 Ko:Thereforelk(B(K); �) = nf�1; : : : ; �qg 2 B(K) : Sqj=1 �j [ � 2 K;f�1; : : : ; �qg \ f�1; : : : ; �pg = ;o:We 
onsider two 
ases: 14



(a) f�1; : : : ; �pg 6= 2� n f;g .Let ; 6= � � � su
h that � 62 f�1; : : : ; �pg. Then lk(B(K); �) is a 
oneon � and hen
e 
ontra
tible.(b) f�1; : : : ; �pg = 2� n f;g . Thenlk(B(K); �) = nf�1 [ 
1; : : : ; �q [ 
qg : f�1; : : : ; �qg 2 B(lk(K;�));
1; : : : ; 
q 2 2�o:Thus lk(B(K); �) is obtained from B(lk(K;�)) by repla
ing ea
h ver-tex of the latter by a (2j�j � 1)-dimensional simplex.The simpli
ial map lk(B(K); �)! B(lk(K;�)) given byf�1 [ 
1; : : : ; �q [ 
qg 7! f�1; : : : ; �qgis 
learly a retra
tion. It follows that lk(B(K); �) is homotopy equiv-alent to B(lk(K;�)) and hen
e to lk(K;�)). 2Proof of Theorem 12. By the assumption K = N(F) is d-Leray.Suppose S = fG1; : : : ; Gmg is a multiset in F\, and let �1; : : : ; �k be dis-tin
t simpli
es in K su
h that S 
onsists of mi 
opies of TF2�i F for ea
hi = 1; 2; : : : ; k, Pki=1mi = m. Then L = N(S) is an indu
ed sub
omplex ofA�1;m1 � � �A�k;mkB(K) . By Proposition 14, L is d-Leray, and hen
e Theo-rem 12 follows from Theorem 13. 27 Some examplesAn example with no weak �-net of linear sizeThe �rst issue we would like to dis
uss is the following: Given an (in�nite)hypergraph with the property that for every � > 0 and every set Y , Y admitsa weak-� net of size f(�) what kind of behavior f(�) might have.Re
all that for 
onvex sets in Rd the known upper bounds are 
lose to(1=�)d but no superlinear lower bound is known. In the most abstra
t 
aseof the problem we do not have better insight as we do not have an answereven to the following problem: 15



Problem 15 Find an example of an (in�nite) hypergraph H su
h that f(�)exists and f(�)(1=�) log(1=�) !1:The fa
t that there are su
h hypergraphs for whi
h f(�) � 
(1=�) log(1=�)follows from an example by Koml�os, Pa
h and Woeginger [19℄ for the 
aseof bounded VC-dimension. Here we present an interesting example (sim-ilar to an unpublished one found independently by Pa
h, who also raisedProblem 16 below) whi
h is also 2-Leray.We �rst 
laim, without trying to optimize the absolute 
onstants, thatfor every (large) prime power p there is a hypergraph whose verti
es are allpoints of a proje
tive plane P of order p, and whose edges, whi
h we 
allhalf lines, are subsets of the lines of P , where SL is a subset of the line L,su
h that the following two 
onditions hold:(i) jSLj > 14p(p2 + p+ 1) for every line L.(ii) No subset of less than 0:1p log p points of the plane interse
ts all halflines.To prove this 
laim let ea
h SL be a random subset of L were ea
h pointis 
hosen, randomly and independently, with probability 1=2. It is easy tosee that (i) holds almost surely (that is, with probability that tends to 1as p tends to in�nity). To see that (ii) holds almost surely �x a set T of0:1p log p points of P . It is easy to see that there are more than p2=2 lines ofP ea
h of whi
h 
ontains at most 0:2 log p points of T . For ea
h su
h line L,the probability that SL does not interse
t T is at least (1=2)0:2 log p = p�0:2and therefore the probability that T interse
ts all half lines is at most(1� p�0:2)p2=2 � e�p1:8=2:As the total number of 
hoi
es for a set T as above is only p2 + p+ 10:1p log p ! � eO(p log2 p)it follows that with high probability there is no set T of at most 0:1p log ppoints that interse
ts all half lines, establishing the 
laim.Consider, now, the disjoint union of all the hypergraphs above (for alllarge prime powers p). The VC dimension of this hypergraph is 
learly 2. IfX is the set of all points of the proje
tive plane of order p and � = 1=(4p),then the 
orresponding weak �-net has to interse
t all half-lines of the planeand by the 
laim above its size has to ex
eed 0:1p log p.16



To see that the nerve of this family is 2-Leray note that whenever wehave a pure sub
omplex of the nerve of dimension at least 2 then the setof its verti
es forms a simplex. No homology beyond dimension 2 is thuspossible. In fa
t, it is not diÆ
ult to 
he
k that this example is 2-
ollapsibleas well.For this example, if we 
lose the set of edges under interse
tion f(�) stillexists (as we have only added singletons). This shows that even if we requirethat the hypergraph is 
losed under interse
tion the bound 
an be (slightly)superlinear.Problem 16 Can this example be realized by 
onvex sets in R2 or perhapsin R4 or R100? Can the simpli
ial 
omplex spanned by the lines in a �niteproje
tive plane be realized as the nerve of a family of 
onvex sets in R2 orR100?Problem 17 Is there a fun
tion d0 = d0(d) so that every d-
ollapsible 
om-plex (or even every d-Leray 
omplex) 
an be realized as the nerve of a familyof 
onvex sets in Rd0 ?In the following 
lass of examples � � (��)� for � > 1, but we do notknow if they are of �nite type. Consider the 3n leaves of the ternary tree ofdepth n. Given a set S of leaves we will de�ne re
ursively a set of verti
es�S � S of the ternary tree as follows: An internal vertex belongs to �S if atleast two of its sons belong to S. Our hypergraph will have as verti
es theleaves of the tree and as edges those subsets S of leaves su
h that the rootof the ternary tree belongs to �S. In this example �� = (3=2)n and � = 2n.We do not know if this 
lass of hypergraphs is of �nite type.A hypergraph with Helly number 2 and yet not of �nite typeNext we dis
uss a 
onstru
tion, whi
h starts with a graph G and yields ahypergraph F su
h that F\ has Helly number 2. By 
hoosing various G, weobtain examples showing that some of the assumptions in our results 
annotbe removed or weakened.Let G = (V;E) be a graph, and let � denote the system of all nonemptyindependent sets in G. We de�ne a family F with � as the ground set andwith the sets Fv = fA 2 � : v 2 Ag, v 2 V . The following properties areeasy to 
he
k:� F , as well as F\, have Helly number 2, i.e. satisfy FH(2; 1; 1).17



� If G 
ontains no Kp as a subgraph then F has the (p; 2) property.� �(F) = �(G) (the usual 
hromati
 number) and ��(F) = �f (F) (thefra
tional 
hromati
 number).Let us remark that this 
onstru
tion 
an be made \geometri
": thereexists a system of axis-parallel boxes in some Rm with the same nerve as F .This is be
ause every �nite graph G 
an be represented as the interse
tiongraph of axis-parallel boxes in a suÆ
iently high dimension.First we give a result 
omplementary to Theorem 8.Proposition 18 There exist hypergraphs F with Helly number 2 and with�(F) � 2 (i.e. with the (3; 2) property) for whi
h ��(F) is arbitrarily large.Proof. In the above 
onstru
tion, it suÆ
es to 
hoose a triangle-free graphG with arbitrarily large fra
tional 
hromati
 number. For the latter, it suf-�
es that jV (G)j=�(G) is arbitrarily large, where �(G) is the independen
enumber. There are many 
onstru
tions of su
h graphs, both probabilisti
and expli
it; for example, the well-known probabilisti
 
onstru
tion of Erd}osof graphs with large girth and large 
hromati
 number works here. 2The next example is relevant to Theorem 9.Proposition 19 There exist hypergraphs F satisfying the (3; 2) propertyand the fra
tional Helly property FH(2; 0; 13) (i.e. among any n sets, atleast n3 have a 
ommon point), su
h that F\ has Helly number 2, and with��(F) � 3 and �(F) arbitrarily large.Proof. This time we let the starting graph G in the 
onstru
tion be aKneser graph with the vertex set �[m℄k � and with two k-tuples 
onne
ted byan edge i� they are disjoint. It is well-known that the 
hromati
 number ism � 2k + 2 [20℄, and if we set m = 3k � 1, it is easy to see that this G istriangle-free and �f < 3. Finally, to verify FH(2; 0; 13) for the 
onstru
ted setsystem, we need to 
he
k that for every multiset fS1; : : : ; Sng, Si 2 �[3k�1℄k �,there is a subsystem of at least n3 k-tuples with a 
ommon interse
tion.This is be
ause the sum of sizes of the Si is nk > n m3 and so some point is
ontained in at least n3 of the Si.Note that in fa
t as ��(F) � 3, for every multiset of its edges there is apoint in at least a 1=3 of them, that is, the property FH(2; 0; 1=��) alwaysholds. 218



8 Pier
ing Convex Latti
e SetsA 
onvex latti
e set is any set of the form C \Zd, where C � Rd is a 
onvexset and Zd denotes the d-dimensional integer latti
e. Doignon [9℄ provedthat 
onvex latti
e sets in Zd have Helly number 2d. For a simpler proof see[23℄.Let p � q � 2d. The validity of the (p; q) theorem for �nite families of
onvex latti
e sets in Zd (Theorem 4) is a 
onsequen
e of Theorems 8 and13 and the followingLemma 20 The nerve of a �nite family of 
onvex latti
e sets in Zd is 2d�1
ollapsible.Proof. We follow the method of Wegner [26℄ and Kat
halski and Liu [18℄.Let � be a linear ordering on Zd su
h that all initial segments are latti
e
onvex sets; for example, we 
an 
hoose a ve
tor a 2 Rd with no rationaldependen
e among the 
oordinates and de�ne x � y i� ha; xi � ha; yi.Write k = 2d � 1 and let F = fF1; : : : ; Fng be a family of 
onvex latti
esets in Zd. By interse
ting the sets with a large box, we preserve their nervebut make them bounded and thus �nite. For I � [n℄ let FI = \i2IFi andlet N(F) = fI � [n℄ : FI 6= ;g denote the nerve of F . For I 2 N(F) letxI = minFI . Choose a subset J of minimal 
ardinality su
h that xJ =maxfxI : I 2 N(F)g. We 
laim that jJ j � k. Suppose to the 
ontrarythat jJ j � k + 1 = 2d. Let H = fx 2 Zd : x < xJg then the familyG = fFj : j 2 Jg [ fHg has empty interse
tion, and so some subfamily of2d sets has empty interse
tion by the Helly property. Sin
e H has to be oneof these 2d sets, it follows that there exists a J0 � J , jJ0j = 2d� 1 su
h thatxJ = xJ0 , a 
ontradi
tion. Clearly J is 
ontained in a unique maximal fa
eof N , namely J 0 = fi : xJ 2 Fig hen
e N ! N 0 = N � fI : J � I � J 0g isa legal k-
ollapsing step. To 
omplete the proof we note that the resultingN 0 is again the nerve of the family of 
onvex latti
e sets, namely fFj \H :j 2 Jg [ fFi : i 62 Jg 2Let us remark that in this 
ase we do not really need to invoke Theorem8 and, in fa
t, 
an get 
onsiderably better quantitative bounds by a moredire
t argument. Our quantitative bounds in the abstra
t setting are largemainly be
ause the \Tverberg number" ab in Proposition 10 is large, but for
onvex latti
e sets, the Tverberg number 
an be bounded in a mu
h betterway. For the Radon number (i.e., the number that ensures a partition intotwo disjoint parts with interse
ting 
losures), the known bound is d(2d�1)+319



[24℄; see also Onn [22℄, and for an r-partition, an analogous argument ofJamison [15℄ yields the bound of (r � 1)(d + 1)2d + 1.We 
onje
tured that 
onvex latti
e sets in Zd a
tually have fra
tionalHelly number d+ 1 (although the bound 2d for the Helly number is tight).As was mentioned in the introdu
tion, this 
onje
ture was re
ently provedin [6℄.Hausel [13℄ proved a Gallai-type theorem for planar 
onvex latti
e sets:if F is a family of 
onvex latti
e sets in Z2 su
h that every 3 sets interse
t(i.e. share a latti
e point), then �(F) � 2. This implies FH(3; 1; 12), and soby Theorem 8(ii), there is a (p; 3) theorem for planar 
onvex latti
e sets.9 No Pier
ing for Transversal Lines in Spa
eA (p; d+1) theorem for hyperplane transversals for 
onvex bodies in Rd wasproved in [2℄: if C is a family of 
onvex bodies in Rd su
h that among everyp of them, some d + 1 admit a hyperplane transversal (i.e. a hyperplaneinterse
ting all of them) then all bodies of C 
an be interse
ted by at mostC = C(d; p) hyperplanes. It is natural to ask whether a similar result 
ouldbe true for pier
ing 
onvex bodies in Rd by j-
ats with 1 � j � d � 2.Proposition 6 formulated for the simplest 
ase d = 3 and k = 1, shows thateven quite weak results of this type 
annot be expe
ted to hold. Proposition6 follows from the next lemma by 
hoosing a suitable �nite set system.Lemma 21 Let fS1; S2; : : : ; Smg be a system of subsets of [n℄. There are
onvex sets C1; C2; : : : ; Cm in R3 su
h that ea
h family Ci = fCj : i 2 Sjghas a line transversal, and whenever fCj : j 2 Jg is a family possessing aline transversal, then by removing at most 3 indi
es from the index set J ,we obtain an index set J0 with Tj2J0 Sj 6= ;.Proof of Proposition 6. Choose a family fS1; S2; : : : ; Smg su
h thatevery k sets interse
t but no k+1 do; for example, set Si = fI 2 �[m℄k � : i 2 Ig.Proof of Lemma 21. The 
onstru
tion is based on the geometry of thehyperboli
 paraboloid z = xy, similar to many previous examples 
on
erninglines in R3 , su
h as an example of Aronov, Goodman, Polla
k and Wengermentioned in Wenger's survey [27℄.Let � � R3 be the surfa
e with equation z = xy. For i 2 [n℄, let `ibe the line x = in , z = iny on �. Let 0 < "1 � "2 � � � � � "m � 1 besmall numbers ("m is suÆ
iently small in terms of n and ea
h "j is mu
h20



smaller than "j+1). Let �j be the verti
al plane with equation y = jm + "jx.So �j is nearly perpendi
ular to the lines `i but it is tilted a little, and soits interse
tion with the surfa
e � is a 
onvex paraboli
 ar
 within �j, withequation z = jm x+"jx2. We let pij = `i\�j, and we set Cj = 
onvfpij : i 2Sjg. Here is an illustration (with Cj = f1; 3; 4g):

x
yz

`1 `2 `3 `4
�j

p1j p2j p3j p4jCj
Ea
h Cj is a very thin 
onvex polygon. It lies verti
ally above � and belowthe segment 
onne
ting the points p0j and pnj. It 
an be easily 
al
ulatedthat the maximum verti
al distan
e of a point of Cj from � is no larger than"j . We divide ea
h Cj into two regions: the low region 
onsists of points atverti
al distan
e at most "j=100n2 from �, and the high region is the restof Cj. Cal
ulation shows that the low region 
onsists of small triangle-likepie
es near the points pij 2 Cj , as is indi
ated in the following drawing (thelow regions are drawn bla
k):

�CjThe line `i is a transversal for the subfamily Ci, and it remains to 
he
kthe other assertion of the lemma. This is implied by the following two 
laims.Claim A. If a line � interse
ts at least two Cj in the low regions, then thesets met by � in the low regions are all met by some `i.21



Claim B. Any line � meets at most 3 of the Cj in the high regions.To prove Claim A, we note that if � interse
ts the low regions of Cj1and Cj2 near points pi1j1 and pi2j2 , respe
tively, and i1 6= i2, then � 
annotbe almost parallel to the surfa
e � and so if the "j are suÆ
iently small, nosu
h � 
an meet more than two of the Cj .To prove Claim B, we note that if we parameterize the line � by they-
oordinate, then the verti
al distan
e of a point of � from the surfa
e � isa quadrati
 polynomial p�(y). Suppose that there are 4 interse
tions withthe high regions, and let their y-
oordinates be y1 < y2 < y3 < y4. Let yk
orrespond to the interse
tion with Cjk ; then yk is very 
lose to jkm . Sin
ethe interse
tions are at high regions, we have"jk100n2 � p�(yk) � "jk : (3)We 
he
k that if the "j de
rease suÆ
iently fast, this is impossible for aquadrati
 polynomial.Namely, we show that the inequality p�(y4) � "j4=100n2 is impossible if(3) holds for k = 1; 2; 3. Let p�(y) = ay2 + by+ 
; then these 
onditions arelinear inequalities for a; b; 
. The 
oeÆ
ient ve
tor (y24 ; y4; 1) of the inequalityay24 + by4 + 
 � "2j4=100n2 
an be expressed as a linear 
ombination of theve
tors (y2k; yk; 1), k = 1; 2; 3. The 
oeÆ
ients in this linear 
ombination
an be written using Vandermonde determinants in the yk, and so they arebounded by a polynomial fun
tion of m (sin
e yk+1 � yk � 12m ). It followsthat the maximum value of p�(y4) is bounded by "j3 multiplied by a fa
torpolynomial in m. Thus, if "j4 is suÆ
iently large 
ompared to "j3 , we get a
ontradi
tion. 210 Further open problemsWe 
on
lude with a few additional open problems:Does a weak form of fra
tional Helly suÆ
e?1. Are FH(2; �; �) with some spe
i�
 � < 1 and � > 0 plus the (3; 2)property, say, suÆ
ient to bound ��(F)?2. Is FH(2; �; �) with spe
i�
 � < 1 and � > 0, assumed for F\, suÆ
ientto bound �(F) by a fun
tion of ��(F)?22



Is fra
tional Helly for distin
t sets suÆ
ient?Our proofs use fra
tional Helly when some sets are repeated. Is this reallyne
essary?In parti
ular, for fra
tional Helly number 2 we 
an state this problemin terms of the \non-interse
tion graph": suppose that a graph G is su
hthat every k-vertex subgraph with at most (1 � �)�k2� edges 
ontains anindependent set of size �(�) � k. Is this still true if we repla
e ea
h vertex ofG by an independent set (maybe with smaller �0(�))?Polytopes, Cohen-Ma
aulay 
omplexesIs � bounded by a fun
tion of �� uniformly for all polytopes, namely, forall hypergraphs whose verti
es are the verti
es of some polytope and whoseedges 
orrespond to fa
ets of the polytope ?Is � bounded by a fun
tion of �� uniformly for all Cohen-Ma
aulay 
om-plexes?A
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