
The Inuene of Variables on Boolean Funtions(extended abstrat)Je� Kahn� Gil Kalaiy Nathan Linialz
1 IntrodutionThis paper applies methods from harmoni analysis to prove some general theorems on booleanfuntions. The result that is easiest to desribe says that \Boolean funtions always have smalldominant sets of variables." The exat de�nitions will be given shortly, but let us be morespei�: Let f be an n�variable boolean funtion taking the value zero for half of the 2nvariable assignments. Then there is a set of o(n) variables suh that almost surely the value off is undetermined as long as these variables are not assigned values. This proves some of theonjetures made in [BL℄.These new onnetions with harmoni analysis are very promising. Besides the results onboolean funtions they enable us to prove new theorems on the rapid mixing of the randomwalk on the ube, as well as new theorems in the extremal theory of �nite sets.We begin by reviewing some de�nitions from [BL℄. Let f be a boolean funtion on n vari-ables, and let S be some set of variables. The inuene of S over f, denoted by If (S) isde�ned as follows. Assign values to the variables not in S at random, that is, variables areset independently of eah other and the probability of a zero assignment is one half. Thispartial assignment may already suÆe to set the value of f . The probability that f remainsundetermined is de�ned as the inuene of S over f .For onreteness let us temporarily restrit ourselves to funtions f for whih Pr(f = 0) =1=2. (The probability spae onsists of all binary n�strings with uniform distribution.) It wasobserved in [BL℄ that the average inuene of a single variable over f is at least 1=n. This is aonsequene of a standard fat in ombinatoris, the edge isoperimetri inequality for the ube.(e.g. [Bo, Theorem 16.2℄). One also noties that for the funtion f(x1; :::; xn) = x1 the inueneof x1 is one while all the other xi have zero inuene. So in this ase the average is indeed as�Department of Mathematis and Center for OR, Rutgers University, New Brunswik, New Jersey 08903.Researh supported in part by grants from NSF and AFOSR and by a Sloan Researh Fellowship.yInstitute of Mathematis and Computer Siene, Hebrew University, Jerusalem 91904, Israel.zIBM Researh Almaden, 650 Harry Rd. San Jose, CA 95120 Computer Siene Department, StanfordUniversity and Institute of Mathematis and Computer Siene, Hebrew University, Jerusalem 91904, Israel.Researh supported in part by grant NSF IRI - 8814953 at the Institute for Mathematial Studies in the SoialSienes, Stanford University, Stanford CA. 1



small as 1=n. However in all the examples that were examined in that paper there was at leastone variable whose inuene was as big as 
(log n=n). In fat, Ben-Or and Linial onstruta funtion f for whih eah variable has inuene �(log n=n). This prompted the onjeturethat for every f with Pr(f = 0) = 1=2 there is a variable whose inuene is 
(log n=n). Thisonjeture is proved in the present artile. Moreover we show that the sum of squares of theindividual inuenes is 
(log2 n=n).What an be said about the inuene of larger sets of variables? We should �rst point outthat in dealing with the inuene of a set of variables there are several di�erent quantities tobe onsidered. We have already enountered one of them, viz., If (S). Besides this, there isthe inuene of S towards zero whih we now de�ne, and the inuene towards one, whih isde�ned analogously. Let p := Pr(f = 0). Assign values to the variables outside S at random,and denote by p0 the probability that given the values assigned to the variables not in S; it ispossible to assign values to the variables in S so as to make f equal to zero. The di�erene p0�pis de�ned to be I0f (S); the inuene of S toward zero. The question then arises of the existeneof small sets of variables with large inuene, where the meaning of the question depends, ofourse, on the notion of inuene intended. It is worth mentioning (and easy to hek) that forall f and S : If (S) = I0f (S) + I1f (S):In the ase we are most interested in, when Pr(f = 0) = 1=2, it is lear that inuenetowards either zero or one annot exeed 1=2. We look for sets whih get lose to this bound.Now in the above mentioned onstrution from [BL℄ a set of variables whose inuene towardszero is 12 � o(1) must have ardinality 
(n= log n). This was onjetured (ibid.) to be bestpossible. We prove a slightly weaker result showing that there always is a set of O(n!(n)= log n)variables whose inuene towards zero is 12 � o(1), where !(n) is any funtion whih tends toin�nity with n: Clearly the same holds with zero replaed by one. Let us mention the followinglosely related problem: There is a onstrution (again from [BL℄) of a funtion f where setsof o(n�) variables have o(1) inuene both towards zero and towards one, � = log 2= log 3 =0:63 : : :. It may well be that there is a onstant � < 1 suh that there is always a set of O(n�)variables where at least one of I0f (S); I1f (S) is 12 � o(1): We are unable to settle this question atthe time of writing.Let us also remark that our results extend beyond the ase where Pr(f = 0) = 1=2. Wehave stated all of our results in this ase, sine it is the most interesting one for omputersiene appliations and to avoid more tehnial statements.A word is in order now about our methods. We use ideas from harmoni analysis. This irleof problems turns out to be best viewed in terms of the Fourier analysis of the n�dimensionalube, thought of as the abelian group Zn2 : We assume familiarity with the most basi fatsof harmoni analysis whih an be found in essentially any text in the area. (For exampleDym and MKean [DM℄ is an exellent introdution to the subjet whih ontains numerousinteresting appliations.) We need only the most basi notions of this theory viz., haraters,dual group, and Fourier transform. The only fat we use is Parseval's identity. The harmonianalysis of Zn2 ; will be reviewed as needed. We make substantial use of Bekner's [B℄ elegantinequalities in (lassial) Fourier analysis. 2



Our method enables us to prove new results on the rapid mixing of the random walk onthe ube. While many of the properties of this walk are well studied and the speed at whih itonverges to the (uniform) limit distribution is known, not so muh is known if we start from adistribution whih is not onentrated at one point. In partiular what if the initial distributionis uniform on a set of verties of a given size? We are able to give estimates for this problemwhih turn out to be asymptotially orret for a large range of sizes. However, the problem ingeneral is still far from solved.Although it is tempting to onjeture that in worst (=slowest) ase the initial distribution issupported on some simple set suh as a Hamming ball or a subube suh an exat result seemswell beyond the reah of present methods. In fat, the present analyti methods seem, for themost part, ill-suited to exat results, while ombinatorial tehniques whih have proved quitepowerful for extremal problems with more obvious andidates for extrema have to date beensurprisingly ine�etive for problems of the type we are onsidering. There are many naturalproblems in this area for whih exat determination of extrema seems unlikely, and it maybe that the orret approah to some of these involves blending ombinatorial and analytimethods.There is a lose onnetion between the problems we mentioned on inuene and someaspets of the following very general question: Let F be a family of m binary n�vetors. Whatan be said about the distribution of Hamming distanes between the vetors in F ? At thislevel of generality this question is ompletely hopeless. In partiular it ontains all of the theoryof error orreting odes. On the other hand, many speial ases of this problem whih may betratable are very far from being understood. Our methods allow us to derive some new resultson the following, narrower lass of problems: How densely paked may F be? For example:given n, jF j and an integer b � n, what is the largest possible number of pairs of vetors in Fwhose Hamming distane is at most b ?For b = 1 this is answered by the edge isoperimetri inequality for the ube, mentionedbefore. The answer is basially that sububes of the ube are the best families. Already forb = 2 this is not true. There seems to be a more ompliated dependeny on the relationshipbetween jF j and n. Our methods allow us to get estimates for this "dense paking" problem,whih in ertain ases are exat, and in other ranges an be shown to be fairly tight.It is interesting to ompare the outomes of this method with what an be ahieved usingeigenvalues. Many of the questions addressed in this paper an be formulated as dealing withthe expansion fators of various graphs. It is often possible to derive some estimates for theexpansion fator from eigenvalues. However, this method is known to break down ompletelywhen applied to small sets of verties. Our method sueeds in getting nontrivial estimatesin some ases where the eigenvalue method fails. If this phenomenon an be extended toother graphs as well there ould be extremely interesting onsequenes in theoretial omputersiene, but we were so far unable to make muh further progress in this diretion.One more word about the literature: Many of the questions we onsider here ome from[BL℄, an earlier version of whih is [BL'℄. A survey of this area inluding the onnetion withvarious problems in omputer siene, an be found in [BLS℄.3



2 Harmoni Analysis of Zn2 and inuenes.Assuming some familiarity with basi harmoni analysis, we an explain its onnetion withthe problems on inuene desribed above. The group we deal with is Zn2 . As a set this isjust the n�dimensional ube Cn and the group struture allows us to make use of the tools ofharmoni analysis. We think of the elements in this group in a number of equivalent ways: asgroup elements, as binary vetors or as harateristi vetors of sets whih we also identify withthe sets themselves. All these terminologies will be used throughout. First we need to �nd allthe haraters. This is well known and easy to hek, so we state this fat without proof:Proposition 2.1: Assoiate with every A � [n℄; a real funtion u = uA de�ned on Zn2 by:uA(B) = (�1)jATBj:Then uA is a harater for Zn2 and moreover all irreduible haraters of Cn are obtained inthis way.(Here and throughout [n℄ stands for f1; :::; ng.)Note that the isomorphism between Zn2 and its dual is expliitly given by this proposition.We think of A both as an element of Cn and as the harater assoiated with it. Throughoutthis paper we will deal with funtions f de�ned on Cn, typially expanded as PA �AuA. Notethat the �'s are the usual Fourier transform of f and are preferred to the traditional f̂ only fortypographi onveniene. We also think of Cn as a probability spae with uniform distribution.This allows us to take inner produts of funtions on the ube:< f; g >:=XA f(A)g(A)2�n:The Fourier oeÆients for f are given by:�A =< f; uA >=XB (�1)jATBjf(B):We need the following fat from [BL℄ whih is an easy onsequene of the shifting tehnique ofthe extremal theory of �nite sets (e.g. [F℄):Proposition 2.2: For any boolean funtion f there exists a monotone boolean funtion g onthe same set of variables suh that(i)Pr(f = 0) = Pr(g = 0):(ii)8A � [n℄; If (A) � Ig(A):Inequality (ii) holds also for inuenes towards zero and one.
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A onsequene of this proposition is that there is no loss of generality in assuming that f ismonotone. Now for a monotone f and any variable xi the inuene of xi on f is easily seen tobe given by: 2�nXi62S f(S[fig) � f(S)But this is exatly the same as �fig: This fat reates the link between our problems andharmoni analysis. We are looking for bounds on the Fourier oeÆients of ertain real funtionsde�ned on Cn. Our �rst diÆulty is how to exploit the ondition that our funtions take onlythe values 0; 1, whih is not partiularly natural from the standpoint of mathematial analysis.Roughly, this is aomplished as follows. Some initial ombinatorial manipulations reduethe problem to another, similar problem involving funtions taking values 0; 1;�1, but havingrelatively small support. In this ase it is not so muh the preise range of the funtions as thefat that we have good ontrol of their various norms whih beomes useful, and we are able toomplete the proof using some inequalities of Bekner [B℄ relating the norms of a funtion andthose of its images under ertain linear operators.First we prove our main new theorems on boolean funtions and then we go on to skethsome sample new results on random walks on the ube and in the extremal theory of �nite sets.3 Lower bounds on inuenes.We begin with a statement of our result on the inuene of single variables. The result isgiven now in its more general form and not only for the ase where f is equally often zero andone. This more general form an then be applied repeatedly to derive the lower bounds on theinuene of sets of variables. Let us reall that Cn, the n�dimensional ube is equipped withthe uniform probability distribution, so we an speak, for example of the probability that f iszero.Theorem 3.1: Let f be a boolean funtion on n variables, whih equals one with probability pand assume p � 1=2. Then X(If (xi))2 � Cp2 log2 n=nwhere C is an absolute positive onstant, (for example C = 1=5 suÆes.) Consequently thereexists at least one variable whose inuene is at least Cp logn=n. These bounds are tight exeptfor the value of C.Also, X(If (xi)) � p log 1p:This bound is tight.So these are the best lower bounds for the vetor of inuenes of the individual variables in eu-lidean (L2) norm, max (L1) norm and sum (L1) norm. The L1 estimate is, of ourse, an easyonsequene of the L2 estimate. In fat with a little more are we an get essentially the samebound even for muh smaller norms. For example, let p = 1=2; and set � := C log logn= log n;5



and q = (1 + �): Then the Lq-norm of the vetor of inuenes is 
( (C�1) log nn ) whih is partiu-lar in 
( log nn ) if C-1 is greater than some positive onstant. This is very nearly best possible,sine for C < 1 the upper bound of (approximately) logC n=n obtained from the half-ube iso(log n=n): It does seem reasonable to onjeture that for every q the orret answer is theminimum of log n=n and the value obtained from the half-ube.The L1 estimate mentioned in the theorem is nothing but a restatement of the edge isoperi-metri inequality for the ube. It is quoted here only for ompleteness' sake. In the ase p = 1=2it implies the existene of a variable with an inuene of at least 1=n, as noted already in [BL℄.Some improvements on this latter bound were made by Noga Alon [A℄ who, with eigenvaluearguments inreased the bound to (2 � �)=n; and by B. Chor and M. Gereb [CG℄ who proved(3� �)=n: It is interesting that the three approahes (all arrived at independently) have essen-tially the same point of departure (though not all in the same language). To date no boundbetter than the rather trivial 1=n has been obtained by what ould be onsidered a purelyombinatorial argument. We should also mention here that for very small p (up to 2�n=2) thebest possible results on the max norm are available. Frankl [Fr℄ solved the problem using theKruskal-Katona Theorem. We do not see how to extend this to larger p: For the more restritedlass of f 0s orresponding to interseting families of subsets (in the language of game theory,symmetri games), an equivalent version of the problem of minimizing the maximum inuenehad been raised earlier (as the �rst ase of a more general question) by Daykin and Frankl [DF℄,who also observed the 1=n lower bound.We now turn to the proof.First we de�ne a set of n funtions on Cn whose range is f�1; 0; 1g. The i-th of those(1 � i � n) is denoted by f i and is de�ned byf i(T ) := f(T )� f(T � fig)where � stands for symmetri di�erene, or equivalently in terms of binary vetors the mod 2sum whih is the same, of ourse. The shorthand T � i is used below.Return to the Fourier expansion of f :f =XS �SuS :The expansion of f i is written as: f i =XS �iSuS :To evaluate the �iS we write:�iS =< f i; uS >= 2�nXT f i(T )uS(T ) =2�nX(f(T )� f(T � i))(�1)jSTT j =2�nX f(T )((�1)jSTT j � (�1)jST(T�i)j):6



Now if i 62 S; the expression in the last brakets vanishes, and so does �iS . On the otherhand if i 2 S; then the term in the brakets beomes 2(�1)jSTT j and �iS = 2�S :Parseval's Theorem now gives the eulidean norm of f i.kf ik22 = 4Xi2S �2S :Now we want to relate this to inuene. Let �i denote the inuene of the i�th variable.From the de�nition it follows that this is the same as the fration of sets S not ontaining ifor whih f(S) 6= f(SSfig). Whenever this happens both f i(S) and f i(SS i) are in f�1; 1g.Consequently �i = kf ik22. In other words�i = If (xi) = 4Xi2S �2S :Summing this over all 1 � i � n we obtain:X�i = 4X jSj�2SThese equations suggest the following approah. Assume for a ontradition, that the �iare small. Sine X�2S = kfk22 = pis given this an only happen if P�2S omes mainly from sets S of small ardinality. Ourgoal is to show this is impossible. This is ahieved by proving suh a result for the funtionsf i. The point, to some extent, is that the f i are assumed to have relatively small support,whih should prevent their Fourier transforms from being onentrated on very small sets. Theimplementation of this idea is based on some elegant inequalities of Bekner [B℄ whih we nowdesribe.As we have already indiated, an important feature of Bekner's method is the use ofestimates for f in various Lp norms. The two point spae X onsists of the two real numbers�1; 1 and is equipped with the uniform probability distribution. Notie that Cn = Xn both assets and as probability spaes. Consider the linear spae of real funtions de�ned on X. Everyfuntion on X is the restrition of a linear funtion, say, h(x) = a+ bx.Introdue the linear operator T1 whih maps h(x) into the funtion a+ �bx. It may appearmysterious at this time that suh an operator should be relevant, but this will hopefully belari�ed later on. We think of T1 as operating on Lp funtions and arrying them to L2funtions.Lemma 3.2: The operator T1 from Lp to L2 has norm 1, for p = 1 + �2.The seond of Bekner's lemmas deals with the produt of operators of the type onsideredin the previous lemma.
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Lemma 3.3: For i = 1; 2 let (Xi; �i) and (Yi; �i) be normed measure spaes and let Ti be anoperator from Lp(Xi) to Lq(Yi) whih is an integral operator de�ned by a kernel, i.e.,Tif(y) = ZX f(x)K(x; y)d�i(x):Now let T be the produt of these operators, mapping Lp(X1 �X2) to Lq(Y1 � Y2). If both T1and T2 have norm at most 1, then so does T .This last lemma an learly be applied also to produts of more than two spaes. In partiular,multiplying the two point spae by itself n times we arrive at the spae Cn. Let us evaluatethe produt T of n opies of the one-dimensional operators T1:Sine the haraters on Cn span the spae of real funtions on Cn it learly is enough todetermine their images under T . It is not hard to see that uS is arried to �jSjuS . So one niefeature of the operator T is that the haraters of Cn form a omplete set of its eigenfuntionsand moreover we know the orresponding eigenvalues.Now we are in a position to (partly) demystify the onnetion between Bekner's work andour problems. As we explained before, our goal would be reahed if we ould prove theoremssaying that it is impossible for most of the L2 norm of � to be onentrated on those �S withsmall jSj. In other words we look for upper bounds on sums suh asXjSj�b�2Sfor some bound b.Unfortunately, sums of this kind are not too onvenient to work with. Alternatively, onemay try and look at sums of the form XwS�2S ;where w is an appropriately hosen weight funtion. Ideally, w should be 1 on sets S of ardi-nality at most b and 0 on larger sets. However, even a weight funtion whih only approximatesthis behavior may enable us to obtain some interesting estimates. For f = P�SuS we knowthat Tf is given by: Tf =X �jSj�SuS :Denoting �2 by Æ we have: kTfk22 =X ÆjSj�2S :This yields an estimate for sums as disussed earlier, with weight funtion wS = ÆjSj.The other nie feature (for us) of Bekner's results is that sine we are dealing with funtionsinto f�1; 0; 1g, it is very easy to alulate their Lp norms exatly.We apply Bekner's lemmas to our problem and arrive at the following fat whih is a keyto all that follows. 8



Lemma 3.4 : Let g be a funtion from Cn into f�1; 0; 1g (for example the harateristifuntion of a set). Let t be the probability that g 6= 0 and letg =X�SuSbe the Fourier expansion of g. Then, t 21+Æ �X ÆjSj�2Sfor every 0 � Æ � 1:We apply this Lemma with g = f i. The probability that f i 6= 0 is exaly �i, and so� 21+Æi �X ÆjSj(�iS)2:Summing this over 1 � i � n; we haveX� 21+Æi �X ÆjSjjSj�2S :Now ignoring the portion of the sum ontributed by the sets S of ardinality exeeding b (aparameter whih we shortly selet), we obtain:X� 21+Æi � Æb XjSj�b jSj�2S :We also keep in mind that p =X�2S = �;whih omes from �; =< f; u; > and the fat that u; is identially one. So alsoX� 21+Æi � Æb(XjSj�b�2S � p2):At the same time, sine X�i = 4X jSj�2Swe also have X�i � b XjSj>b�2S :Now we ombine these inequalities to obtain:Æ�bX� 21+Æi + b�1X�i �X�2S � p2(3:4:1) = p� p2 � p=2:Denote P�2i by �2=n where we assume(3:4:2) � < p log n40 :9



>From Cauhy{Shwartz we have: X�i < �:Sine 21+Æ < 2 we an use the monotoniity of r�th power averages (e.g. [HLP p. 26℄) toestimate: X� 21+Æi � � 21+Æn� 1�Æ1+Æ :Choose b to be 4�=p. The seond term in (3.4.1) annot exeed p=4 and so we remain with:Æ� 4�p � 21+Æn� 1�Æ1+Æ � p4 :It is now a routine matter to hek that for Æ = 1=2; � as in (3.4.2), any p � 1=2 and for largeenough n, this inequality fails. This ontradition proves our theorem.By repeated use of this theorem we arrive at the existene of a small set of variables whihdominates the funtion f .Corollary 3.5: Let f be a boolean funtion on n variables, let p = �(1) be the probabilitythat f = 1 and let ! = !(n) be any funtion tending to in�nity with n: Then there is a set ofnlog n!(n) = o(n) variables S whose inuene towards one is p�o(1): This bound is tight, exeptfor the ! term.4 Consequenes for random walk on the ube.The present method provides new information on the speed of onvergene of random walkson the ube. We just give some indiation of what we an say in this vein, leaving details andmore omprehensive statements to the full paper. For simpliity (mainly to ensure ergodiity)we onsider walks whih on a given step move to any of the n neighbors of the urrent vertexv with probability 1=2n and otherwise remain at v. Write f (t) for the distribution after t stepsof suh a walk with initial distribution f = f (0); and U for the limiting (uniform) distribution.We will be interested in onvergene in the sense of L2; rather than the more usual L1: Thatis, we would like to know how slowly kf (t) �Uk2 an tend to zero given various restritions onthe initial distribution f = f (0): (Of ourse, kf �Uk22 = kfk22� 2�2n; and we often �nd it moreonvenient to deal with kfk22:)When f = fF is the uniform distribution on some F � Cn; this question is very lose tothe onsiderations of setion 3. For example, if the Fourier oeÆients of 1F are �S ; then it iseasily seen that kf (t)k22 = jF j�2X(1� jSjn )2t�2S ;implying XjSj�k�2S � (1� k=n)�2tjF j2kf (t)k22:Thus upper bounds on kf (t)k2 give upper bounds on \initial segments" of P�2S as neededearlier. This, in fat, was our starting point, though as it turned out the results on randomwalks were eventually obtained only through the above attak on the Fourier oeÆients.10



The most natural problem for suh "semiuniform" distributions fF is to estimate how slowlya funtion t = t(n;m) an grow if it satis�es(4:1) kf (t)F k2 = (1 + o(1))2�nfor every m�subset F of Cn: Intuitively, this onvergene should be slower the more onen-trated F is, and it is natural to expet the worst F (for given m) to be something like a ball orsubube. For example, letting B(n;m) (resp. C(n;m)) denote the �rst m binary n�vetors inthe lexiographi (resp. reverse lexiographi) order (i.e., identifying a set with its harateristivetor, S <L T if jSj < jT j or [jSj = jT j and max(S � T ) 2 T ℄; while S <RL T if jSj < jT j or[jSj = jT j and min(S � T ) 2 S℄); we haveTheorem 4.1: Suppose m = m(n) is at least 2n�d; with d = o((n= log n)1=2); and let g = g(0)be the uniform distribution on C(n;m): Suppose further that t = t(m) is suh thatkg(t)k2 = (1 + o(1))2�n:Then the same is true with g replaed by fF for any F of size m; and in fat for any suh F;f (t)F � 2�ng(t) � 2�n < (1 + o(1)) ln 4:Remark 4.2: Theorem 4.1 holds for any initial f satisfying kfk2 � (m=2n)1=2 (i.e. the L2-normof fF when jF j = m):Remark 4.3: For m as in the Theorem, the ondition on t amounts to t = [(1 + �)=2℄n ln dwith � = !( 1log d ):Again onsidering f = fF we have the following natural interpretation for kf (t)k22: Denoteby 	s(F ) the probability that a walk starting from a randomly (uniformly) hosen point of Fis again in F after the s�th step.Proposition 4.4: For F and f as above,kf (t)k22 = 	2t(F )=(2njF j):Given n;m and s, one may ask for (but surely not reeive) the maximum of 	s(F ) as F rangesover m�subsets F of Cn: More realistially, one may hope to give bounds on this maximumwhih are of the orret order of magnitude. (Note that these questions are more general thanthat of the rate of growth of t for (4.1).) As above, one expets that balls and sububes (theusual suspets) should ome lose to maximizing 	s: For example, it might be true that forevery F of size m 	s(F ) = O(maxf	s(B(n;m));	s(C(n;m))g):We an in fat show this for various ranges of the parameters (some of whih, for example, willbe evident from Theorem 4.3), but are apparently far from showing it in general. Although itis probably too muh to expet that one of these two values always is the maximum, this is atleast true at the outset: 11



Proposition 4.5: For s = 1; 2 and for every n and mmaxf	s(F ) : jF j = m;F � Cng = 	s(C(n;m)):(For s = 1 this is essentially the edge-isoperimetri inequality. For s = 2 it is a little harder,but still elementary.) It is not true that C(n;m) is best for all s: (It's instrutive to onsider,for instane, the omparison between B(n; n+1) and C(n; n+1) as s grows.) What does seempossible (though for now this is little more than a guess) is that for a given n and m; C(n;m) is(roughly?) optimal for s up to a ertain point, after whih something like B(n;m) takes over.5 Distribution of Hamming distanesA fundamental problem in Disrete Mathematis is: Given a family of binary n�vetors F ofa given ardinality, what an be said about the distribution of Hamming distanes betweenpairs of vetors in F ? In suh generality the question is, of ourse, quite hopeless (The wholetheory of error orreting odes revolves around the more limited question of how large an theminimum distane be made.) Still, one may fruitfully study portions of the problem.The observation whih onnets this problem with harmoni analysis is that if f = 1F ; theharateristi funtion of the family F , then the distribution of distanes in F an be easilydetermined from f � f , the onvolution of f with itself. Letting g := f � f , the frequeny withwhih the vetor S appears as the mod 2 sum of pairs of vetors in F is given by g(S). (Theinformation enoded in the onvolution g; is of ourse far more detailed then the distributionof distanes.) This is a good point of view for a number of results in error orreting odes (see[MS℄, the standard text in this �eld), for instane MaWillams' formula for weight distributionsof dual odes, or the inequalities underlying the Linear Programming bound. This issue will beelaborated on in the later version of this artile.We denote by dj = dj(F ), the number of ordered pairs of vetors (=sets) in F whoseHamming distane (=size of their symmetri di�erene) equals j. As we mentioned above thisis the same as the sum of g(S) over all sets S of ardinality j. We also de�ne �dj as the numberof ordered pairs X 2 F; Y 62 F whose distane is j; and set d�b :=Pj�b dj ; and �d�b =Pj�b �dj :Obviously, dj(F ) + �dj(F ) =  nj!jF j:We are interested in a question whih is at the other extreme from that studied in odingtheory, namely we want to understand how densely paked F an be. Spei�ally, given thedimension n; the ardinality m = jF j and a bound b < n we want to determine (or estimate)D(m;n; b) := max d�b(F );where, again, the maximum is over all families F of m binary n�vetors. The ase b = 1 isagain overed by the edge isoperimetri inequality, but even for b = 2 the question is open andan exat solution appears to be hard. Parts of this setion deal with D while in others we study�D(m;n; b) := min �d�b: This may seem strange, as the exat determination of D and �D are12



equivalent questions (sine their sum is known.) However, in most ranges of the parameters weonly aim at asymptoti results, whih are only of interest for the smaller of the two quantities.We give here only a partial aount of our results on this problem. It is a problem whihfor di�erent ranges of the (three) parameters exhibits di�erent optimal behavior. The resultsdesribed here have been hosen to onvey, aording to our urrent understanding, some ofthe harateristi behavior of the quantity D(m;n; b):A large portion of the extremal theory of �nite sets is devoted to proving various inequal-ities for whih the extreme ases are well-de�ned. Most typially one shows the extremity offamilies suh as ubes (e.g. for the edge isoperimetri problem), Hamming balls (for the vertexisoperimetri problem), Projetive Spaes and various substrutures of them. This is the asewith many of the fundamental theorems in this area, for instane the Erd�os{Ko{Rado andKruskal{Katona Theorems. (Good soures for this subjet are [Bo℄ and [Fra℄.) It has oftenproved more diÆult to obtain good estimates in ases where there do not appear to be naturalguesses as to extreme ases. We onsider one of the more appealing aspets of the present workto be the fat that we do have some suess in this diretion.We start with the following easy observations on D(m;n; b) :- For �xed n and b; and m small enough the optimum for D is attained by making F a subsetof a Hamming ball of the least possible radius.- When jF j = 2n�1; the optimum is attained by a subube of dimension n � 1: Uniquenessdepends on the parity of b : for odd b the ube is the only optimum, while for even b theset of all vetors of even Hamming weight is also optimal.- It learly suÆes to onsider the rangem � 2n�1:We show an upper bound onD = D(m;n; b);whih is lose to optimal when m is lose enough to this upper bound.In other words, for �xed n and b if m is small enough the optimal family is a ball in whihno distane exeeds b. When m is at its maximum 2n�1 the ube is the best family, and nearthe upper bound ubes are known to be at least lose to optimal.Remark 5.1: The near optimality just mentioned is established by omparing our lower boundwith the orresponding quantity for F a ube of the appropriate dimension. The question againarises as to whih are the optimal families. It would be very interesting to deide whether thereexist extreme families whih are essentially di�erent from both ubes and Hamming balls. Atthis stage we annot even show that the optimal family is always a "weighted majority" family(i.e., the intersetion of the ube and a halfspae.) See [HLL℄ for a ase where suh a result is(easily) established in a losely related situation. A standard ombinatorial argument impliesthat there is no loss of generality in assuming F to be a shifted ideal. (See [F℄ for a survey ofshifting.)The more substantial result of this setion is a lower bound for �D when n; b are �xed and mis large enough. This lower bound is shown to be near-optimal by a omparison with the ase13



where F is a ube. This is more interesting than the third of the previously mentioned results,as in this range �D = o(D):Our �rst observation is that a result of Kleitman [K℄ settles the problem for small m = jF j.Proposition 5.2: If m � Xj� b2  nj!then D(m;n; b) =  jF j2 !and F is optimal i� it is ontained in a Hamming ball of radius b=2:To proeed with our next two results we �rst develop a formula for dk = dk(F ) in terms ofthe Fourier oeÆients of f = 1F : Let f =P�SuS ; then:dk(F ) = 2nX�2SPk(jSj)where Pk is the k�th Kraouhuk polynomial, (e.g. [MS℄) given by:Pk(x) =Xj (�1)j xj! n� xk � j!:This formula readily supplies an answer to our problem when jF j = 2n�1: Sum the expressionfor dk over k � b to derive a formula for d�b of the form PwjSj�2S : But PS 6=; �2S equals p� p2(where p = jF j=2n) by Parseval. Given p (and hene �;;) the maximum of d�b = Pj�b dj isattained by making all the �S vanish exept when wjSj is maximal. It turns out that wk islargest only for k = 1 if b is odd, and for k = 1; n when b is even.Theorem 5.3: D(2n�1; n; b) = 2n�1Xj�b n� 1j !For odd b this is attained only by the (n� 1)�dimensional ube. For even b the same holds alsofor the set of vetors of even Hamming weight.The third observation is quanti�ed as:Proposition 5.4: Let p := m=2n: If b log 1p = o(n);then, D(m;n; b) = (1� o(1))mXj�b nj!14



A more interesting result is that in the range onsidered in the previous proposition theube is within a onstant fator away of a lower bound for �D: Following are some remarks onthe proof (whih is omitted.) The previous expression for �dj may be summed to yield�d�b =XS �2SQb(jSj):Where Qb(x) is a polynomial of degree b: By analyzing its behavior and employing Lemma 3.4muh in the same way it was used to prove Theorem 3.1 we derive�d�b = 
((log 1p) nb� 1!p):Where the 
 expression refers to some spei� absolute onstant, for example 1=2: Even valuesof b turn out to reate some extra ompliation. Standard estimates for F a ube prove theomplementary inequality inTheorem 5.5: Under the assumptions of the previous proposition�D(m;n; b) = �(m( nb!�  logmb !)):The existene of densely paked families of sets an also be studied using the eigenvaluemethod. Consider the graph whose verties are all binary strings of length n where two stringsare adjaent, if their Hamming distane does not exeed b. We are studying the edge isoperi-metri inequality for this graph. Again the eigenvalues of this graph may be omputed usingKraouhuk Polynomials (see [MS℄).While the eigenvalue tehnique is in some ases quite powerful, it yields most of the timeestimates muh inferior to those given by the present approah. To give just one onreteexample, suppose jF j = 2n=n and b = n(1=2 � 1= log n): (Appearanes notwithstanding, thishoie is not at all arbitrary: any "deent" upper bound on d�b(F ) for suh values would givethe results on inuene desribed earlier.) In this ase the trivial upper boundd�b(F ) � jF jXk�b nk!and the atual value for a subube, viz. jF jPk�b �log jF jk �; di�er by a fator of about n. Thebound given by the eigenvalue method di�ers from the trivial bound by a fator of about log2 n(this is not "deent"), whereas our approah gets about half way to the ube, beating the trivialbound by a fator of about pn. (We still don't know the answer in this range, but believe thelower bound to be lose to, if not equal to, the truth.)6 AknowlegementsWe have had many interesting onversations on this subjet with olleagues too numerous tomention, but we partiularly want to express our gratitude to Dik Gundy for expanding ourharmoni analyti horizons and to Benji Weiss for sharing with us his broad knowledge ofmathematis. 15
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