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 Birkh�auser Verlag, Basel 2000GAFA Geometri
 And Fun
tional AnalysisCOMBINATORICS WITH A GEOMETRIC FLAVOR:SOME EXAMPLESGil KalaiDedi
ated to the Memory of Rodi
a SimionAbstra
tIn this paper I try to present my �eld, 
ombinatori
s, via �ve examplesof 
ombinatorial studies whi
h have some geometri
 
avor. The �rsttopi
 is Tverberg's theorem, a gem in 
ombinatorial geometry, andvarious of its 
ombinatorial and topologi
al extensions. M
Mullen'supper bound theorem for the fa
e numbers of 
onvex polytopes andits many extensions is the se
ond topi
. Next are general propertiesof subsets of the verti
es of the dis
rete n-dimensional 
ube and somerelations with questions of extremal and probabilisti
 
ombinatori
s.Our fourth topi
 is tree enumeration and random spanning trees, and�nally, some 
ombinatorial and geometri
al aspe
ts of the simplexmethod for linear programming are 
onsidered.Introdu
tionThere is a deli
ate balan
e in mathemati
s between examples and generalprin
iples, and in this paper I try to present my �eld, 
ombinatori
s, via�ve examples of 
ombinatorial studies whi
h have some geometri
 
avor.In order to make the presentation self-
ontained, detailed and interest-ing, the 
hoi
e of material (even within the individual se
tions) is subje
-tive and nonuniform. For an unbiased and 
omprehensive point of view thereader is referred to the many links and referen
es. I have tried to in
ludemany open problems and to point out various possible 
onne
tions, someof whi
h are quite spe
ulative.Se
tion 1 deals with 
on�gurations of points in Eu
lidean spa
es andspe
i�
ally with Tverberg's theorem whi
h asserts that every set of(r � 1)(d+ 1) + 1 points in Rd 
an be divided into r parts whose 
onvexhulls have nonempty interse
tion. A prin
ipal question is to �nd 
onditionswhi
h will guarantee the 
on
lusion of Tverberg's theorem for a smaller setof points.
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tion 2 is devoted to M
Mullen's upper bound theorem for 
onvexpolytopes whi
h asserts that among all d-polytopes with n verti
es the
y
li
 polytope has the maximal number of fa
es of any dimension. Sharpand general forms of this theorem and what will take to prove them aredis
ussed.The topi
 of se
tion 3 is the 
ube: the 
ombinatori
s of subsets of theverti
es of the dis
rete 
ube, dis
rete isoperimetri
 relations and espe
iallythe notion of in
uen
e. General fa
ts about Boolean and real valued fun
-tions de�ned on the dis
rete 
ube are useful for various problems in extremal
ombinatori
s, probability and mathemati
al physi
s.In se
tion 4, I dis
uss some re
ent results 
on
erning random spanningtrees and tree enumeration and mention the re
ent emerging pi
ture ofrandom spanning trees of grids in the plane.The prin
ipal problem in the �nal se
tion, x5 is to �nd a polynomial-time version of the simplex algorithm for linear programming. Combinato-rial and geometri
 aspe
ts of the problem are 
onsidered.Although there are relations between the �ve se
tions they 
an be readin any order. The reader 
an safely skip any pla
e where she or he feelsthat the mathemati
s be
omes too heavy-going. Probably these pla
esre
e
t the fa
t that either the mathemati
s should be improved or myunderstanding of it should.In the (unusual) style of the \Vision in Mathemati
s" meeting, ea
hse
tion 
on
ludes with brief 
omments of a philosophi
al nature.1 Combinatorial Geometry: An Invitation to Tverberg'sTheorem1.1 Radon's theorem and order types (oriented matroids).Theorem 1.1 (Radon's Theorem). Every d + 2 points in Rd 
an bepartitioned into two parts su
h that the 
onvex hulls of these parts havenonempty interse
tion.A pair of disjoint subsets of X whose 
onvex hulls interse
t are 
alleda Radon partition. The points in the interse
tion of the 
onvex hulls are
alled Radon points.Radon's theorem follows at on
e from the fa
t that d+ 2 points in Rdare always aÆnely dependent. It implies at on
e another basi
 theoremon 
onvex sets { Helly's theorem: For every �nite family of 
onvex sets,if every d + 1 of its members have a point in 
ommon then all sets in the
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ommon. The reader is referred to [14℄, [20℄ for mu
hinformation on Helly type theorems.Given n points on the line, the (minimal) Radon partitions determine(up to orientation of the line) the ordering of these points. In a similar waywe 
an 
lassify 
on�gurations of points in the plane or in Rd a

ording totheir Radon partitions. This leads to the theory of oriented matroids ororder types (see [10℄).1.2 Tverberg's theorem.Theorem 1.2 (Tverberg's Theorem). Every (d + 1)(r � 1) + 1 points inRd 
an be partitioned into r parts su
h that the 
onvex hulls of these partshave nonempty interse
tion.
Figure 1: Seven points in the plane and their Tverberg partion.Proofs of Tverberg's theoremwere given by Tverberg ('66) [27℄, Doignonand Valette ('77), Tverberg ('81), Tverberg and Vre
i
a ('92), Sarkaria ('92)[25℄, and Roudne� ('99) [23℄. While the original proof was quite diÆ
ult,the proofs of Sarkaria and Roudne� are remarkably simple.Roudne�'s re
ent proof is by minimizing the sum of squares of the rdistan
es between a point x and the 
onvex hulls of r pairwise disjointsubsets of the points. It turns out (under mild assumptions of generi
ity)that if this minimum is positive, it is attained without using one of thepoints and this extra point 
an be used to push this minimum down.While the re
ent proofs of Tverberg's theorem give an algorithm to �ndthe partition, the 
omputational 
omplexity of �nding su
h a partition isnot known.Problem 1.1. Find a polynomial-time algorithm to obtain a Tverberg



4 GIL KALAI GAFA2000partition when Tverberg's theorem applies.Note that (as will be 
lear below) de
iding for a 
on�guration of pointsof less than 2d + 3 in Rd if a Tverberg partition to 3 parts exists is anNP-
omplete problem. However, it is possible that when the number ofpoints is large enough to guarantee a partition then �nding su
h a partitionis 
omputationally feasible.1.3 Topologi
al versions.Conje
ture 1.2 (The Topologi
al Tverberg Conje
ture). Let f be a
ontinuous fun
tion from the m-dimensional simplex �m to Rd. If m �(d+ 1)(r� 1) then there are r pairwise disjoint fa
es of �m whose imageshave a point in 
ommon.The 
ase r = 2 was proved by Bajmo
zy and B�ar�any using the Borsuk-Ulam theorem. The 
ase where r is a prime number was proved in aseminal paper of B�ar�any, Shlosman and Sz�u
s [8℄. The prime power 
asewas proved by Ozaydin (unpublished), Volovikov [30℄ and Sarkaria. Forthis 
ase the proofs are quite diÆ
ult and are based on 
omputations of
ertain 
hara
teristi
 
lasses.If f is a linear fun
tion this 
onje
ture redu
es to Tverberg's theorem.For a dis
ussion of the topologi
al extensions of Tverberg's theorem in alarger 
ontext, see [32℄. It turns out that topologi
al methods are 
ru
ialfor proving various Tverberg type theorems even for linear maps.1.4 The dimension of Tverberg's points. For a set A, denote byTr(A) those points in Rd whi
h belong to the 
onvex hull of r pairwisedisjoint subsets of X . We 
all these points Tverberg points of order r.If we have (d+ 1)(r� 1) + 1 + k points in Rd, then we expe
t that thedimension of Tverberg points of order r will be at least k. This is so in the\generi
" 
ase. Reay 
onje
tured that it is enough to assume the points arein general position. Various spe
ial 
ases were re
ently proved by Roudne�[23℄, [24℄.In another dire
tion, I 
onje
tured that failing to have the \right" di-mension for the Tverberg points of order r implies the existen
e of a Tver-berg point of order r + 1.Conje
ture 1.3 (Kalai, 1974). For every A � Rd,jAjXr=1 dimTr(A) � 0 :
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(a) T1=2 ; T2=1 ; Ti=�1 ; i�3 (b) T1=2 ; T2=T3=0 ; T4=T5=�1 :Figure 2: Two planar 
on�gurations of �ve points.Note that dim; = �1. This 
onje
ture in
ludes Tverberg's theorem asa spe
ial 
ase: if jAj = (r � 1)(d+ 1) + 1 dimA = d and Tr(A) = ;, thenthe sum in question is at most (r � 1)d+ (jAj � r + 1)(�1) = �1.It may even be true that Conje
ture 1.3 holds if we repla
e Tr(A) bythe minimum of Tr(A0) over all 
on�gurations A0 of the same order typeas A.Kadari proved (around 1980) Conje
ture 1.3 for planar 
on�gurations.Cru
ial to his proof is the fa
t that in the plane (but not in higher dimen-sions), the 
onvex hull of Tverberg points of order r is pre
isely the (r�1)-
ore of A: The interse
tion of all subsets of A of 
ardinality jAj � (r � 1).(Of 
ourse, every Tverberg point of order r belongs to the (r � 1)-
ore.)1.5 Conditions for Tverberg partitions and graph 
olorings.1.5.1 Conditions for a Tverberg partition into 3 parts. Thefollowing problem seems important.Problem 1.4. Find 
onditions on the order type for a 
on�guration A ofm points (m < 2d + 3) in Rd that guarantee the existen
e of a Tverbergpartition into three parts.Note that de
iding the existen
e of Tverberg partitions into three partswhen m < 2d+ 3 is NP-
omplete, as will be
ome evident below, and doesnot depend only on the order type of the 
on�guration. However, I doexpe
t that there are useful topologi
al suÆ
ient 
onditions. Conje
ture1.3 gives one su
h 
ondition: dimT2(A) < jAj � d� 2.
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on�gurations from graphs. For a graphG = hV;Ei
onsider the 
on�guration of points in RV whi
h are the in
iden
e ve
torsof edges of the graph. Thus, the ve
tor asso
iated to an edge fu; vg hasthe value `1' in the 
oordinates that 
orrespond to u and v and the value`0' in all other 
oordinates.Problem 1.5. What 
an be said about aÆne dependen
ies and Radonpoints (and Tverberg points) of su
h point 
on�gurations?The Radon partitions of su
h 
on�gurations arising from graphs, es-pe
ially regular graphs, seem to be related to mat
hing theory for graphs[17℄.Note that a proper 3-
oloring for the edges of a 
onne
ted 
ubi
 graphG is equivalent to the existen
e of a Tverberg partition into 3 parts for thepoint 
on�guration 
orresponding to G. Indeed, given a Tverberg partitioninto 3 parts, 
olor every edge a

ording to the part it belongs to. Everyvertex whi
h is in
ident to one 
olored edge must be in
ident to three edges
olored with the 3 di�erent 
olors and therefore the 
olored edges des
ribea proper 3-
oloring of some 
ubi
 subgraph. Sin
e G is 
onne
ted this mustbe the entire graph.1.5.3 The four 
olor theorem. The four 
olor theorem (Appel-Haken, 1977, see [28℄) asserts that every planar map is four 
olorable. Anequivalent formulation of the four 
olor theorem is: Every 2-
onne
ted 
ubi
planar graph is 3-edge 
olorable. (A 
ubi
 graph or a 3-regular graph isa graph all of whose verti
es have degree 3. A graph is 2-
onne
ted if itremains 
onne
ted after deleting every vertex.)Now, 
onsider a 
on�guration of points P 
orresponding to a 
ubi
planar graph with n verti
es. Note, we have 3n=2 points in a (n � 1)-dimensional spa
e. (If G is bipartite, these points are in a (n� 2)-dimen-sional subspa
e.) Finding suÆ
ient 
onditions for the existen
e of Tverbergpartitions when the number of points is smaller than 2d + 3 may thus berelevant to �nding new avenues towards the 4-
olor theorem (and its manyopen generalizations).Remarks. 1. The idea of trying to relate Tverberg's theorem and thefour 
olor theorem (in a di�erent way) goes ba
k to Tverberg himself.2. There are, of 
ourse, 2-
onne
ted 
ubi
 graphs whi
h are not 3-edge
olorable. The most famous example is the Petersen graph (identify pairs ofantipodal verti
es in the graph of the dode
ahedron). It is worth noting thatthe 2-
ore of point 
on�gurations asso
iated to 2-
onne
ted 
ubi
 graphs isalways nonempty. (The 2-
ore is the interse
tion of all 
onvex hulls of all



Vol. 10, 2000 COMBINATORICS WITH A GEOMETRIC FLAVOR 7but two of the points.)3. The Radon partitions of a set A of d+2+k points in Rd 
orrespondto the fa
es of a k-dimensional zonotope. Every point in the boundary ofthis zonotope 
orresponds to a (normalized) aÆne dependen
e of the pointsand is mapped to a Radon point of A. This map maps two antipodal pointson the zonotope to the same Radon point and thus indu
es a map fromRP k to Rd whose image is the Radon points of A.For generi
 3n=2 points in Rn�1 the Radon points form an embeddingof the (n=2 � 1)-dimensional real proje
tive spa
e into Rn�1. The 
ase of
on�gurations of points arising from graphs is, of 
ourse, highly non-generi
.1.6 Other problems and 
onne
tions.1.6.1 Halving hyperplanes and 
olored Tverberg's theorems.An important problem in 
ombinatorial geometry is to determine the max-imal number of ways a 
on�guration of 2m points in Rd 
an be dividedinto two equal parts by a hyperplane. More generally, to determine themaximum number of ways a 
on�guration of n points in Rd 
an be dividedby a hyperplane to parts of sizes k and n� k (see [6℄). Equivalently, this isthe minimal possible number of Radon partitions into two equal parts (orparts of pres
ribed sizes).Even in the plane there is a substantial gap between the best knownlower bound C1n � exp(plogn) (Toth, [29℄) and the upper bound C2n4=3(Dey, [13℄).The planar 
ase of the problem is 
losely related to the following alge-brai
 question: Given a redu
ed (=minimal) representation of a permuta-tion in Sn as the produ
t of adja
ent transpositions, what is the maximumnumber of appearan
es of a spe
i�
 transposition? To see the 
onne
tion,proje
t the points on a line and slowly rotate the line (see [15℄).For dimension d, it is easy to bound the maximal number of halvinghyperplanes between nd�1 and nd. Toth's lower bound extends to a lowerbound of nd�1 �exp(plogn) in any dimension. In spa
e, the best known up-per bound is n5=2 [26℄. In higher dimensions, the only known way for �ndingupper bounds for the halving hyperplane problem is via generalizations ofTverberg's theorem for 
olored 
on�gurations of points. Remarkably, theonly proofs of these generalizations are by the topologi
al method [33℄, [34℄.This gives, in every dimension d, an upper bound for the number of halvinghyperplanes of the form nd�
d , for some 
d > 0.
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kho�'s partition 
onje
ture. Ek
ho� raised the possi-bility of �nding a purely 
ombinatorial proof of Tverberg's theorem basedon Radon's theorem. He 
onsidered repla
ing the operation \taking the
onvex hull of a set A" by an arbitrary 
losure operation.Let X be a set endowed with an abstra
t 
losure operation X ! 
l(X).The only requirements from the 
losure operation are: (1) 
l(
l(X)) =
l(X) and (2) A � B implies 
l(A) � 
l(B).De�ne tr(X) to be the largest size of a (multi)set in X whi
h 
annotbe partitioned to r parts whose 
losures have a point in 
ommon. E
kho�
onje
tured that always tr � t2 � (r� 1) :Thus, if X is the set of subsets of Rd and 
l(A) is the 
onvex hulloperation then Radon's theorem asserts that t2(X) = d+ 1 and E
kho�'spartition 
onje
ture redu
es to Tverberg's theorem.1.7 Some links and referen
es. The reader will �nd additional referen
esto earlier works and survey papers in the more re
ent ones. Personal web sites(listed before the referen
es at the end of the paper) will be 
ited by the nameappearing in square bra
kets. Many of the papers in the referen
es as well asrelated ones 
an be found there. The handbooks [3℄, [2℄, [1℄ 
ontain many 
hapterswhi
h are relevant to this paper and we 
ite only a few.Helly and Radon type theorems [14℄, [20℄; topologi
al proofs of Radon typetheorems [8℄, [18℄, [31℄, [33℄, [34℄; 
ombinatorial geometry [22℄; topologi
al methodsin 
ombinatori
s [9℄, [32℄; oriented matroids [10℄; halving lines and hyperplanes[6℄, [7℄, [26℄; 
olorings of graphs [16℄, [5℄; developments 
on
erning the four 
olortheorem [28℄; mat
hing theory [17℄; graph theory [11℄; a Radon type theorem ofLarman whi
h deserves simple proofs and better understanding [19℄.Proofs, more proofs, \proofs from the book" and 
omputer proofsS
ien
e has a dual role: exploring and explaining. In mathemati
s, unlikeother s
ien
es, mathemati
al proofs are used as the basi
 tool for bothtasks: to explore mathemati
al fa
ts and to explain them.The meaning of a mathemati
al proof is quite stable. It seems unharmedby the \foundation 
risis" and the in
ompleteness results at the beginningof the 20th 
entury, and una�e
ted by the re
ent notions of randomizedand intera
tive proofs in theoreti
al 
omputer s
ien
e. Still, long and 
om-pli
ated proofs, as well as 
omputerized proofs, raise questions about thenature of mathemati
al explanations.Proofs are gradually be
oming intolerably diÆ
ult. This may suggest
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essfully ta
kling a large per
entage of the problemswe pose will soon be over. This may also re
e
t the small in
entives tosimplify.Be that as it may, we 
annot be satis�ed without repeatedly �ndingnew 
onne
tions and new proofs, and we should not give up hope of �ndingsimple and illuminating proofs that 
an be presented in the 
lassroom. Forsome \proofs from the book", see the lovely book by Aigner and Ziegler [4℄.Some believe that 
omputer proofs will take over [Zeilberger℄. Appeland Haken's proof of the four 
olor theorem was a landmark in this respe
t.The role of 
omputers in exploring mathemati
al fa
ts is already signi�
ant.As for explaining mathemati
al fa
ts, it raises, for instan
e, the question\Explaining to whom? To humans, or to other 
omputers?"2 Polytopes and Algebrai
 Combinatori
s: How General isthe Upper Bound Theorem?2.1 Cy
li
 polytopes and the upper bound theorem.2.1.1 Cy
li
 polytopes. Consider the moment 
urve x(t) =(t; t2; : : : ; td) � Rd. The 
y
li
 polytope C(d; n) is the 
onvex hull of n(distin
t) points x(t1), x(t2); : : : ; x(tn) on the moment 
urve. The fa
estru
ture does not depend on the 
hoi
e of these points.Cy
li
 polytopes are d=2-neighborly, namely the 
onvex hull of every setof k verti
es forms a fa
e of the polytope when k � d=2. Thus fk(C(d; n)),the number of k-dimensional fa
es (in brief, k-fa
es) of C(d; n) is � nk+1�,whenever k < d=2. Cy
li
 polytopes were dis
overed by Carath�eodory andwere redis
overed by Gale, who des
ribed their fa
e-stru
ture.2.1.2 The upper bound theorem. The upper bound theorem(UBT), 
onje
tured by Motzkin in 1957, asserts that the fa
e numbers of ad-polytope with n verti
es are bounded from above by the fa
e numbers ofthe 
y
li
 d-polytope with n verti
es. This 
onje
ture is of spe
ial interestin 
onne
tion with optimization, be
ause it gives the maximum number ofverti
es that 
an be possessed by a d-polytope P de�ned by means of nlinear inequality 
onstraints; hen
e it represents the maximum number oflo
al stri
t maxima that 
an be attained by a 
onvex fun
tion over P .The assertion of the upper bound theorem was proved for polytopes(M
Mullen, 1970 [73℄), for simpli
ial spheres (Stanley, 1975 [79℄, [82℄) andfor simpli
ial manifolds with either vanishing middle homology or the sameEuler 
hara
teristi
 as a sphere (Novik, 1998 [74℄). It was also been proved



10 GIL KALAI GAFA2000when n is large w.r.t. d (n � d2=4, will do) for all Eulerian simpli
ial
omplexes (Klee, 1964 [65℄. (An Eulerian simpli
ial 
omplex is a puresimpli
ial 
omplex in whi
h the link of ea
h simplex has the same Euler
hara
teristi
 as the sphere of the appropriate dimension.)2.1.3 A stronger form of the UBT. A stronger version of theUBT (referred to, below, as SUBC: strong upper bound 
onje
ture) wasproved for simpli
ial d-polytopes and full dimensional sub
omplexes of theirboundary 
omplexes by Kalai [62℄. It asserts (roughly) that for every k,0 � k < d � 1, if one �xes the number of k-dimensional fa
es, then thenumber of (k + 1)-dimensional fa
es is maximized by a 
y
li
 d-polytope.(More pre
isely, it gives a bound on the number of (k+1)-fa
es in terms ofthe number of k-fa
es that is similar in form to the Kruskal-Katona theo-rem, whi
h provides a similar bound for arbitrary simpli
ial 
omplexes.) I
onje
ture that the SUBC applies to arbitrary polytopes (and more general
omplexes 
onsidered below).The SUBC was also motivated by a problem from optimization, namelyby an attempt to show expansion properties of graphs of d-polytopes. How-ever, appli
ations in this dire
tion were quite limited.2.2 Stanley-Reisner rings and their generi
 initial ideals (alge-brai
 shifting). Stanley's proof of the upper bound theorem for triangu-lation of spheres relies on the notion of the Stanley-Reisner ring asso
iatedto a simpli
ial 
omplex and on the fa
t that this ring is Cohen{Ma
aulay.We will des
ribe below an algebrai
 statement 
on
erning generi
 initialideals of the Stanley-Reisner rings whi
h implies the strong upper boundtheorem.Let me �rst explain the situation informally. The Stanley-Reisner ringis 
onstru
ted by asso
iating to ea
h vertex i of a simpli
ial 
omplex avariable xi, and 
onsidering the ring of monomials whi
h \live" on the
omplex. Consider next generi
 linear 
ombinations of these variables y1,y2; : : : ; yn and a Gr�obner basis for this ring w.r.t. monomials in the newvariables. This 
onstru
tion asso
iates to every simpli
ial 
omplex K abasis of monomials GIN(K) (in the new variables) whi
h re
ord manytopologi
al, 
ombinatorial and algebrai
 properties of K.An algebrai
 statement for a (d� 1)-dimensional simpli
ial 
omplex Kwhi
h immediately implies the UBT, and in fa
t also the SUBC, is thatGIN(K) is a subset of GIN(C(d; n)), where n is the number of verti
esof K and C(d; n) is the boundary 
omplex of a 
y
li
 d-polytope with nverti
es. When K is isomorphi
 to the boundary 
omplex of a simpli
ial
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hetz Theorem for tori
varieties; see [62℄.Here is a more a

urate des
ription of the Stanley-Reisner ring andGIN(K). Asso
iate to ea
h vertex i of a simpli
ial 
omplex K a variablexi and 
onsider the quotientR(K) = R[x1; x2; : : : ; xn℄=I ;where I is the ideal spanned by monomials xi1 �xi2 � � �xir with fi1; i2; : : : ; irg=2 K.Consider now y1; y2 : : : ; yn, whi
h are n generi
 linear 
ombinations ofx1; x2 : : : xn and 
onstru
t the Gr�obner basis GIN(K) w.r.t. the lexi
o-graphi
 order on the monomials in the yi's. (Clearly, all monomials in theyi's span the ring R(K).) Thus, a monomial m belongs to GIN(K) ifand only if its image em in R(K) is not a linear 
ombination of (imagesof) monomials whi
h are lexi
ographi
ally smaller. (Re
all that the lexi
o-graphi
 order is de�ned as follows: m1 <L m2 if the variable with smallestindex whi
h divides pre
isely one of the two monomials divides m1. Thusy21 <L y1y2 <L y1y3 <L � � �<L y1yn <L y22 <L � � � .)2.3 How general is the upper bound theorem?2.3.1 Witt spa
es. Witt spa
es [56℄, [77℄, [50℄ are orientable tri-angulated pseudomanifolds K su
h that for every K 0 whi
h is an even-dimensional (proper) link of a fa
e ofK, the (middle perversity) interse
tionhomology IHdimK0=2(K 0) vanishes. For these spa
es middle perversity in-terse
tion homology is de�ned and satis�es Poin
ar�e duality. These spa
esin
lude all (real) manifolds and (
omplex, possibly singular) algebrai
 va-rieties.We 
ome now to the main 
onje
ture of this se
tion.Conje
ture 2.1. (i) For every triangulation K of a Witt spa
e withvanishing middle interse
tion homologyGIN(K) � GIN�C(d; n)� : (2.1)(ii) The strong upper bound 
onje
ture holds for arbitrary polyhedral
omplexes (and even for all regular 
ell 
omplexes whose fa
e-poset forma latti
e) whose underlying spa
e is a Witt spa
e with vanishing middleinterse
tion homology.



12 GIL KALAI GAFA2000What seems to be needed for a proof is an interpretation of interse
tionhomology for simpli
ial pseudomanifolds in terms of the Stanley-Reisnerring and generi
 initial ideals. For the polyhedral 
ase, what is neededis a suitable analog of the Stanley-Reisner ring. For this purpose too,interse
tion homology may play a 
ru
ial role. Interse
tion homology oftori
 varieties already plays an important role in the 
ombinatorial studyof (rational) polytopes [51℄, [81℄ (see below).2.3.2 Embeddability. The upper bound theorem seems 
losely re-lated to questions 
on
erning embeddability. At the root of things is theassertion that K5, the 
omplete graph on 5 verti
es, 
annot be embeddedin the plane.Van Kampen proved that the r-skeleton of �2r+2 (the (2r + 2)-dimen-sional simplex) 
annot be embedded inR2r. It seems that this property and
orresponding lo
al properties (for links of fa
es) would imply the assertionsof the UBT, SUBC and relation (2.1). To understand su
h a 
onne
tionit will be useful to know if the Van Kampen theorem holds when R2r isrepla
ed by any 2r-dimensional manifold with vanishing middle homology,or even by any Witt spa
e with vanishing middle interse
tion homology.2.3.3 An upper bound 
onje
ture for j-sets. Emo Welzl [88℄has re
ently proposed another far-rea
hing extension for the upper boundtheorem. Given a 
on�guration A of n points in general position in Rd
onsider the set of all hyperplanes, Hj , whi
h are determined by points inA and have at most j verti
es in one of their (open) sides (
ompare se
tion1.6.1). For j = 0 these are supporting hyperplanes for 
onv(A). Next, letajr(A) be the number of r-dimensional simpli
es whi
h are determined bypoint in A and belong to a hyperplane in Hj . (For j = 0 these are justr-fa
es of 
onv(A).) Welzl asked whether ajr(A) is maximized for every rand j by n points on the moment 
urve in Rd. For j = 1 this is just theUBT and it is also known to be true for every j when d = 2 (Alon andGyori) and when d = 3 (Welzl).2.4 Duality and h-numbers. I have des
ribed very general 
ases forwhi
h I 
onje
ture that the UBT and even the SUBC hold, and a strongproperty of GIN(K) needed to prove these 
onje
tures. However, thesestrong algebrai
 and 
ombinatorial 
onje
tures are known only in very lim-ited 
ases. For the known 
ases of the UBT, weaker 
ombinatorial andalgebrai
 statements are suÆ
ient if 
ertain duality relations are also used.



Vol. 10, 2000 COMBINATORICS WITH A GEOMETRIC FLAVOR 132.4.1 The Dehn{Sommerville relations. For a (d � 1)-dimen-sional simpli
ial manifold K de�ne its h-numbers by the relation:dXk=0 hk(K)xd�k = dXk=0 fk�1(K)(x� 1)d�k: (2.2)The Dehn{Sommerville Relations asserts that ifK is the boundary 
om-plex of a simpli
ial polytope thenhk(K) = hd�k(K): (2.3)In fa
t, these relations hold whenever K is Eulerian simpli
ial 
omplex,namely K and all links of fa
es of K have the same Euler 
hara
teristi
sas a sphere of the same dimension.2.4.2 The Cohen{Ma
aulay property. For Stanley's proof of theUBT when K is a simpli
ial sphere we need to know in addition to theDehn{Sommerville relations that R(K) is a Cohen{Ma
aulay ring. WhenR(K) satis�es the Cohen{Ma
aulay property, then hk(K) is the num-ber of monomials of degree k in GIN(K) whi
h use only the variablesyd+1; yd+2; : : : ; yn. Novik [74℄ used GIN(K) to prove the UBT for sev-eral 
lasses of simpli
ial manifolds and she relied on the fa
t that R(K) isstill 
lose enough to being a Cohen{Ma
aulay ring (the te
hni
al term isBu
hsbaum ring). In addition, she needed the analogs of Dehn{Sommervillerelations and Poin
ar�e duality. We would like to have a better understand-ing of these duality relations in terms of GIN(K) and for more general
lasses of simpli
ial 
omplexes.2.4.3 Partial unimodality and the Braden{Ma
Pherson the-orem. The fa
e numbers of polytopes are not unimodal. Indeed, the fa
enumbers of the 
y
li
 polytope are highly 
on
entrated near dimension 3d=4and therefore, by gluing a 
y
li
 polytope and its dual, you will get twopeaks at d=4 and at 3d=4. To get a simpli
ial example glue a 
y
li
 poly-tope to the 
ross polytope (with roughly the same total number of fa
es).You will get two peaks at 3d=4 and at 2d=3.An appealing appli
ation (using an argument of Bj�orner [47℄) of theSUBC for general polytopes will be:Conje
ture 2.2. The fa
e numbers fi of d-polytopes are nonde
reasingfor i � [(d+ 3)℄=4 and nonin
reasing for i � [3(d� 1)=4℄.It is possible that this 
onje
ture as well as a suitable (weaker) version ofthe SUBC will follow in a purely 
ombinatorial way from a re
ent result by
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Pherson [51℄ whi
h relates the 
ombinatori
s of a polytopewith that of fa
es and quotients.M
Mullen's original proof of the upper bound theorem relied on theobservation that for a simpli
ial polytope P and a vertex v,hk�lk(v; P )� � hk(P ) : (2.4)Here, lk(v; P ) is the link of v in P and hk is the h-number mentionedabove.The result of Braden and Ma
Pherson is a sharpening as well as afar-rea
hing generalization of (2.4) for general polytopes. (It is proved,however, only for rational polytopes.) I will now state this result withoutexplaining properly the ba
kground and I refer the reader to [51℄, [81℄, [63℄for more. For a d-polytope P lethP (x) = dXk=0 hi(P )xk ; gP (x) = [d=2℄Xi=0 gk(P )xk :Here hk(P ) = dim IH2k(TP ), and gk(P ) = hk(P ) � hk�1(P ), where TP isthe tori
 variety asso
iated to P and IH is interse
tion homology. (Thequantities dimIHk(TP ) 
an be des
ribed in a purely 
ombinatorial wayfrom the fa
e stru
ture of P and when P is simpli
ial this is just hk.)Braden and Ma
Pherson proved that for every rational polytope P and afa
e F of P , gP (x) � gF (x)gP=F (x) : (2.5)(Namely, every 
oeÆ
ient of the polynomial in the left hand side is atleast as large as the 
orresponding 
oeÆ
ient on the right hand side.)The Braden{Ma
Pherson inequality has already been used by Bayer [41℄to dedu
e a very sharp form of the UBT for general (rational) polytopes.2.4.4 Other duality relations. The Dehn{Sommerville duality re-lations hk(P ) = hd�k(P ) applies for arbitrary Eulerian simpli
ial 
om-plexes. For simpli
ial polytopes this numeri
al duality manifests Poin
ar�eduality for the asso
iated tori
 varieties. When we adopt the 
ombinatorialformulas of interse
tion homology the relations hk = hd�k extend even toarbitrary Eulerian partially ordered sets. For tori
 varieties asso
iated torational polytopes these duality relations manifest Poin
ar�e duality for in-terse
tion homology. In 
ommutative algebra this duality relations manifestthe Gorenstein property for the Stanley-Reisner ring of homology spheres.Another important notion of duality is duality between polytopes givenby the polar polytope. (Thus, the 
ube is dual to the o
tahedron, the
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ahedron is dual to the i
osahedron and the tetrahedron is self-dual.)In 1985 I observed some mysterious numeri
al formulas relating h-numbersof a polytope and those of its dual. The simplest non-trivial relation ofthis type asserts that for every 4-dimensional polytope g2(P ) = g2(P �)[61℄. Some extensions were proved by Bayer and Klapper and by Stanley[81℄ who realized the 
orre
t 
ombinatorial 
ontext (in
iden
e algebras) forunderstanding these formulas. Geometri
 or algebrai
 understanding ofthese relations is still missing but for very spe
ial 
ases of tori
 varieties(whi
h give rise to Calabi{Yaumanifolds) it turned out that these numeri
alrelations manifest mirror symmetry [39℄.Added in proof. Tom Braden has re
ently found an algebrai
 explanationfor these duality relations via Koszul's duality.Yet another important notion of duality is duality of oriented matroidswhi
h in
ludes the notions of Gale transform and linear programming du-ality as spe
ial 
ases (see [10, Chapter 10℄). The e�e
t of this duality onthe 
ombinatorial notions dis
ussed here (as well as on the algebrai
 andgeometri
 ones) is yet to be explored.2.5 Neighborliness.2.5.1 Neighborly polytopes and spheres. For an extremal 
om-binatorial problem, studying the 
ases of equality is often as important asproving the inequality. Equality for the upper bound theorem is attained byall neighborly d-polytopes, namely polytopes for whi
h every [d=2℄ verti
esform a fa
e.Neighborly polytopes form an ex
iting but mysterious 
lass of polytopes(see [76℄). Their fa
e numbers are determined by the number of verti
es. Itis 
onje
tured that every simpli
ial polytope is the quotient (link) of an evendimensional neighborly polytope [67℄. (The same 
onje
ture 
an be madefor simpli
ial spheres.) For a generalization of the notion of neighborlypolytopes to the nonsimpli
ial 
ase, see Bayer [40℄.2.5.2 Triangulations of manifolds. Triangulations of 2k-dimen-sional manifolds 
an be even (k+1)-neighborly. An example is the 6-vertextriangulation of the 2-dimensional proje
tive plane obtained by identifyingthe opposite fa
es of the i
osahedron. This is quite a fundamental 
om-binatorial obje
t and its dual graph is no other than the Petersen graph.Heawood, who around 1890 studied 
olorings of graphs embedded onsurfa
es (in the 
ontext of extending the four 
olor 
onje
ture), 
onje
tured
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4 56231Figure 3: The 6 vertex triangulation of the real proje
tive planethat Kn (the 
omplete graph on n verti
es) 
an be embedded in a surfa
eM (ex
ept for the Klein bottle) if and only ifn � �7 +p49� 24�(M)� :(Here, �(M) is the Euler 
hara
teristi
 of M .) Su
h embeddings giving2-neighborly triangulations of M were indeed found in all 
ases by Ringeland Youngs (in some 
ases with other 
oauthors). See Ringel's book [75℄.However, there are only a handful of examples of (k + 1)-neighborly2k-manifolds, for k > 1 (see [68℄). Perhaps the most famous example is theremarkable 9-vertex triangulation of the 
omplex 2-dimensional proje
tivespa
e by K�uhnel and Lassman (see [70℄, [69℄).In K�uhnel's own words [68℄: \To 
onstru
t the triangulation we denotethe nine verti
es by 1,2,3, ..., 9 and take the union of the 4-dimensionalsimpli
es 12456 and 12459 under the a
tion of a group of permutationsH54generated by: � = (147)(258)(369), � = (123)(465) and 
 = (12)(45)(78).This group is a 2-fold extension of the Heisenberg group over Z3. 
 
or-responds to the a
tion of the 
omplex 
onjugation, in fa
t its �xed pointset is 
ombinatorially isomorphi
 to the 6-vertex triangulation of the realproje
tive plane."Novik [74℄ proved an extension of the upper bound theorem for all tri-angulations of manifolds and it is plausible that this theorem, and a related
onje
ture by K�uhnel 
on
erning how large the Euler 
hara
teristi
 
an be,
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es.2.5.3 Neighborly embedded manifolds. The moment 
urve x(t)= (t; t2; : : : ; td) � Rd is an example of 1-dimensional [d=2℄-neighborly mani-folds inRd. Namely for every [d=2℄ points on the 
urve there is a hyperplanewhi
h supports the 
urve pre
isely at these points.While there are many di�erent neighborly polytopes there is only one(in terms of order types) [d=2℄-neighborly embedding of R into Rd, for deven. Moreover, for d even, the moment 
urve is the only order type ofan embedding of R into Rd where all points are in general position. Thisindi
ates that the as yet unexplored area of understanding the \order type"of nondis
rete subsets in Rd (su
h as embedded manifolds) may exhibitsome simpler phenomena than the dis
rete (�nite) 
ase.Perles asked: what is the smallest dimension d(k; n) of the ambient spa
ein whi
h a k-neighborly n-dimensional manifold exists? A simple dimension
ount shows that we must have d(k; n) � (k + 1)n. On the other hand,a straightforward extension of the moment 
urve gives a bound for d(k; n)whi
h is exponential. Kalai and Wigderson found a simple 
onstru
tionshowing a polynomial upper bound on d(k; n), and Vassiliev [86℄ showedby an intri
ate topologi
al argument that d(k; n) � 2kn � bin(n), wherebin(n) is the number of ones in the binary expansion of n.2.6 Other problems and 
onne
tions.2.6.1 Clique 
omplexes and spheres. Start from a graph G and
onsider its 
lique 
omplex K(G), a simpli
ial 
omplex whose fa
es 
orre-spond to the 
omplete subgraphs of G. Understanding the possible fa
enumbers of su
h 
omplexes is an important problem in extremal 
ombi-natori
s related to Turan's theorem; see [49℄, [72℄. Suppose that K(G) isa triangulated sphere. What 
an be said then? Charney and Davis [52℄formulated a 
onje
ture 
on
erning the fa
e numbers of su
h 
omplexeswhi
h is 
losely related to 
onje
tures of Hopf on the Euler 
hara
teris-ti
 of manifolds M with nonpositive se
tional 
urvature. For some re
entdevelopments, see [71℄.2.6.2 Cubi
al upper bound theorems. Cubi
al 
omplexes seemof equal importan
e yet quite di�erent from simpli
ial 
omplexes, and mu
hless is known about them. (A stru
ture of a 
ubi
al 
omplex on a manifoldseems to tell more on the geometry of the manifold.) Only re
ently some
ubi
al analogs of the 
y
li
 polytopes were 
onstru
ted. Joswig and Ziegler[60℄ 
onstru
ted d-polytopes with 2n verti
es with [d=2℄-skeletons of the n-
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ube. Previously, Babson, Billara and Chan [38℄ 
onstru
ted
ubi
al spheres with this property and found 
onne
tions between questionson immersions of manifolds and the existen
e of 
ertain 
ubi
al spheres.There are analogs for 
y
li
 polytopes, but the analog of the upper boundtheorem is false for spheres and probably also for polytopes. Adin [35℄found the right notion of h-numbers, but a 
onstru
tion for a \
ubi
alStanley-Reisner ring" is yet unknown.2.7 Some links and referen
es. Polytope theory [89℄, [58℄, [59℄, [42℄, [66℄,[46℄, [78℄ [Ziegler℄; fa
e numbers and h-numbers of polytopes and 
omplexes [43℄,[48℄, [45℄, [80℄, [63℄, open problems [85℄; 
ubi
al spheres and polytopes [38℄, [60℄;a 
ontinuous version of the UBT [87℄; Kuhnel's CP 2 and other spe
ial triangu-lations [70℄, [69℄, [68℄; Kruskal-Katona theorem and related results [54℄; Turantype theorems [49℄, [55℄; 
ommutative algebra and 
ombinatori
s [82℄, [53℄ [Her-zog℄, [Bayer℄; generi
 initial ideals and algebrai
 shifting [48℄, [74℄, [37℄, [57℄, [53℄[Herzog℄,[Bayer℄,[Kalai℄; interse
tion homology [56℄, [50℄, and some 
ombinatorialappli
ations [81℄, [51℄; h-numbers and polytope duality [81℄, [63℄, and mirror sym-metry [39℄; algebrai
 
ombinatori
s �a la Stanley [Stanley℄ [44℄, [82℄, [83℄, [84℄, [85℄;Various proofs for the UBT: for Eulerian 
omplexes with many verti
es [65℄, forpolytopes using shellability [73℄, a simple dual form using linear obje
tive fun
-tions, [187℄, for spheres using the Cohen{Ma
aulay property [79℄, using shellabilityand the Cohen{Ma
aulay property [64℄, using shellability and a strong form of anextremal theorem of Bollob�as [36℄, for manifolds, using relations between fa
enumbers and Betti numbers of Bu
hsbaum rings [74℄, a strong form for generalpolytopes using the Braden{Ma
Pherson theorem [73℄.Problems and 
onje
turesThe posing of problems and 
onje
tures is part of the pro
ess of exploringthe fa
tual matters as well as of proposing explanations for them. Is thedevelopment of mathemati
s shaped by problems? And what are goodproblems? Do they arise naturally like the sphere-pa
king 
onje
ture, orare they perhaps sporadi
 and ingenious like Fermat's last theorem and thefour 
olor problem? To what an extent are good mathemati
al problemssuggested by other s
ien
es?Modern 
ombinatori
s was greatly shaped by problems posed by Erd}os,who was very 
autious 
on
erning our ability to predi
t the future of aproblem.
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 Combinatori
s: the Dis
reteCube and In
uen
e of Variables3.1 In
uen
e of variables on Boolean fun
tions.3.1.1 The dis
rete 
ube. We 
onsider the dis
rete 
ube 
n =f�1; 1gn and will try to understand real and Boolean fun
tions de�nedon 
n. Boolean fun
tions on 
n are of 
ourse in 1-1 
orresponden
e withsubsets of 
n. It turns out that many spe
i�
 problems in extremal 
om-binatori
s, probability, mathemati
al physi
s and theoreti
al 
omputer s
i-en
e 
an be formulated in terms of Boolean or real fun
tions on 
n andthat general properties of su
h fun
tions are very useful.For x; y 2 
n the Hamming metri
 d(x; y) is de�ned by d(x; y) = jfi :xi 6= yigj. Some related metri
s will also be 
onsidered.Denote by 
n(p) the dis
rete 
ube endowed with the produ
t probabilitymeasure Pp, where Ppfx : xj = 1g = p. Usually, we 
onsider the uniformmeasure p = 1=2. (More general measures like FKG-measures should alsobe 
onsidered, but we will not attempt doing it here.)Notation: In addition to the standard big O and little o notation weuse the following notation: For positive real fun
tions f(x) and g(x), wewrite f(x) = �(g(x)) if, for some positive 
onstants 
1 and 
2, 
1g(x) �f(x) � 
2g(x), as x tends to in�nity. We write f(x) = 
(g(x)) if for somepositive 
onstant 
, f(x) � 
g(x).3.1.2 In
uen
e of variables. Consider an event A � 
n(p) andthe asso
iated Boolean fun
tion f(x1; x2; : : : ; xn) = �A, the 
hara
teristi
fun
tion of A. The in
uen
e of the variable k on the Boolean fun
tion f ,denoted by Ipk(f) (and also by Ipk(A)), is the probability that 
ipping thevalue of xk will 
hange the value of f . The total in
uen
e Ip(f) equalsP Ipk(f). We de�ne also IIp(f) =P(Ipk (f))2. (We will not use the super-s
ript p for p = 1=2.)In
uen
e of variables (in a mu
h greater generality) was introdu
ed andstudied by Ben-Or and Linial [99℄ in the 
ontext of \
olle
tive 
oin 
ipping",an important notion in theoreti
al 
omputer s
ien
e. The problem they
onsidered is, in short: \Is there a proto
ol for a so
iety of n pro
essors toprodu
e a random bit immune against a situation where a fra
tion of thepro
essors is 
heating?" Having ea
h pro
essor produ
e a single randombit, and using a Boolean fun
tion to produ
e the \
olle
tive bit" is a simplesu
h proto
ol. But it turns out (from Theorem 3.3 below) that it 
an neverbe immune against w(n)n= logn 
heaters, when w(n) tends to in�nity with
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ol immune against 
(n) 
heaters was found by Alonand Naor [92℄, see also Feige [110℄.

Figure 4: Two steps in Feige's proto
ol for a 
olle
tive 
oin 
ipping. The agentsenter a random room and the pro
ess 
ontinues with the room with the leastnumber of agents.Ik(f) is essentially identi
al to the Banzha� value in game theory. In[99℄, in
uen
e of larger sets of variable is also 
onsidered.A fun
tion f is monotone if its value does not de
rease when we 
ip thevalue of a variable from -1 to 1. Some basi
 fa
ts on in
uen
es are givenby:Theorem 3.1 (Loomis-Whitney, Hart, Harper).X Ik(f) � P(A) log�1=P(A)� :Theorem 3.2 (Banzha�). For monotone Boolean fun
tions f , II(f) � 1:



Vol. 10, 2000 COMBINATORICS WITH A GEOMETRIC FLAVOR 21The following result of Kahn, Kalai and Linial (KKL) has a 
entral rolein this se
tion.Theorem 3.3 (Kahn, Kalai and Linial, [119℄).maxk Ik(f) � KP(A) logn=n :Here, K is an absolute positive 
onstant. In fa
t, K = 1=2 will do.Note that this theorem implies that when all individual in
uen
es are thesame (e.g., when A is invariant under the indu
ed a
tion from a transitivepermutation group on [n℄), then the total in
uen
e is larger than C logn.For the ultimate sharpening of this result,nXk=1 Ipk (A)Æ� log(Ipk(A)� � KPp(A) ;see Talagrand [131℄.3.1.3 Russo's lemma and threshold intervals. For a monotoneevent A � 
n (i.e., �A is a monotone fun
tion), let Pp(A) be the measure ofA with respe
t to the produ
t measure Pp. Note that Pp(A) is a monotonefun
tion of p. Russo's lemma (see [115℄) asserts thatdP(A)dp = Ip(f) :Given a small real number � > 0, 
onsider the threshold interval [p1; p2℄where Pp1(A) = � and Pp2(A) = 1 � �. Denote by pC the value so thatPpC(A) = 1=2, and 
all it the 
riti
al probability for the event A. A basi
result of Bollob�as and Thomasson asserts that the threshold interval isalways bounded by a 
onstant times the 
riti
al probability. By Russo'slemma, large total in
uen
e around the 
riti
al probability implies a shortthreshold interval.3.1.4 Fourier-Walsh expansion. Consider a Boolean fun
tion fon 
n(1=2). Consider the Fourier-Walsh expansion f = PS�[n℄ bf(S)uS ;where uS = Qi2S xi. (For the 
ase of general p, see [131℄.)Now, kfk22 = P(A) = P bf2(S) (Parseval) and one 
an show thatI(f) = PS�[n℄ bf2(S)jSj: The result of Kahn, Kalai and Linial (Theorem3.3) follows using 
ertain hyper
ontra
tive estimates of Bonamie and Be
k-ner [95℄, [101℄. In re
ent years, harmoni
 analysis on Zn2 plays an importantrole in extremal and probabilisti
 
ombinatori
s and in 
omplexity theory.Bonamie's and related hyper
ontra
tive estimates are 
ru
ial for the proofsof several of the results dis
ussed in this se
tion.



22 GIL KALAI GAFA20003.1.5 Noise sensitivity. The e�e
t of random 
hanges in the vari-ables is 
alled the noise sensitivity of f . A 
lass of fun
tions is uniformlynoise stable if for every � > 0 there is Æ > 0 su
h that if you 
ip the valuesof Æn randomly 
hosen variables, the 
orrelation of the new value of f withthe original value is at least 1 � �. It 
an be shown that this is equiva-lent to the property that most of the 2-norm of f is 
on
entrated in smallFourier 
oeÆ
ients (i.e. f is well approximated (in `2) by a small degreepolynomial.) A sequen
e of Boolean fun
tions fm is (asymptoti
ally) noisesensitive if for every Æ > 0 the 
orrelation just de�ned tends to zero as mtends to in�nity. These 
on
epts were introdu
ed by Benjamini, Kalai andS
hramm [97℄ (we will mention some of their results below) and (in a dif-ferent language and motivations) by Tsirelson, who des
ribed remarkablerelations and appli
ations in [140℄, [128℄, [139℄ [Tsirelson℄.Start a simple random walk (SRW) from a random point in A. Howqui
kly will you 
onverge to the uniform distribution on 
n? If P(A) isbounded away from 0 and 1, the answer is O(n). For a sequen
e Am ofsu
h events, the answer is o(n) if and only if they are asymptoti
ally noisesensitive.3.2 Other general properties of subsets of the dis
rete 
ube.3.2.1 Dis
rete isoperimetri
 inequalities. For A � 
n and x 2A let h(x) be the number of neighbors of x whi
h are not in A. The vertexboundary of A denoted by �v(A) is the set of x 2 A with h(x) > 0.Theorem 3.4. Consider A � 
n.1: Given the size of A the vertex boundary of A is minimized for Ham-ming balls.2: More generally, for every �xed T > 0, the number of the points whosedistan
e fromA is at least T is maximized when A is a Hamming ball.Therefore,P�x 2 
n : d(x;A) > tpn	 � exp(�t2=2)=P(A) : (3.1)Talagrand [133℄, [135℄, [134℄ found several deep extensions and surpris-ing appli
ations of the isoperimetri
 inequality. A very useful sharpening isto repla
e d(x;A) by the Eu
lidean distan
e dT (x;A) from x to the 
onvexhull of the points in A (
onsidered as points in Rd).Theorem 3.5 (Talagrand isoperimetri
 inequality).Z
n(p) exp�14d2T (x;A)� � 1Pp(A) : (3.2)



Vol. 10, 2000 COMBINATORICS WITH A GEOMETRIC FLAVOR 23This inequality (in a dual formulation) is extremely useful for prov-ing tail-estimates [133℄, [135℄, [130℄. Inequalities (3.1), (3.2) manifest the\
on
entration of measure phenomenon". We use the term \hyper
on
en-tration" in 
ases where asymptoti
ally stronger inequalities are valid.For A � 
n(p) let B(A) = Rx2Aph(x). Talagrand proposed B(A) asthe \
orre
t" notion of boundary for A and proved it in [132℄ (sharpeninga result by Margulis).Theorem 3.6 (Margulis-Talagrand [132℄). Let A be an event in 
n(p),t = Pp(A) and Cp = min(p; q)=ppq, where q = 1� p. ThenB(A) � KCpt(1� t)plog(t(1� t)) :For related results see Bobkov and G�otze [102℄.3.2.2 FKG and Shearer's lemma. The simplest form of the FKGinequality states that two monotone events in 
n have a nonnegative 
or-relation. There are many extensions, variations and appli
ations; see [115℄,[106℄.Let Ji be subsets of [n℄ so that every element in [n℄ is 
overed at least rtimes. Let A � 
n be an event, H(A) its entropy and H(AjJi) the entropyfun
tion of A 
onditioned on the set of 
oordinates Ji. Shearer's lemma(for some appli
ations, see [109℄, [117℄, [113℄, [127℄) asserts:XH(A) � 1m mXi=1 H(XjJi) :(When Ji = [n℄nfig, Shearer's inequality is essentially the Loomis-Whitney inequality (Theorem 3.1, Part 1).)3.3 Advan
ed theorems on in
uen
es. The following theorem de-s
ribes in loose terms the main advan
ed general theorems about in
uen
es.Re
all that II(f) is the sum of the squares of the in
uen
es.Theorem 3.7 (Vague formulations). 1: [Talagrand℄, [136℄ For two mono-tone events A and B, a large inner produ
t of their in
uen
e ve
tors impliesa stronger FKG-inequality.2: [Talagrand℄, [137℄ A small value of II(f) implies a large Margulis-Talagrand boundary.3: [Bourgain and Kalai℄, [105℄ High symmetry implies large total in
u-en
e.4: [Friedgut, [111℄℄ For a 
onstant p, if the total in
uen
e is small, thenthe fun
tion is determined (approximately) by few 
oordinates.



24 GIL KALAI GAFA20005: [Friedgut, [112℄ and Bourgain, [104℄℄ When p tends to zero, boundedtotal in
uen
e implies that f is \lo
al".6. [Benjamini, Kalai and S
hramm℄, [97℄ For monotone events, sensi-tivity to noise is equivalent to having a small value of II(f).7: [Talagrand℄, [138℄ Small total in
uen
e implies hyper
on
entration inthe mean for the Hamming metri
.8: [Benjamini, Kalai and S
hramm℄, [98℄ A small value of II(f) implieshyper
on
entration in terms of the se
ond moment for Talagrand's metri
.Van Vu and Jeong Kim [143℄, [121℄ proved hyper
on
entration resultsfor events whi
h 
an be expressed by low-degree polynomials with small
oeÆ
ients.3.4 Two basi
 problems.Problem 3.1. 1. Chara
terize Boolean fun
tions for whi
h I(f) is small.Can su
h fun
tions be always approximated by small-depth small-sizeBoolean 
ir
uits? (See se
tion 3.5.10 below.)2. Find general 
onditions for I(f) � n� . Is this always the 
ase whenthere is a notion of a s
aling limit [90℄, [139℄, [164℄?3. Chara
terize Boolean fun
tions whose Fourier 
oeÆ
ients have asmall support. (For example, fun
tions for whi
h most of the 2-norm is
on
entrated on a polynomial number in n of Fourier 
oeÆ
ients.)Problem 3.2. 1. Let f be a real fun
tion on the dis
rete 
ube. Underwhi
h (
ombinatorial) 
onditions 
an we guarantee that the distribution off is 
lose to a normal distribution?2. Under whi
h 
onditions 
an you expe
t a distribution whi
h is more
on
entrated than normal? What kind of other distributions 
an you en-
ounter from \natural" fun
tions?3.5 Examples. We 
onsider now some examples of real and Booleanfun
tions de�ned on the dis
rete 
ube. Given a real fun
tion f , 
onsiderthe Boolean fun
tions ST (f) = sign(f(x) � T ). (Here, sign(x) = +1 ifx � 0 and sign(x) = �1, otherwise.) Consider also the important spe
ial
ase M(f) = ST (f), where T is the median value of f .3.5.1 Weighted majority. For weights w1; : : : ; wn 
onsider thefun
tions f(x) =Pwixi. The fun
tions ST (f) are 
alled weighted majorityfun
tions. The usual majority fun
tion (all wi's are equal and T = 0) isa spe
ial 
ase. For this example the in
uen
e of ea
h variable is C=pn.Another spe
ial 
ase is the fun
tion f(x1; x2; : : : ; xn) = x1. Here If (1) = 1
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tions are uniformly noise-stable [97℄. The Talagrand isoperimetri
 inequality is sharp for these fun
-tions and so is the Margulis-Talagrand inequality. More general examplesare low degree polynomials and their signs. See also Bru
k and Smolensky,[107℄.3.5.2 Majority of majorities, tribes, runs. Of 
ourse, we 
anpartition the set into parts and 
onsider the majority of majorities withvarious parameters. An important example is the tribe example of Ben-Orand Linial [99℄: Divide the variables into \tribes" of size logn � log lognand set f = 1 i� there is a tribe all of whose variables has the value 1.A related fun
tion is: Let f be the size of the longest run of `1's' and 
on-siderM(f). For these fun
tions the in
uen
e of every variable is �(logn=n)(whi
h is optimal by Theorem 3.3).3.5.3 Re
ursive majorities. Let n be a power of 3. Divide the setof variables into three parts, divide ea
h part into 3 parts, and 
ontinuelog3 n steps. Let f be the majority of majorities ... of majorities of the3-element sets and let A � 
n be the 
orresponding event [99℄. If you starta SRW from a random ve
tor of A you will 
ome very 
lose to a uniformdistribution on 
n in nlog2= log3 steps. Mossel and Peres pointed out thatrepla
ing 3 by a larger (but 
onstant) t the number of steps required isredu
ed to n1=2+Æ where Æ tends to 0 as t tends to in�nity.3.5.4 Random subsets of 
n and error 
orre
ting 
odes. Con-sider A, whi
h is not ne
essarily monotone. The parity fun
tionf(x1; x2; : : : ; xn) = x1x2 � � �xn is the most noise-sensitive with P(A) = 1=2.When log2 jAj = sn, 0 < s < 1, we 
an ask: how qui
kly 
an a SRWfrom a random uniformly 
hosen point of A rea
h a distribution that isalmost uniform on 
n? A reasonable guess is that the best 
hoi
e wouldbe to take A itself to be random. This is 
losely related to the 
onje
turethat the Gilbert-Varshamov bounds for 
odes are optimal (see [142℄).3.5.5 Cliques in graphs. This time, let the variables 
orrespond tothe n = �m2� edges of the 
omplete graph withm verti
es. Every assignmentof values to the variables 
orresponds to a graph: the graph whose edges
orrespond to the variables with value 1. Let f be the size of the largest
lique in this graph.Again 
onsider M(f). (The median value is �(logn).) In this examplethe in
uen
e of ea
h variable is �(log2 n=n). The threshold interval forhaving a 
lique of size a logn is �(1= log2 n).



26 GIL KALAI GAFA20003.5.6 General graph properties. More generally, every propertyof graphs on m verti
es (
onne
ted, planar, have diameter � 3, et
.) 
or-responds to a Boolean fun
tion on this set of �m2� variables. Bourgain andKalai [105℄ used their study of in
uen
es under symmetry (Theorem 3.7,Part 3) to show that for every graph property the threshold interval is ofsize at most 
�1= log2�� n, for every � > 0.The most important 
ases for random graph properties are when the
riti
al probability pC itself depends on n. Already, Erd}os and Renyi intheir paper whi
h introdu
ed random graph theory showed that many graphproperties (su
h as 
onne
tivity) have sharp threshold behavior, namely thethreshold interval is o(pC).Friedgut's theorem (Theorem 3.7, Part 5, [112℄) for graph properties
an be stated as follows:\If a graph property does not have a sharp threshold then it 
an beapproximated by the property of having a subgraph from a given �nitelist".For example, the property \to have a 
omplete subgraph with 4 ver-ti
es" has a 
oarse threshold. But the \
onne
tivity" property has a sharpthreshold sin
e it 
annot be approximated by having a subgraph from a �-nite list. Friedgut's theorem has many important appli
ations for showingsharp threshold behavior.3.5.7 Random formulas, the 3-SAT problem. Consider aBoolean formula with n variables of the form(x11 _ �x12 _ x13)^ (�x21 _ �x22 _ x23) ^ � � � ^ (xm1 _ xm2 _ �xm3) :It is an NP-
omplete problem to determine if the formula is satis�able.The problem of satis�ability of random formulas has drawn a lot of atten-tion re
ently. Friedgut [112℄ used his general 
riteria for bounded in
uen
eto show that there is a sharp threshold between values of m for whi
h theformula is almost surely satis�able and those for whi
h it is almost surelyunsatis�able.3.5.8 Crossing events in per
olation. Consider the graph of thek by m grid in the plane and let the variables 
orrespond to the edges (son is roughly 2km). Assume that the ratio k=m is bounded and boundedaway from zero. Consider the event of having a left-to-right 
rossing. Thein
uen
e of a variable is known in per
olation theory as \the probabilityfor an edge to be pivotal". I(f) is an important \
riti
al exponent" ofper
olation. It is 
onje
tured that I(f) = �(n3=8).
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ipal problem in per
olation theory is that the probability forhaving a 
rossing tends to a limit if the ratio of k and m is �xed and ktends to in�nity. This is a spe
ial 
ase of the (
onje
tured) existen
e of a\s
aling limit". In [97℄ it is shown that the 
rossing event is (asymptoti
ally)sensitive to noise.3.5.9 First passage per
olation. A simple (but representative)variant of �rst passage per
olation (FPP) 
an be des
ribed as follows. Con-sider the plane grid on whi
h the length of ea
h edge is assigned the value0 with probability 1/4 (any p < 1=2 will do) and 1 with probability 3/4.We would like to know: What is be the distribution of the distan
e D fromthe origin to the point (m;m)? Here the distan
e is the minimum over allpaths from the origin to (m;m) of the sum of lengths of edges in that path.D is a real random variable de�ned on n Boolean variables where n 
or-responds to all the edges of the grid in some large region 
ontaining (0; 0)and (m;m). There are many ex
iting geometri
 and probabilisti
 problems
on
erning FPP.Kesten showed that the varian
e of D is O(m), and another simpleproof with sub-Gaussian tail estimates was given by Talagrand [133℄ usinghis isoperimetri
 inequality. In
uen
es and noise sensitivity (parts 5 and 7of Theorem 3.7) are used in [98℄ to show that for FPP \on the torus" (andon a large 
lass of symmetri
 graphs) the varian
e of D is a
tually o(m). Itis suggested by physi
ists that the varian
e behaves likem2=3 and it is evenspe
ulated that the distribution of D and the large deviation propertiesare related to the distribution of the largest eigenvalues of 
ertain randommatri
es; see [116℄.3.5.10 Boolean fun
tions expressed by bounded depth Boo-lean 
ir
uits. Consider a fun
tion des
ribed by a Boolean 
ir
uit (whosegates are: and, or, and negation) of depth 
 and size M . Linial, Man-sour and Nisan showed that the Fourier 
oeÆ
ients of su
h fun
tions de
ayexponentially [123℄. Boppana [103℄ showed that for su
h a fun
tion fI(f) � log
�1M :Note that this bound applies to the examples of tribes, runs and 
liques ingraphs mentioned above (see also [107℄, [97℄). An important example basedon 
ertain random depth-3 
ir
uits was given by Ajtai and Linial [91℄.3.5.11 Determinants, eigenvalues. (Suggested by I. Benjamini.)Consider an m by m matrix with entries �1 and 
onsider its determinantD, the sign of D, its largest eigenvalue, et
. All these 
an be regarded
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tions on 
n with n = m2. The 
orrespondingBoolean fun
tions are also of interest. What 
an be said about in
uen
es,noise-sensitivity and the Fourier-Walsh 
oeÆ
ients? Is there a notion ofs
aling limit?3.5.12 Signed 
ombination of ve
tors. Given n ve
tors v1; :::; vnin some Eu
lidean spa
e, with kvik2 � 1, write f(�1; : : : ; �n) = kP �ivik1.The distribution of the values of f is of great interest and, in parti
ular,a 
onje
ture of Komlos asserts that f always attains a value below someabsolute 
onstant.3.5.13 Linear obje
tive fun
tions. Consider a 
onvex d-polytopewhi
h is 
ombinatorially equivalent to the d-dimensional 
ube and let f begiven by the values on the verti
es of a linear fun
tional on Rd. Su
hfun
tions extend weighted majority fun
tions 
onsidered above and are ofgreat importan
e in the theory of linear programming (see se
tion 5).3.6 Some links and referen
es. The standard sour
e for probabilisti

ombinatori
s is [93℄, its se
ond edition will treat various further topi
s dis
ussedhere. Various papers in [106℄ that we will not 
ite individually are good referen
esfor some probability topi
s dis
ussed in this se
tion and in the next one.In
uen
es and 
olle
tive 
oin 
ipping [99℄, [119℄, [91℄, [92℄, [122℄; Talagrand'smethod and appli
ations [133℄, [135℄, [130℄; extremal 
ombinatori
s [54℄; Boolean
ir
uit 
omplexity [93℄, [107℄, [103℄, [123℄; random graphs [100℄, [93℄; 
ombinatorialproblems on the dis
rete 
ube [129℄; noise sensitivity [97℄, [98℄, [140℄, [128℄, [139℄,[141℄ [Tsirelson℄[S
hramm℄; FKG variations and appli
ations [115℄, [106℄; entropyand Shearer's lemma [109℄, [113℄, [117℄; per
olation and �rst passage per
olation[125℄, [126℄, [106℄; random matri
es and 
ombinatorial 
onne
tions [116℄, [118℄;Komlos 
onje
ture [94℄; ExamplesIt is not unusual that a single example or a very few shape an entire math-emati
al dis
ipline. Examples are the Petersen graph, 
y
li
 polytopes,the Fano plane, the prisoner dilemma, the real n-dimensional proje
tivespa
e and the group of two by two nonsingular matri
es. And it seems thatoverall, we are short of examples. The methods for 
oming up with use-ful examples in mathemati
s (or 
ounterexamples for 
ommonly believed
onje
tures) are even less 
lear than the methods for proving mathemati
alstatements.
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s and Probability: CountingTrees and Random Trees4.1 Kir
hho�, Cayley, Kasteleyn and Tutte. Cayley proved thatthe number of trees on n labeled verti
es is nn�2. There are many beauti-ful proofs whi
h demonstrate various prin
ipal te
hniques in enumerationtheory and, amazingly, new proofs are still being found. See [162℄, [84℄[Stanley℄. The matrix tree theorem, asserting that the number of spanningtrees for a graph G is (essentially) the determinant of the Lapla
ian of G,is even earlier and is attributed to Kir
hho�. Of the vast knowledge on treeenumeration, let me mention two additional results. Kasteleyn (see [17℄)found fundamental relations between the number of perfe
t mat
hings ofplanar graphs and tree enumeration. Tutte [166℄ 
onsidered graphs drawnon the 2-dimensional sphere, whi
h has the property that the antipodalmap indu
es an order-reversing bije
tion between the fa
es (or dimensions0, 1 and 2) of this graph. In parti
ular, the graph is self-dual (but thisis not suÆ
ient). He proved that the number of spanning trees of su
h agraph is a perfe
t square and the square root is equal to the number ofself-dual trees.4.2 Random spanning trees and loop erased random walk. Itis now understood that there is an intimate 
onne
tion between exa
t orapproximate enumeration of 
ertain obje
ts and between the problem of�nding (exa
tly or approximately) a random element among them. What
an be said about a random spanning tree of a graph G and how 
an yougenerate su
h an obje
t?Broder [148℄ and Aldous [145℄ proposed a very simple way to generate arandom spanning tree in a �nite graph: Start a random walk and add to thetree all edges in the walk whi
h do not 
lose a 
ir
le when �rst traversed.Wilson [168℄ found a remarkable algorithm with superior performan
es andimportant theoreti
al aspe
ts. His algorithm is related to the dis
ussionthat follows.Lawler [157℄, attempting to understand a self-avoiding random walk,
onsidered the following (di�erent) model. Given two verti
es x and y,start from x a random walk until rea
hing y and erase all loops. Pemantleshowed that the distribution on x � y paths in Lawler's model of looperased random walk is pre
isely the distribution of paths between x and yin a random spanning tree.
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Figure 5: A random spanning tree and a loop erased random walk.4.3 Random spanning trees II. Ri
k Kenyon [152℄, [153℄, [154℄, [155℄was re
ently able to 
ompute 
riti
al exponents, to prove 
onformal invari-an
e and to establish the existen
e of s
aling limits for models based onrandom spanning trees of planar grids. His ingenious and involved proofsuse Kasteleyn's 
orresponden
e between mat
hings and spanning trees forplanar grids in a 
ru
ial way. Here are two of Kenyon's results:� The expe
ted length of the path between the origin and the boundaryof the n by n grid in a random spanning tree of the standard planegrid (equivalently, the expe
ted length of the loop erased randomwalk) is �(n4=3).



Vol. 10, 2000 COMBINATORICS WITH A GEOMETRIC FLAVOR 31� Consider a smooth planar �gure F and three points x, y and z onits boundary, and the (unique) meeting point u of these three pointsin a random spanning tree of a �ne planar grid. In the limit, u is adistribution on points inside F . Kenyon proved that this distributionis invariant under 
onformal maps of the plane.4.4 Random spanning trees III. Oded S
hramm [164℄ assumed astrong version of 
onformal invarian
e to show that various limiting obje
tsfor random spanning trees in planar grids are des
ribed by a 
ertain sto
has-ti
 pro
ess. S
hramm 
onstru
ted a remarkable 
lass SLE� of sto
hasti
pro
esses depending on a parameter � and showed that (assuming the exis-ten
e of s
aling limits and 
onformal invarian
e) these pro
esses for � = 2des
ribe the limiting paths of the loop erased random walk, and for � = 6the s
aling limit of 
riti
al per
olation 
luster boundaries. For � = 8 theyare related to random Peano 
urves arising from random spanning trees,and for � = 4 it is spe
ulated that they des
ribe the domino di�eren
emodel (introdu
ed and studied by Kenyon). This established surprising
onne
tions between obje
ts whi
h previously seemed di�erent.Here is a short des
ription of S
hramm's 
onstru
tion in his own words:\Consider a path 
 in the 
losed unit disk U from the boundary to 0,whi
h does not 
ross itself (and does not 
ontain a nontrivial ar
 on theunit 
ir
le). Consider an initial ar
 � of 
. Let q(�) be the endpoint of �whi
h is not the initial point of 
. By Riemann's mapping theorem, thereis a unique 
onformal map g = g� : U� � ! U normalized by g(0) = 0and g0(0) > 0. Set t(�) = � log g0(0). The map g extends 
ontinuouslyto the 
losure of U� �. In parti
ular, Æ = g(q(�)) is a well de�ned pointon the unit 
ir
le. We may think of �, and hen
e of Æ as fun
tions of t,Æ : [0;1)! �U. Loewner's slit mapping theorem shows that the 
olle
tionof maps g� = gt 
an be re
onstru
ted from the fun
tion Æ(t), by solving adi�erential equation with Æ(t) as a parameter.In the SLE� pro
ess, we take Æ(t) = B(�t), where � is a 
onstant andB is Brownian motion on the unit 
ir
le. By Loewner's theorem (and itsextensions) this gives suÆ
ient information to re
onstru
t gt, hen
e 
."Lawler, S
hramm and Werner [159℄ related these obje
ts to planarBrownian motion. Using 
onformal invarian
e whi
h is known for Brownianmotions and some earlier results of Lawler and Werner on the `universality'of 
ertain 
riti
al exponents for a large 
lass of pro
esses they managed to
ompute 
riti
al exponents anti
ipated by Duplantier-Kwon and Mandel-brot for Brownian motion in the plane.
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, geomet-ri
, analyti
al and 
ombinatorial reasoning.4.5 Higher dimensions. Only a small fra
tion of the 
harm and im-portan
e of trees survives when we 
onsider higher dimensional a
y
li

omplexes. Yet in some 
ontexts (e.g., buildings) su
h generalizationsare useful. When it 
omes to tree enumeration it turns out that Cay-ley's formula does extend easily with a little twist: The weighted sum ofQ-a
y
li
 k-dimensional a
y
li
 
omplexes on n verti
es with a 
omplete(k � 1)-dimensional skeleton is n(n�2k ), where the weight of a 
omplex Kis jHk�1(K)2j. Thus, for n = 6; k = 2 the formula gives 66 and there isa single type of 
omplex, whi
h is 
ounted more than on
e (4 times): the6-vertex triangulation of the real proje
tive plane (Figure 3). The proofrelies on extending the matrix-tree theorem and identifying the eigenvaluesof 
ertain Lapla
ians.Very soon, as n grows, the weights in this formula be
ome mu
h largerthan the number of summands. See Kalai [151℄ and Adin [144℄. Analogsfor Kasteleyn's and for Tutte's theorems mentioned above are expe
tedbut not known. Kenyon suggested that an appropriate extension of Kaste-leyn's theorem to sub
omplexes of the 3-dimensional grid may be usefulin extending some of his expli
it 
omputations of 
riti
al exponents to 3dimensions.4.6 Haiman's diagonal harmoni
s. Consider the graded polynomialring Hn = C [x1 ; : : : ; xn; y1; : : :yn℄=I , where I is the ideal generated by allpolynomials in the xi's and yi's whi
h are invariant under the diagonala
tion of the symmetri
 group Sn on the variables.Haiman [150℄, based on experimentation with Ma
aulay [158℄, 
onje
-tured that the dimension of Hn is (n+ 1)n�1, the number of labeled treeson n + 1 variables.Further experimentation showed that �ner statisti
s on the grading ofHn (the total degree or the degrees a

ording to the variables xi alone)turned out to be related to 
lassi
al enumeration statisti
s of trees. More-over, using the well known 
orresponden
e between trees and parking fun
-tions, it was possible to identify the representation of the symmetri
 groupSn on Hn. Haiman's 
onje
ture turned out to be related to ex
iting issuesin algebrai
 geometry and representation theory. Many tried to solve it,but very re
ently Haiman himself proved his 
onje
ture [Haiman℄.4.7 Some links and referen
es. Tree enumeration [162℄, [84℄, [156℄; trees



Vol. 10, 2000 COMBINATORICS WITH A GEOMETRIC FLAVOR 33and probability [161℄, [106℄; random spanning trees and forests [146℄, [160℄, [163℄,[106℄; enumerative 
ombinatori
s [83℄, [84℄, [147℄, [Zeilberger℄, [Stanley℄; S
hramm'spro
esses, Brownian motion [164℄, [159℄, [167℄ Haiman's 
onje
tures [150℄, [Haiman℄;Ma
aulay [158℄, [Bayer℄; approximate enumeration [183℄, [186℄; eigenvalues ofLapla
ians of high dimensional 
omplexes [Reiner℄.Our 
ommunityLike musi
ians who 
an enjoy and understand 
ompli
ated s
ores even in aworld with no sound, for us mathemati
s is a sour
e of delight, ex
itementand even 
ontroversy. This is hard to share with nonmathemati
ians.In our small world we should seek new ways for 
ommuni
ation andintera
tion and for the right balan
e between 
ompetition and solidarity,
riti
ism and empathy, ex
lusion and in
lusion.5 Optimization: How Good is the Simplex Algorithm?5.1 The simplex method. Linear programming is the problem ofmaximizing a linear obje
tive fun
tion � = b1x1+b2x2+� � �+bdxd subje
t ton linear inequalities in the d variables x1; x2; : : : ; xd. Linear programmingand Danzig's simplex algorithm are among the most important appli
a-tions of mathemati
s in the 20th 
entury. The set Q of solutions for theinequalities is 
alled the feasible polyhedron. The maximum of � on Q (if� is bounded on Q) is attained at a fa
e of Q and, in parti
ular, there is avertex v for whi
h the maximum is attained.The simplex algorithm is a method to solve a linear programming prob-lem by repeatedly moving from one vertex v to an adja
ent vertex w ofthe feasible polyhedra so that in ea
h step the value of the obje
tive fun
-tion is in
reased. The spe
i�
 way to 
hoose w, given v, is 
alled the pivotrule. Klee and Minty [182℄, and later others, showed that various standardpivot rules may require exponentially many pivot steps in the worst 
ase.On the other hand, Kha
hiyan [178℄, [190℄, [177℄ showed that linear pro-gramming is in P (namely, there is a polynomial-time algorithm for linearprogramming), and various authors (for several notions of a random lin-ear programming problem) showed that the simplex algorithm requires apolynomial number of pivot steps on average [171℄.It is an important open problem to de
ide if there is a variant of thesimplex algorithm whose worst-
ase behavior takes polynomial time. Re-



34 GIL KALAI GAFA2000lated problems are to show that there is a polynomial time algorithm forlinear programming \over the reals" or to �nd a \strongly polynomial" al-gorithm (over the rationals) in the usual Turing model. These problems offundamental importan
e in both 
omplexity and optimization lie (as theproblems of fa
torization of integers and graph isomorphism) in the greyarea between P and NP, where surprising new results and insights areexpe
ted.In the early 90s randomized subexponential simplex algorithms werefound independently by Kalai [180℄ and by Matou�sek, Sharir and Welzl[185℄. These development as well as a related result on the diameter ofgraphs of polytopes [179℄ apply in a very general abstra
t 
ombinatorial
ontext. While it is possible that further improvements and even polyno-mial simplex algorithms 
an be found in this generality, the main point Iwould like to raise in this se
tion is: 
an geometry help?5.2 The 
ombinatori
s of linear programming. The following prop-erty is 
ru
ial:� (lo
al=global) � takes its maximum on a vertex v of Q if and only ifv is a lo
al maximum, i.e., �(v) � �(w) for every neighbor vertex wof v.An ordering of the verti
es of a polytope Q is an abstra
t obje
tivefun
tion if the property (lo
al=global) holds for Q and all its fa
es. (Itis possible to 
onsider also abstra
t linear programming problems in evengreater generality; see [188℄, [179℄.)For our purposes, there is no loss of generality in assuming that the fea-sible polyhedron Q is bounded, that the linear obje
tive fun
tion is generi
and that the problem is nondegenerate whi
h, in other words, says thatQ isa simple polytope: every vertex has d neighboring verti
es, or equivalentlyevery vertex belongs to exa
tly d fa
ets.The 
ombinatori
s of the problem involves the 
ombinatorial stru
tureof the polytope Q and the 
ombinatori
s of the total ordering on the verti
esof Q indu
ed by the linear obje
tive fun
tion �. The 
ombinatori
s of Qis relevant be
ause the diameter of the graph of Q gives a lower bound onthe number of pivot steps needed. However, I feel that the main diÆ
ultylies in the 
ombinatori
s of obje
tive fun
tions and that understanding the
ase where Q is 
ombinatorially isomorphi
 to the d-dimensional 
ube willgo a long way towards solving the problem.An interesting 
onne
tion with se
tion 2 is the following: Given a simplepolytope Q (think about the 
ube!) and a linear obje
tive fun
tion �, we



Vol. 10, 2000 COMBINATORICS WITH A GEOMETRIC FLAVOR 35
an 
onsider for every vertex v its degree deg(v), whi
h is the number ofneighbors u of v with �(u) > �(v). It turns out that the distribution ofthe degrees of verti
es does not depend on the obje
tive fun
tion. Thenumber of verti
es of degree k is pre
isely the h-number hk (
onsideredin se
tion 2). This applies to all abstra
t obje
tive fun
tions and, in fa
t,
hara
terizes this 
lass of orderings of the verti
es of Q. This implies aton
e the Dehn{Sommerville relations hk = hd�k (repla
e � with ��), andrelation (2.4).The produ
t measure Pp on the dis
rete 
ube (se
tion 3) has a naturalextension in this 
ontext for arbitrary simple polytopes Q by assigning toa vertex v the measure (1� p)d�deg(v)pdeg(v).The 
ombinatori
s of the full arrangement of hyperplanes whi
h 
orre-spond to points whi
h satisfy one of the inequalities as equality, is also ofgreat importan
e. In parti
ular one 
an read from the hyperplane arrange-ment (and the ordering given by � on its verti
es) the 
ombinatori
s thedual linear programming problem.5.3 Some 
lasses of pivot rules. We will 
onsider now various pivotstrategies of a 
ombinatorial nature for the simplex algorithm. Given avertex v of the feasible polyhedron Q our aim is to rea
h the vertex of Qat the top.1. ( "Random improving edge") Choose a random improving neighbor.2. ("Random fa
et") Choose a random fa
et F 
ontaining v and runthe algorithm inside F until rea
hing the optimal vertex in that fa
et.Then repeat. The expe
ted number of pivot steps is bounded aboveby exp(Cpn logd) [185℄, [180℄.3. ("Universal instru
tions") For every vertex v of Q you are givenan ordering of its neighbors. In ea
h step of the algorithm you moveto the �rst neighbor on the list whi
h improves �.3(R). ("Random universal instru
tions") The same as 3, ex
ept thatyou have a distribution on su
h an assignment of orderings and you
hoose a random one. (The best known randomized variant of thesimplex algorithm in terms of worst 
ase expe
ted behavior is of thistype [179℄.)4. (Taking into a

ount how well the neighbors improve) The same as 3(or 3(R)) ex
ept the ordering in the vertex 
an depend on the orderingbetween the � values of the neighbors of v. One of the earliest pivotrules using the most improving neighbor is, of 
ourse, a spe
ial 
ase.5. (Adaptive rule) The same as 3 (or 3(R) or 4 or 4(R)) ex
ept the
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an depend on the history of the algorithm upto this stage.6. ("Random walk") The basi
 operation is: Given two verti
es v and uwith �(v) � �(u) start from a vertex v and perform a simple randomwalk on all verti
es whose � value is larger than �(u). Then updatev and u. (Note: here, we allow steps whi
h de
rease the value of theobje
tive fun
tion.)All these rules apply for abstra
t obje
tive fun
tions and for some ofthem (1-3(R)) all that is needed is the relation between the values of theobje
tive fun
tion on neighboring verti
es.There are important pivot rules whi
h depend in a stronger way on thegeometry and 
annot be des
ribed in terms of abstra
t obje
tive fun
tions.An important pra
ti
al example is to always 
hoose the steepest edge (to-wards the obje
tive fun
tion) leaving the vertex. An important pivot rulefrom a theoreti
al point of view is the shadow-boundary rule, whi
h isbased on proje
ting the polyhedra on a two-dimensional spa
e. For this(and only this) rule, it is known that the simplex algorithm is polynomialfor an average problem [171℄.5.4 Can geometry help? I: There are few obje
tive fun
tions.The �rst information about geometri
 obje
tive fun
tions is that there arenot too many of them. It is not diÆ
ult to see that the number of abstra
tobje
tive fun
tions on the verti
es of the d-
ube is larger than 22d. (Forexample, 
onsider the orientation of edges of the dis
rete 
ube whi
h 
or-responds to the linear obje
tive fun
tion x1+ x2+ � � �+ xd. Then 
onsidera mat
hing between the verti
es of the two middle levels of the 
ubes. Youmay swit
h the orientation of any subset of edges of this mat
hing and theproperty (lo
al=global) will still hold (see, [89℄).)In sharp 
ontrast,Theorem 5.1. The number of di�erent possible geometri
 obje
tive fun
-tions of the dis
rete d-dimensional 
ube is at most exp(d3 logd). More-over, the number of 
ombinatorial types of pairs (Q; �), where Q is a d-polytope with n fa
ets and � a linear obje
tive fun
tion on Q, is at mostexp(Kd2n logn).The proof of this theorem relies on a theorem of Warren from real al-gebrai
 geometry on the number of sign patterns determined by a set ofpolynomials. The basi
 argument is due to Goodman and Polla
k, [176℄,[169℄. (The result applies to the number of 
ombinatorial types of arrange-ments of n hyperplanes in Rd and the orderings given by a linear obje
tive
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tion on the verti
es of the arrangement.)A hereditary 
lass of abstra
t obje
tive fun
tions on dis
rete 
ubes issmall if the number of distin
t orderings on the verti
es of the d-
ube isonly exponential in a polynomial of d.Problem 5.1. 1. Given a small hereditary 
lass of abstra
t obje
tivefun
tions, is it possible to prove the existen
e of an oblivious pro
ess su
has "Random universal instru
tions" whi
h works well for all abstra
tobje
tive fun
tions in this 
lass?2. Is it possible, to improve algorithms like "Random fa
et" by \learn-ing" information from the low level re
ursion, in a way whi
h will dramat-i
ally redu
e the running time for all small hereditary 
lasses of abstra
tobje
tive fun
tions?The se
ond option we raised, that of learning, needs further explanation.The situation seems to resemble what is 
alled a bounded VC-dimension[192℄, whi
h is an extremely useful 
ondition for various 
ombinatorial andalgorithmi
 appli
ations. Spe
i�
ally, it is possible that applying an algo-rithm (su
h as "Random fa
et") where the 
hoi
es of the algorithm higherup in the re
ursion are positively 
orrelated with su

essful 
hoi
es in lowerlevels will perform well on every small 
lass of abstra
t obje
tive fun
tions.A 
ase worthy of study (even experimentally) is a remarkable 
lass ofabstra
t obje
tive fun
tions on the dis
rete d-
ube des
ribed by Matou�sek[184℄. For an average abstra
t obje
tive fun
tion in this 
lass the expe
tednumber of pivot steps needed for "Random fa
et" is indeed exp(Kpd).This 
lass is hereditary and small: the number of abstra
t obje
tive fun
-tions of this 
lass on the d-
ube is exponential in d2.G�artner [174℄ showed that for Matou�sek's 
lass the geometry does helpas "Random fa
et" itself requires only a quadrati
 number of pivot stepsfor geometri
 obje
tive fun
tions in Matou�sek's 
lass. G�artner used onlythe 
onditions for geometri
 obje
tive fun
tions on the 3-dimensional fa
es.Abstra
t obje
tive fun
tions on 3-dimensional polytopes were re
ently
hara
terized by Mihalisin and Klee [181℄. The orientations of graphs of3-dimensional polytopes indu
ed by a geometri
 obje
tive fun
tion (ea
hedge is oriented from the smaller vertex to the larger) are pre
isely thea
y
li
 orientations with a unique sour
e and a unique sink whi
h admitsthree disjoint independent monotone paths from the sour
e to the sink.5.5 Can geometry help? II: How to distinguish geometri
 obje
-tive fun
tions. We should also try to �nd 
on
rete ways to distinguishbetween abstra
t and geometri
 obje
tive fun
tions. Consider the set Av of
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es u in the feasible polyhedron with �(u) � �(v). Whi
h propertiesdoes Av satisfy?A re
ent important result by Morris and Sin
lair [186℄ shows that for thestandard 
ube and weighted majority fun
tions, Av has (mild) expansionproperties whi
h implies that a SRWon Av rea
hes an approximate-uniformdistribution in n8 steps.For an arbitrary linear programming problem, 
an the graph indu
edon Av always be divided into a polynomial (in d and n) number of parts,ea
h of whi
h is (mildly) expanding? (Mildly expanding means that theexpansion 
onstant is 1=p(d; n) for some polynomial p(d; n).) Sin
e everyordering of the verti
es of the 
ube given by a monotone real fun
tion isan abstra
t obje
tive fun
tion and sin
e monotone subsets of 
n may havedismal expansion properties, the geometry must be used.Monotone fun
tions on 
n are not a real 
hallenge for the simplex al-gorithm as any (improving) pivot rule will rea
h the maximum vertex in atmost n steps. But understanding the 
lass of orderings and events of thetype Av whi
h 
ome from an obje
tive fun
tion on a polytope 
ombinatori-ally isomorphi
 to the n-
ube is nevertheless of mu
h interest also from thepoint of view of 
omplexity theory. Going ba
k to the examples in se
tion 3it seems that repeated weighted majorities of various types 
an be realized.Perhaps the strongest known result towards a strongly polynomial al-gorithm for linear programming is by Eva Tardos [191℄. Fixing the feasiblepolyhedron (in fa
t, only the matrix of 
oeÆ
ients), she des
ribed a stronglypolynomial algorithm independent of the obje
tive fun
tion. Proving thisresult with a simplex type algorithm (even randomized) will already be amajor a
hievement (see [173℄ for a spe
ial 
ase).Added in proof. Spielman and Teng have re
ently made substantialprogress towards a polynomial (not yet strongly polynomial) version ofthe simplex algorithm. They showed that the shadow-boundary pivot ruleneeds a polynomial number of steps for a small random gaussian perturba-tion of a linear programming problem.5.6 Some links and referen
es. Linear programming [190℄, average 
asebehavior of the simplex method [171℄, randomized pivot rules [172℄, [173℄, [189℄,[175℄, [180℄, [188℄, [185℄, 
omputational geometry [187℄ algorithmi
 appli
ations ofrandom walks [183℄, [186℄, the diameter problem for polyhedra [179℄.
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ations and Expe
tationsJudging from the 
onferen
e on `Vision in Mathemati
s', mathemati
ianshave a strong desire to intera
t and in
uen
e other s
ien
es, as well as te
h-nology, industry, and even e
onomi
 life. The trends towards isolationismhave been reversed, and there is a greater understanding of the subtletiesof applying mathemati
s to and intera
ting with other �elds.The general publi
 knows very vaguely what mathemati
ians do. At thesame time people have quite 
lear expe
tations from mathemati
s. Morethan other s
ien
es, and 
ertainly mu
h more than law, religion, politi
sand the media, mathemati
s is expe
ted to be rigorous and pre
ise in tellingits uninteresting, irrelevant, and un
omforting truths. The value of mathe-mati
s for so
iety goes far beyond its appli
ations through te
hnology; it isindeed a pillar of human 
ulture. After a 
entury of amazing te
hnologi
aldevelopment along with rising in
uen
e of pseudos
ien
es and the o

ult,this value is important.A
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