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1 Introduction

An embedding of an n-dimensional (connected) manifold M into Rd is called k-neighborly if for every
k points on the embedded manifold there is a hyperplane H in Rd which supports the manifold
precisely at these points. Namely, H contains these k points and all other points of the embedded
manifold are in the same open half space determined by H.

The moment curve m(x) = (x, x2, . . . , xd) ⊂ Rd is a [d/2]-neighborly embedding of R1 into Rd,
see, e.g., [14]. The trigonometric moment curve (cos t, sin t, cos 2t, sin 2t, . . . , cos(kt), sin(kt)) ⊂ Rd,
d = 2k is an example of a k-neighborly embedding of S1 in Rd.

Micha A. Perles [10] posed the following problem:

Problem 1 What is the smallest dimension d(k, n) of the ambient space in which a k-neighborly
n-dimensional manifold exists?

A k-neighborly embedding of any n manifolds M is also k-neighborly when we restrict to a
submanifold of M and, in particular, to a small neighborhood of a point which is homeomorphic
to Rn. Therefore for this problem we may assume that the manifold is Rn. Perles’ problem is
related to the problem of finding k-regular embeddings of manifolds into Rn. A map f : X → Rn

is called k-regular if the images of every k distinct points in X are linearly independent. k-regular
embeddings were studied in the context of approximation theory since the 50s, see e.g., [5, 7].

A simple dimension count shows that

d(k, n) ≥ (k + 1)n.

Indeed, let K be the convex hull of a k-neighborly embedded n-manifold M . We have a 1-1 map
from every vector (α1, . . . , αk, x

1, . . . , xk), where xi ∈ M , for every i and every αi is a positive
real number,

∑

αi = 1, to the boundary of K which is (d − 1)-dimensional. This implies that
d − 1 ≥ kn + k − 1.

However there is good evidence that this lower bound is never tight for k > 1. Vassiliev [13]
considered a slightly stronger definition of k-neighborly C2 embeddings, where the k-neighborliness
is stable under C2 perturbations, and showed, by an intricate topological argument, that the
analogous function d′(n, k) satisfies d′(k, n) ≥ 2kn − bin(n), where bin(n) is the number of ones in
the binary expansion of n. Related lower bounds for k-regular embeddings can be found in [5, 7].

A straightforward extension of the moment curve gives an upper bound for d(k, n) which is ex-
ponential. For this purpose we use the embedding Φk,n defined as follows: Let p0 = 1, p1, p2, . . . , pd

be all monomials of degree ≤ k in n variables x1, x2, . . . , xn. Embed Rn into Rd, by assigning to
x = (x1, x2, . . . , xn), the d-vector (p1(x), p2(x), . . . , pd(x)). It is easy to see that this embedding is
[k/2]-neighborly. Here is the proof: Let x1, . . . , xm be m = [k/2] points in Rn and let

P (x) =< x − x1, x − x1 > · < x − x2, x − x2 > · · · < x − xm, x − xm > .
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P (x) is a non-negative polynomial of n variables (x = (x1, x2, . . . , xn)) of degree 2m which vanishes
precisely on the points x1, . . . , xm. Therefore, it defines a hyperplane in Rd which supports the
embedded Rn and touches it precisely at the given points. Convex hulls of the images of finite sets S
of points in Rn under the map Φ(k, n) form an interesting class of convex polytopes that we briefly
discuss in Section 3. However, Φk,n provides only upper bound on d(k, n) which is exponential in
k.

The main purpose of this paper is to present a simple construction showing a polynomial upper
bound on d(k, n).

Theorem 2 There is a k-neighborly embedding of Rn into Rd for d = 2k(k − 1)n.

Our construction is based on hashing and is related to natural “continuous” analogs considered
by Clark, McColm, and Shekhtman [4] of standard hashing problems.

An obvious remaining challenge is to close the gap between the lower and upper bounds for
d(n, k). A bound of the form O(kn) or even 2kn may be realistic. Further problems and connections
are discussed in Section 3. Let us mention here that 2-neighborly embeddings of S3 into R17 occurs
naturally as faces of the “mass ball” (the convex hull of the Grassmanian G(n,m) embedded into
the mth exterior power of Rn), see [8, 2].

2 Continuous hashing and the construction

Call a function g : Rn → (Rs)r, g = (g1, . . . , gr) where each gi maps Rn to Rs k-universal with
parameters (n, s, r), if any k distinct points in Rn are mapped into k distinct points in Rs by at least
one of the gis, i ∈ [r](= {1, . . . , r}. Finding k-universal functions is a standard hashing problem
here unusually situated in continuous domain, as opposed to the usual discrete one.

In order to prove Theorem 2 we require a beautiful construction of Clark, McColm, and Shekht-
man [4] of k-universal family (consisting of linear functions) of parameters (n, 1, r) for r = n(k−1).
In [4] a matching lower bound for smooth functions and a lower bound r ≥ [(n − 1)k/2] is proved.
To make the paper self contained, here is a simple construction for k-universal family of parameters
(n, 1, t) where t = n

(k
2

)

+ 1.
Set t distinct real numbers α1, α2, . . . , αt, and define

fi(z1, z2, . . . , zn) =
n

∑

ℓ=1

αℓ
izℓ.

To see that this gives a universal family consider k distinct points in Rn, z1, z2, . . . , zk. For
j ∈ [k], define

Pj(α) =
n

∑

j=1

zj
i α

j .

Note that fi(z
j) = Pj(αi). For every j1, j2 ∈ [k], Pj1 and Pj2 can agree on at most n points.

Therefore, since t > (n
(k
2

)

), there is i ∈ [t] such that all Pj(αi), j ∈ [k], are different.
Remark: We thank Jirka Matousek for bringing [4] to our attention.
Proof of Theorem 2: We will now show that the existence of a k-universal function of

parameters (n, s, r), implies that d(n, k) ≤ r ·d(s, k), since we can compose it with the k-neighborly
solution for Rs on each of the r blocks separately. We will use this fact only for the case s = 1 that
we now explain in more details.
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Let g be a k-universal function of parameters (n, 1, r) and consider the embedding that map
a point x = (x1, x2, . . . , xn) to the (r × 2k) matrix M(x) whose (i, j)-entry is gi(x)j , i ∈ [r] and
j ∈ [2k]. First note that for every k points x1, x2, . . . , xk, the matrices M(x1), M(x2), . . . M(xk)
are linearly independent. This follows from the fact that there is a row i such that gi(x

ℓ) are all
distinct for ℓ ∈ [k] and therefore restricting to the first k columns, the ith rows of the k matrices
correspond to the Vondermonde matrix and are linearly independent.

Next, from the neighborliness property of the moment curve it follows that for every k points
x1, . . . , xk and every ℓ ∈ [r], there is an affine functional ρℓ on the space of (2k × r) real matrices
with the following properties:

1) ρℓ depends only on the entries of the ℓth row.
2) ρℓ is non negative on matrices whose mth row is of the form (a, a2, . . . , a2k), and vanishes on

such a vector a if and only if a = (gj
i (x

p)) for some p ∈ [k].
A positive linear combination of ρ1, . . . , ρr will vanish only for x so that for every ℓ, Mℓ(x)

affinely depend on Mℓ(x
1) , . . . ,Mℓ(x

k). This implies that for every ℓ there is j so that Mℓ(x) is
equal to Mℓ(x

j) but we showed that this is not the case unless x = xj for some j.

3 Discussion

We will briefly discuss Perles’ question in the wider context of understanding convex hulls and order
types for embedded manifolds.

The (affine) order type of a set X of points in Rd is a map from each d + 1 ordered tuples
(x0, . . . , xd) to {−1, 0, 1} defined as the sign of the determinant of the d + 1 by d + 1 matrix whose
i-th row is (1, xi). There is an extensive study of order types of finite set of points and the more
general combinatorial notion of oriented matroids [3, 6]. The questions considered here can be
regarded as studying the case that X is a manifold or a more general topological space rather than
a finite set.

Perles’ question can also be regarded as a question about the convex hull of embedded n-
dimensional manifolds in Rd. The theory of convex polytopes ([14]) which studies convex hulls of
finite sets of points is rather substantial, but there are only sparse results about convex hulls of
embedded manifolds. An important example to keep in mind for this context is the convex hull
of rank-one positive semi-definite matrices. (For this and other related examples see [1, 2].) A
remarkable class of embeddings of the circle to R4 was studied by Smilansky [12].

Problem 3 What can be said about the face structure/order type of a convex embedding of R1 and
S1 into Rd.

Embedded manifolds give rise to interesting classes of polytopes which depend on choosing v
points on the manifolds. The case of polytopes obtained via the embedding Φk,n is of particular
interest. For example, the embedding Φk,2 gives for each configuration C of v points in the plane a

convex polytope in R(k+1

2 )−1. The image of v planar points under Φ2,2 is a configuration of points
in R5. The order type of this configuration of points record the location of an original point relative
to the conic described by five other points.

We can consider also isometric embeddings:

Problem 4 Are there k-neighborly isometric embeddings of Rr, T r and Sr (equipped with the stan-
dard metric) for every r > 1. (Here, T r is the r-dimensional torus.)
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We conclude with two problems which are further away from Perles’ problem but still appear
to be in the same general spirit. The next problem is joint with Chris Connell:

Problem 5 Find the isometric embedding of T r and Sr (equipped with the standard metric) with
maximum volume of the convex hull.

For r = 1 and d even, Schoenberg [11] showed that the maximum volume of the convex hull is
attained by the trigonometric moment curve.

Finally, let K be an arbitrary convex body in Rn and let Fr(P ) be the space of r-dimensional
faces of K.

Conjecture 6 If all Fr(K) are compact then

d−1
∑

r=0

(−1)rχ(Fr(K)) = 1 + (−1)d−1.

The case that K is a convex polytope is the Euler-Poincaré formula and the case that K is a
smooth body is just the Euler-characteristic of a (d− 1)-sphere. An extension of this conjecture to
arbitrary convex bodies (giving up the compactness of the set of k-faces,) might be possible under
an appropriate definition of Euler characteristic for the individual Fr(K)s. Results by Mulmuley
[9] may be relevant.
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