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1 IntroductionLet Vn be the set of all 0-1 vectors of length n. The Hamming distance, d(u; v) of two vectors v; uin Vn is the number of coordinates in which they di�er. A binary code C of length n is a subset ofVn, and elements in C are also called code words. The minimum distance of C is the least Hammingdistance between two distinct code words. One of the main open problems in coding theory is todetermine the largest cardinality, A(n; d) of a binary code of length n and minimal distance d. Formore information on coding theory see [13, 15, 14].Our main concern is with the case where d is proportional to n. When n tends to in�nity andd=n tends to � < 1=2, then A(n; d) is exponential in n. The determination of the basis for thisexponential function is a di�cult question of fundamental importance for coding theory.We need some notation now: The rate R(C) of a code C is R(C) = log(jCj)n . (Here and elsewherein the paper log x stands for log2 x.) Let R(n; d) = logA(n; d) �n�1 be the maximum rate of a codeof length n and minimal distance d. Next, for every real number 0 � � � 1 letR(�) = lim supn!1 R(n; dn);where dn = �n(1 + o(1)). (Here and elsewhere in the paper all o(1) terms are taken for n ! 1.)As usual, the entropy function is H(x) = �x log x� (1� x) log(1� x).The best known lower bound for R(�) goes back to Gilbert [8]R(�) � 1�H(�): (1)Gilbert's proof of this bound is simply to "grow" a code, by always adding new code words subjectonly to the constraint that no distances smaller than �n occur. Despite its extreme simplicity, thisargument has never been improved, and some researchers believe that no asymptotic improvementis possible. Thus, one of the principal problems of coding theory isProblem 1 Is it true that R(�) = 1�H(�)?The best known upper bound on R(�) for binary codes was achieved by McEliece, Rodemich,Rumsey and Welch (henceforth MRRW), [12] using Delsarte's linear programming method (seebelow). They showed: 1



R(�) � �(�) = H(1=2 �q�(1 � �)) (2)Using more general inequalities by Delsarte for constant-weight codes the same authors provedan even stronger upper bound for R(�), which applies for � < 0:273, see [12].The number of code words at distance i from a code word w is denoted Gi(w) and Gi(= Gi(C))is the average of Gi(w) over all w in C. For 0 � s � 1 we write gs(= gs(C)) = n�1 log(G[sn](C)).We also de�ne Rs(�) = lim supn!1 gzn(C);where zn = (s+o(1)) �n and the supremum is taken over all codes of length n and minimal distancedn = (� + o(1)) � n.It is of considerable interest to study the possible distance distributions of codes, and our paperis a contribution to this area. Let us remark that if in the proof of Gilbert bound one selects thenext codeword at random, while maintaining a minimal distance of � �n, then the resulting code Cachieves the Gilbert bound and almost surely satis�es gs(C) = H(s)�H(�)+o(1), for every s > �,see e.g. [7]. The same distance distribution is obtained (almost surely) if one selects at random2n=(3P[�n]�1i=1 �ni�) vectors in Vn and deletes all pairs of vectors of distance < [�n]. No family of codesis known, which meets the Gilbert bound and has asymptotically a di�erent distance distribution.Our main result is that if C is a code of length n and gs(C) � H(s)�H(�) + o(1) for every sin a certain neighborhood [�; u(�)) of �, then R(C) � 1�H(�) + o(1).In other words, a family of codes, whose cardinalities exponentially exceed the Gilbert lowerbound must have \many" pairs of codewords whose distance is close to the minimum. Speci�cally,the distance distribution of such codes must exceed those of the \random" Gilbert code in a certainneighborhood of �n.The neighborhood of the minimal distance is given by the following function. De�neu1(�) = 2� � 2�2 (3)u2(�) = ��1(1�H(�)): (4)u(�) = min(u1(�); u2(�)): (5)2



The functions u1; u2; u are tabulated in Table 1. u1(x) is smaller than u2(x) For x < 0:082::.Theorem 1.1 Let C be a binary code of length n and minimal distance �n, where 1=2 > � > 0.Then, R(C) � 1�H(�) + supfgs(C)� (H(s)�H(�)) : � � s < u(�)g + o(1)Corollary 1.2 R(�)� (1�H(�)) � supfRs(�) � (H(s)�H(�)) : � � s < u(�)g:In particular,Corollary 1.3 If Rs(�) � (H(s)�H(�)) for every s, � � s < u(s), then R(�) = 1�H(�). Namely,Gilbert's bound is tight for that �.Thus, in order to prove that R(0:01) = 1 �H(0:01) it would su�ce to prove that Rs(0:01) �H(s) � H(0:01) for s < 0:0198. The equality R(0:3) � 1 � H(0:3) would follow from Rs(0:3) =H(s)�H(0:3) for s < 0:375.Note that Theorem 1.1 sharpens the MRRW bound (2) which says:� If gs(C) = 0 for every s < �, then R(C) � �(�) + o(1).Theorem 1.1 yields the same conclusion from weaker assumptions: Consider a code C of lengthn and minimal distance �n. De�ne � = u2(�) whence 1 � H(�) = �(�). Apply Theorem 1.1with � instead of �. The maximum is taken over the interval [�; u(�)) � [�; u2(�)) = [�; �). Ifgs(C) � (H(s)�H(�)) � 0 throughout this interval, the conclusion is R(C) � 1 �H(�) + o(1) =�(�) + o(1). So indeed the conclusion of MRRW is obtained from weaker assumptions:Theorem 1.4 Let C be a code of length n and let � = u2(�) be real. If gs(C) = 0 for s < � andgs(C) � H(s)�H(�) + o(1) for � � s < � then R(C) � �(�) + o(1).The proof of Theorem 1.1 consists of two separate arguments, involving the functions u1(�)and u2(�) respectively. The proof for u1(�) is based on a simple double counting argument, and isgiven in Section 2. The proof for u2(�) is based on a variant of the linear programming method3



as applied in the proof of (2) and on some asymptotic analysis of Krawtchouk polynomials. Thisis done in Sections 3 and 4. Both proofs give, in fact, a slightly stronger statement, namely, thatR(C) � 1 �H(�) + o(1) already follows if gs(C) � H(s) �H(�) + w�(s) + o(1) for every s in theinterval [�; u(�)), where w�(s) is a certain nonnegative decreasing function of s. The actual functionw� as obtained in the two proofs is given in Sections 2 and 5 respectively. (The asymptotic analysisof Krawtchouk polynomials in Section 5 may be of independent interest.)Both arguments described here apply to other types of codes and give analogous results forconstant weight codes, for codes over larger alphabets and for spherical codes. These matters willbe pursued in a subsequent paper.In Section 6 we discuss possible ways to get upper bounds on the individual G0is. We suggest amethod to derive such bounds using a hypercontractive inequality of Beckner. (This inequality was�rst applied in extremal combinatorial problems by Kahn, Kalai and Linial [9, 10, 3].) Althoughcurrently the consequences of this method for codes are inferior to known results we feel that itmay be found useful.What remains a mystery is the behavior of the distance distribution of codes near the minimum.We conjecture, for example, that R�(�) = 0 for every �. Several open problems on the behavior ofbinary and spherical codes near the minimal distance are discussed in the �nal Section 7.2 An averaging argumentProposition 2.1 For every binary code C of length n and every s > 0R(C)� (1�H(s)) � maxfgt(C)� (H(t)�H(s))� ws(t) : 0 � t � 2sg+ o(1): (6)where ws(t) = H(s)� [sH( t2s) + (1� s)H( t2(1�s) )] is always nonnegative.Proof: Let Sa(z) be the Hamming sphere with radius a centered at z. By Cauchy-Schwartz:jCj na! = Xz2Vn jSa(z) \ Cj � s2nXz jSa(z) \ Cj2 = s2n Xx1;x22C jSa(x1) \ Sa(x2)j:If dist(x1; x2) = b, then jSa(x1) \ Sa(x2)j = � bb=2�� n�ba�b=2�. (In particular, b is even, or else the set isempty). There are jCj �Gb(C) pairs of codewords (x1; x2) at distance b, and the inequality simpli�es4



to: jCj na!2 � 2nXb  bb=2! n� ba� b=2! �Gb(C):Whence, jCj na!2 � 2n � n �maxb  bb=2! n� ba� b=2! �Gb(C):It is easily veri�ed that � bb=2�� n�ba�b=2� = �na�� ab=2��n�ab=2 �=�nb�, sojCj na!2�n � n �maxb Gb(C)�na��nb� � ab=2��n�ab=2 ��na� :Taking logarithms and dividing by n, the proposition follows. To see that ws � 0, observe thatPj �aj��n�aj � = �na�, so � ab=2��n�ab=2 � � �na�. Again the conclusion follows by taking logarithms anddividing by n. Equality ws(t) = 0 holds for t = 2s(1� s) and only there.We now strengthen Proposition 2.1, in that we replace the interval s � t � 2s on whichthe maximum is taken, by a sub-interval s � t � u1(s). Recall Markov's inequality: if X is anonnegative random variable, then Pr(X � c � E(X)) � 1 � 1c , for every c > 1. Our probabilityspace consists of all triples fx; y; zg with z 2 Vn, x; y 2 C, and d(x; z) = d(y; z) = a. The randomvariable X equals d(x; y) on this triple. In particular, as we saw,Pr(X = b) = � bb=2�� n�ba�b=2� �Gb(C)Pj � jj=2�� n�ja�j=2� �Gj(C)We claim that E(X) � 2a � 2a2=n. In fact, this inequality holds even conditional on any �xedz 2 Vn. Having �xed z, all relevant code words form (a translation by z of) a code of constantweight a and we need the following easy fact:Proposition 2.2 Let � be a code of length n and constant weight a. Then the average distance oftwo codewords in � is at most 2a� 2a2=n.Proof: Let pi be the fraction of code words w in � with wi = 1, then P pi = a. Therefore, tworandomly chosen code words in � di�er in their i-th coordinate with probability 2pi(1�pi). It followsthat the expected Hamming distance between two randomly chosen code words is 2P pi(1� pi) �2a� 2a2=n, (since P pi = a). 2 5



Now X takes only integer values, and it is easy to observe that there is no integer between2a � 2a2=n and (1 + 1n2 )(2a � 2a2=n), so Pr(X � (1 + 1n2 )(2a � 2a2=n)) = Pr(X � 2a � 2a2=n).Apply Markov's inequality with c = 1 + 1n2 to conclude:Xj  jj=2! n� ja� j=2! �Gj(C) � (n2 + 1) Xj�2a�2a2=n jj=2! n� ja� j=2! �Gj(C):Substituting s = � in Proposition 2.1 in its strong form we getTheorem 2.3 For C a binary code of length n, and minimal distance (� + o(1))n,R(C) � 1�H(�) + maxfgs � (H(s)�H(�) + w�(s)) : � � s � u1(�)g + o(1)):Remark: In order to replace the maximum over the interval [�; u1(�)] by the supremum over[�; u1(�)), apply Theorem 2.3 for a sequence �m % �.3 MacWilliams-Delsartes relationsIn 1972 Delsarte [4, 5] found (as part of a much more general theory of association schemes) asystem of linear inequalities satis�ed by the distance distribution of every binary code. For linearcodes Delsarte's inequalities reduce to identities which go back to MacWilliams.Delsarte's linear programming method calls for deriving an upper bound on the size of thecode, by maximizing the sum of the Gi's (which is the size of the code) subject to his system ofinequalities.The Krawtchouk polynomials K(n)k are de�ned as follows:K(n)k (x) =X(�1)j xj! n� xk � j!: (7)Whenever the value of n is clear from the context, we omit it and write Kk(x) for K(n)k (x).We identify 0-1 vectors of length n with subsets of [n] = f1; 2; � � � ; ng in the standard way. Letf : Vn ! R be a function and consider its Walsh-Fourier expansionf =Xff̂(S)uS : S � [n]g; (8)6



where, uS is the function de�ned by uS(T ) = (�1)jS\T j. Note that if Fi =Pff(S) : jSj = ig thenXff̂(S) : jSj = kg = 2n nXi=0Kk(i)Fi; (9)where Kk(x) is the k � th Krawtchouk polynomial.In the context of harmonic analysis, it is convenient to view Vn as a probability space, and sogiven a function f : Vn ! R, its p-th norm is de�ned as kfkp = (2�nPS�Vn jf(S)jp)1=p. Parseval'sidentity asserts that kfk22 =PS�Vn f̂2(S). Also, the convolution h = f � g of two functions is givenby h(S) = 2�nPT f(T )g(S4T ), where S4T is the symmetric di�erence between S and T . Recallthat ĥ = f̂ � ĝ.The relevance of convolution in our work is that if f is the characteristic function of a binarycode C, and if g = f � f , then g(Z) is 2�n times the number of pairs of codewords S; T 2 C withS 4 T = Z. We recall that for a code word w, Gi(w) is the number of code words of distance ifrom w and Gi is the average of Gi(w) over all w in C. In other words, Gi = 2njCjPfg(S) : jSj = ig.Delsarte's inequalities, which for the special case of linear codes go back to MacWilliams, can bederived as follows: Since g = f � f , it follows that ĝ(S) = f̂2(S) � 0. Together with equation (9)we obtain: nXi=0Kk(i) �Gi = 22njCjXfĝ(S) : jSj = kg = 22njCjXff̂2(S) : jSj = kg � 0: (10)The MacWilliams-Delsartes system of inequalities for binary codes of length n and minimal distanced is thus: G0 = 1 (11)Gi = 0; for i = 1; 2; : : : d� 1Gi � 0; for i = d; d+ 1 : : : nnXi=0GiKnk (i) � 0 for k = 0; 1; : : : ; nDelsarte's linear programming method is to derive an upper bound on the size of the code, bymaximizing the sum of the Gi's (which is the size of the code) subject to this system of inequalities.7



It is convenient to work with the dual linear program which has the following simple form.Theorem 3.1 For every polynomial �(x) = 1 +P�kKk(x) with �k � 0 for 1 � k � n, such that�(j) � 0 for j = d; d+ 1; � � � ; n, nXi=0Gi � �(0): (12)Remarks: 1. The optimum of this linear program equals the maximum of kfk21kfk22 over all realfunctions f on Vn such that f � f is non-negative and f � f(S) = 0 for 0 < jSj < d. The fact that fitself, being a characteristic function of a code is non-negative, and even a 0-1 function is not used.2. It was pointed out by Levenshtein that the MRRW bounds for R(�) cannot be improved byselecting a function �(x) which is non-positive for the entire interval [d; n]. (Levenshtein identi�edexplicitly the best such �(x). This led to improved bounds for A(d; n) but not for R(�).)It may still be possible to get an improvement by choosing a function � which is non-positiveon fd; d + 1; :::; ng but takes positive values elsewhere in the interval [d; n].4 A variant of the linear programming boundIn this section we discuss the e�ect of adding to the Delsarte's inequalities, upper bounds for theindividual G0is and derive our main Theorem for u2(�).Proposition 4.1 For codes C of length n and minimal distance d and for every polynomial �(x) =�0 +P�kKk(x) with �k � 0 for 1 � k � n, such that �(j) � 0 for j = m;m+ 1; � � � ; n,nXi=0Gi � (�0)�1 � "�(0) + m�1Xi=d Gi�(i)# : (13)Proof: The coe�cients �k are a feasible solution to the dual of the linear program: maxPGi underDelsarte's inequalities. This is an instance of the fact that any dual feasible solution provides anupper bound to the optimum of the primal LP. 2Now de�nek(a; b) = lim supf 1n log jKnj (x)j : j = (a+ o(1))n and x = (b+ o(1))ng: (14)8



(Note that k(a; 0) = H(a).)Let x(m)1 denote the �rst zero of the Krawtchouk polynomial K(n)m (x). It is known [12] that ifm = (s+ o(1))n for some 0 < s < 1=2, then x(m)1 = (�(s) + o(1))n where �(s) = 12 �ps(1� s):Proposition 4.2 For binary codes of length n, minimal distance �n and for every s,R(C) � maxfH(�(s)); maxfgx(C) + 2k(�(s); x) �H(�(s)) : � � x � sgg+ o(1): (15)Proof: Apply the previous proposition with a choice of �(x) much like that of MRRW, namely,�(x) = (a� x)�1(Kt(a)Kt+1(x)�Kt+1(a)Kt(x))2: (16)However, here t and a are selected as follows: t is the largest integer for which x(t)1 < sn, and a isthe (unique) point in the interval (x(t+1)1 ; x(t)1 ) for which Kt(a) = �Kt+1(a). As observed in [12],�(x) is a nonnegative combination of Krawtchouk polynomials.Now, apply the previous Proposition for m = sn. With this choice t = (�(s) + o(1))n. Asbefore, it su�ces to consider the largest term on right hand side of (13), which we proceed to do.As shown in [12], (see also [15], p.67) �0 = � 2t+1�nt�Kt(a)Kt+1(a). Therefore, �(0) ���10 = (n+1)22a(t+1) �nt�and n�1 log(�(0) ���10 ) = H(t)+o(1) = H(�(s))+o(1). Denote i = x �n and calculate the i-th termin the sum: n�1 log(Gi�(i) ���10 ) = gx(C)+ 2k(�(s); x)�H(t) + o(1). By the previous propositionnXi=1Gi � n �maxf(�0)�1 � �(0);maxf(��10 ) � �(i) �Gi : �n � i � sngg:Taking log on both sides and dividing by n we get the statement of the proposition. 2Theorem 4.3 For C a binary code of length n, and minimal distance (� + o(1))n,R(C) � 1�H(�) + maxfgs(C)� (H(s)�H(�) � �w�(s)) : � � s � u2(�)g + o(1)); (17)where �w�(x) = 2�H(x)�H(�)� 2k(�(u2(�)); x) (18)is a nonnegative function of s in the interval [�; u2(�)].9



Proof: Apply the previous proposition with s = u2(�). With this choice, H(�(s)) = 1�H(�).We get that R(C)� (1�H(�)) � maxf0; gx(C)� (H(x)�H(�))++(H(x)�H(�)) � (1�H(�)) + 2k(�(u2(�)); x) �H(�(u2(�))) : � � x � u2(�)g:We get relation (17) with�w�(x) = �[(H(x)�H(�)) � (1�H(�)) + 2k(�(u2(�)); x) �H(�(u2(�)))] =1�H(x) +H(�(u2(�))) � 2k(�(u2(�)); x);which simpli�es to relation (18). To show that �w is nonegative we needProposition 4.4 For every 0 � a; b � 1,1 +H(a)�H(b)� 2k(a; b) � 0:Proof: This follows from the following orthogonality relation of Krawtchouk polynomials (seee.g., [15]) X(K(n)k (j))2 nj! = 2n �  nk!:5 Asymptotics of Krawtchouk polynomialsIn this section we derive an explicit expression for k(a; b), hence also for �w�(s).In what follows we assume that both j and x grow linearly with n. To get the asymptoticbehavior of Krawtchouk polynomials, we recall the following identity (A.14 in [12]):(n� x)Kj(x+ 1)� (n� 2j)Kj(x) + xKj(x� 1) = 0: (19)Recall also [12] that all j zeros of Kj are in the interval[n2 � (1 + o(1))qj(n� j) ; n2 + (1 + o(1))qj(n� j)]and that the leading coe�cient in Kj is (�2)jj! . Therefore, we may writeKj(x) = 2jj! Y(xi � x)10



where xi are the roots of Kj . We'd like to compare the terms Kj(x+1)Kj(x) and Kj(x)Kj(x�1) . The aboveexpression for Kj yields:Kj(x+ 1)Kj(x� 1)K2j (x) =Y (xi � x� 1)(xi � x+ 1)(xi � x)2 = 1 +O( 1n): (20)This is because we get O(n) terms, each of which is 1 +O( 1n2 ).Therefore, if we let z := Kj(x+1)Kj(x) (whence Kj(x)Kj(x�1) = (1 + O( 1n))z), we may rewrite the basicidentity (19) as a quadratic equation:(n� x)z2 � (1 +O( 1n))(n� 2j)z + x = 0:We still have to decide which of the two roots of the quadratic to select. Because of Equation (20)the choice of the sign is uniform throughout the region where x is bounded away from n2�pj(n� j).However, (equations A.8, A.9 in [12]) Kj(1) = n� 2jn Kj(0)implies that the plus sign is the correct choice. Summing up, we already know thatKj(x+ 1)Kj(x) = (1 +O( 1n))(n� 2j) +p(n� 2j)2 � 4x(n� x)2(n� x) : (21)We also know, of course that Kj(0) = �nj� and by multiplying appropriate instances of Equation(21) we get an approximate value for Kj(x). How good is this approximation? Our only inaccuracycomes in from a product of O(n) terms each of which equals 1 +O(1=n), so we get an answer thatis correct up to a constant factor that is bounded away from zero. Our �nal goal is to obtain anexpression for 1n logKj(x), so we'll get our answer with an additive error of O(1=n), which suits usjust �ne.We get, then1n logKj(x) = H(j=n) + 1nXt�x log (n� 2j) +p(n� 2j)2 � 4t(n� t)2(n� t) !+O(1=n):By Euler-McLauren, this sum may be approximated by the appropriate integral.It follows thatk(a; b) = H(a) + Z b0 log 1� 2a+p(1� 2a)2 � 4t(1 � t))2(1� t) ! dt:11



De�ne � = �(a; b) = p(1� 2a)2 + (1� 2b)2 � 1. Integrating (using Mathematica) we obtainthat whenever �(a; b) � 0: k(a; b) = H(a) + b log(1 + �(a; b)� 2a)+ (22)0:5 log(1 + 2b(2� 2b��(a; b))=(1 + �(a; b)� 2a)) + a log((1 + �(a; b)� 2b)=(2 � 2a)):6 Beckner's hypercontractive estimatesThis section concerns some possible ways to obtain upper bounds for individual Gi's. An obviousupper bound on Gi(C) for a code C of length n and minimal distance d is the maximal size A(n; d; i),of a code of length n, constant weight i and minimal distance d. These bounds in conjunction withour main theorem cannot yield improvements for A(n; d) since a theorem by Elias (proved by aneasy averaging argument) asserts that A(n; d) � A(n; d; i) 2n(ni) . (See e.g., [12].) Upper bounds onGi(C) for codes of length n which go below A(n; d; i) may lead to improved upper bounds for R(�)via Theorem 1.1.The following inequality may be useful in establishing upper bounds for Gi(C).Theorem 6.1 (Beckner [1]) For f : f0; 1gr ! f0; 1g, de�ne T�(f) =Pff̂(S)�jSjuS : S � [r]g.Then kT�fk2 � kfk1+�2 : (23)Note that if jSj = k, then T�(1;)(S) = (1��2 )k(1+�2 )n�k. Thus when f is the characteristicfunction of a subset C of Vn, inequality (23) reads:nXi=0Gi(1 + �)n�i(1� �)i � jCj 1��1+� � 2 2�1+�n: (24)Still another form obtained by expanding the terms in (24) in powers of � isnXk=0 nXi=0GiKnk (i)�k � jCj 1��1+� � 2 2�1+�n: (25)
12



In the range of interest to us, a direct application of the Beckner inequality yields nothing useful.Application of Equation (23) for functions of the form h = f�g, where f is the characteristic functionof a code and g is the characteristic function of a certain Hamming ball, do lead to nontrivial upperbounds on the G0is. So far, all the upper bounds on individual G0is we managed to derive thisway, have been inferior to those obtained from the best known bounds for constant weight codestogether with Elias' Lemma. It is possible that by applying Beckner's or other hypercontractiveestimates to other functions related to the original codes, or by �nding sharper forms of Beckner'sinequality for characteristic functions of sets of size �n for � < 2 some progress can be made.Analogues of inequality (23) for subsets of the Johnson Scheme (constant weight codes) arenot known and are of interest. There is a vast literature on hypercontractive estimates for certainoperators on real functions on Sn, (including the direct analogue of (23), see [2]). These may yieldupper bounds for the distance distribution of spherical codes.7 Open problems on the distance distributions near the minimaldistanceIn this paper we revealed relations between the distribution of distances at the vicinity of the leastdistance and the size of the whole code. The distance distribution near the minimum remains agreat mystery. We list here several open problems on this terra incognita.We start with a few problems on the number of occurrences of the minimal distance in a codeand the analogous problem for packing of spheres.Conjecture 2 For every binary code of length n and minimal distance d, Gd is subexponential inn. In other words, for every � there is N = N(�) so that for every code of length n > N andminimal distance d, Gd � (1 + �)n.For linear codes Conjecture 2 simply readsConjecture 3 The number of codewords of minimal weight in a linear code of length n is subex-ponential in n. 13
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Table I� u1(�) u2(�)0.02 0.03920 0.049880.04 0.07680 0.086660.06 0.11280 0.118680.08 0.14720 0.147640.10 0.18000 0.174370.12 0.21120 0.199300.14 0.24080 0.222760.16 0.26880 0.244950.18 0.29520 0.266030.20 0.32000 0.286110.22 0.34320 0.305300.24 0.36480 0.323650.26 0.38480 0.341240.28 0.40320 0.358100.30 0.42000 0.374290.32 0.43520 0.389820.34 0.44880 0.404720.36 0.46080 0.419010.38 0.47120 0.432690.40 0.48000 0.445760.42 0.48720 0.458200.44 0.49280 0.469990.46 0.49680 0.48106
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