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Abstract

In this paper I try to present my field, combinatorics, via five examples
of combinatorial studies which have some geometric flavor. The first
topic is Tverberg’s theorem, a gem in combinatorial geometry, and
various of its combinatorial and topological extensions. McMullen’s
upper bound theorem for the face numbers of convex polytopes and
its many extensions is the second topic. Next are general properties
of subsets of the vertices of the discrete n-dimensional cube and some
relations with questions of extremal and probabilistic combinatorics.
Our fourth topic is tree enumeration and random spanning trees, and
finally, some combinatorial and geometrical aspects of the simplex
method for linear programming are considered.

Introduction

There is a delicate balance in mathematics between examples and general
principles, and in this paper I try to present my field, combinatorics, via
five examples of combinatorial studies which have some geometric flavor.

In order to make the presentation self-contained, detailed and interest-
ing, the choice of material (even within the individual sections) is subjec-
tive and nonuniform. For an unbiased and comprehensive point of view the
reader is referred to the many links and references. I have tried to include
many open problems and to point out various possible connections, some
of which are quite speculative.

Section 1 deals with configurations of points in Euclidean spaces and
specifically with Tverberg’s theorem which asserts that every set of
(r — 1)(d + 1) + 1 points in R¢ can be divided into r parts whose convex
hulls have nonempty intersection. A principal question is to find conditions
which will guarantee the conclusion of Tverberg’s theorem for a smaller set
of points.
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Section 2 is devoted to McMullen’s upper bound theorem for convex
polytopes which asserts that among all d-polytopes with n vertices the
cyclic polytope has the maximal number of faces of any dimension. Sharp
and general forms of this theorem and what will take to prove them are
discussed.

The topic of section 3 is the cube: the combinatorics of subsets of the
vertices of the discrete cube, discrete isoperimetric relations and especially
the notion of influence. General facts about Boolean and real valued func-
tions defined on the discrete cube are useful for various problems in extremal
combinatorics, probability and mathematical physics.

In section 4, I discuss some recent results concerning random spanning
trees and tree enumeration and mention the recent emerging picture of
random spanning trees of grids in the plane.

The principal problem in the final section, §5 is to find a polynomial-
time version of the simplex algorithm for linear programming. Combinato-
rial and geometric aspects of the problem are considered.

Although there are relations between the five sections they can be read
in any order. The reader can safely skip any place where she or he feels
that the mathematics becomes too heavy-going. Probably these places
reflect the fact that either the mathematics should be improved or my
understanding of it should.

In the (unusual) style of the “Vision in Mathematics” meeting, each
section concludes with brief comments of a philosophical nature.

1 Combinatorial Geometry: An Invitation to Tverberg’s
Theorem

1.1 Radon’s theorem and order types (oriented matroids).

Theorem 1.1 (Radon’s Theorem). Every d + 2 points in R? can be
partitioned into two parts such that the convex hulls of these parts have
nonempty intersection.

A pair of disjoint subsets of X whose convex hulls intersect are called
a Radon partition. The points in the intersection of the convex hulls are
called Radon points.

Radon’s theorem follows at once from the fact that d 4+ 2 points in R4
are always affinely dependent. It implies at once another basic theorem
on convex sets — Helly’s theorem: For every finite family of convex sets,
if every d + 1 of its members have a point in common then all sets in the
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family have a point in common. The reader is referred to [14], [20] for much
information on Helly type theorems.

Given n points on the line, the (minimal) Radon partitions determine
(up to orientation of the line) the ordering of these points. In a similar way
we can classify configurations of points in the plane or in R? according to
their Radon partitions. This leads to the theory of oriented matroids or
order types (see [10]).

1.2 Tverberg’s theorem.

Theorem 1.2 (Tverberg’s Theorem). Every (d+ 1)(r — 1) 4+ 1 points in
R? can be partitioned into r parts such that the convex hulls of these parts
have nonempty intersection.

Figure 1: Seven points in the plane and their Tverberg partion.

Proofs of Tverberg’s theorem were given by Tverberg (’66) [27], Doignon
and Valette (’77), Tverberg (’81), Tverberg and Vrecica (’92), Sarkaria (’92)
[25], and Roudneff (’99) [23]. While the original proof was quite difficult,
the proofs of Sarkaria and Roudneff are remarkably simple.

Roudneff’s recent proof is by minimizing the sum of squares of the r
distances between a point z and the convex hulls of r pairwise disjoint
subsets of the points. It turns out (under mild assumptions of genericity)
that if this minimum is positive, it is attained without using one of the
points and this extra point can be used to push this minimum down.

While the recent proofs of Tverberg’s theorem give an algorithm to find
the partition, the computational complexity of finding such a partition is
not known.

ProBLEM 1.1. Find a polynomial-time algorithm to obtain a Tverberg
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partition when Tverberg’s theorem applies.

Note that (as will be clear below) deciding for a configuration of points
of less than 2d + 3 in R? if a Tverberg partition to 3 parts exists is an
NP-complete problem. However, it is possible that when the number of
points is large enough to guarantee a partition then finding such a partition
is computationally feasible.

1.3 Topological versions.

CoNJECTURE 1.2 (The Topological Tverberg Conjecture). Let f be a
continuous function from the m-dimensional simplex o™ to R%. If m >
(d+ 1)(r — 1) then there are r pairwise disjoint faces of ™ whose images
have a point in common.

The case r = 2 was proved by Bajmoczy and Barany using the Borsuk-
Ulam theorem. The case where r is a prime number was proved in a
seminal paper of Bardny, Shlosman and Sziics [8]. The prime power case
was proved by Ozaydin (unpublished), Volovikov [30] and Sarkaria. For
this case the proofs are quite difficult and are based on computations of
certain characteristic classes.

If f is a linear function this conjecture reduces to Tverberg’s theorem.
For a discussion of the topological extensions of Tverberg’s theorem in a
larger context, see [32]. It turns out that topological methods are crucial
for proving various Tverberg type theorems even for linear maps.

1.4 The dimension of Tverberg’s points. For a set A, denote by
T,(A) those points in R? which belong to the convex hull of r pairwise
disjoint subsets of X. We call these points Tverberg points of order r.

If we have (d + 1)(r — 1) + 1 + k points in R¢ then we expect that the
dimension of Tverberg points of order r will be at least k. This is so in the
“generic” case. Reay conjectured that it is enough to assume the points are
in general position. Various special cases were recently proved by Roudneff
[23], [24].

In another direction, I conjectured that failing to have the “right” di-
mension for the Tverberg points of order r implies the existence of a Tver-
berg point of order r 4 1.

CoNJECTURE 1.3 (Kalai, 1974). For every A C RY,

4]
) dimT,(4) > 0.
r=1
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(a) =2, To=1, T;=-1, 1,23 (b) Th=2, To=T3=0, Ty=Ts=-1.

Figure 2: Two planar configurations of five points.

Note that dim@ = —1. This conjecture includes Tverberg’s theorem as
a special case: if |A| = (r—1)(d+ 1)+ 1dim A = d and T,(A) = 0, then
the sum in question is at most (r — 1)d+ (4| —r + 1)(-1) = —1.

It may even be true that Conjecture 1.3 holds if we replace T.(A) by
the minimum of T,.(A’) over all configurations A’ of the same order type
as A.

Kadari proved (around 1980) Conjecture 1.3 for planar configurations.
Crucial to his proof is the fact that in the plane (but not in higher dimen-
sions), the convex hull of Tverberg points of order r is precisely the (r — 1)-
core of A: The intersection of all subsets of A of cardinality |A| — (r — 1).
(Of course, every Tverberg point of order r belongs to the (r — 1)-core.)

1.5 Conditions for Tverberg partitions and graph colorings.

1.5.1 Conditions for a Tverberg partition into 3 parts. The
following problem seems important.

ProBLEM 1.4. Find conditions on the order type for a configuration A of
m points (m < 2d + 3) in R< that guarantee the existence of a Tverberg
partition into three parts.

Note that deciding the existence of Tverberg partitions into three parts
when m < 2d + 3 is NP-complete, as will become evident below, and does
not depend only on the order type of the configuration. However, I do
expect that there are useful topological sufficient conditions. Conjecture
1.3 gives one such condition: dimT>(A4) < |4| —d — 2.
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1.5.2 Point configurations from graphs. For agraph G = (V, E)
consider the configuration of points in RY which are the incidence vectors
of edges of the graph. Thus, the vector associated to an edge {u,v} has
the value ‘1’ in the coordinates that correspond to w and v and the value
‘0’ in all other coordinates.

ProBLEM 1.5. What can be said about affine dependencies and Radon
points (and Tverberg points) of such point configurations?

The Radon partitions of such configurations arising from graphs, es-
pecially regular graphs, seem to be related to matching theory for graphs
[17].

Note that a proper 3-coloring for the edges of a connected cubic graph
G is equivalent to the existence of a Tverberg partition into 3 parts for the
point configuration corresponding to GG. Indeed, given a Tverberg partition
into 3 parts, color every edge according to the part it belongs to. Every
vertex which is incident to one colored edge must be incident to three edges
colored with the 3 different colors and therefore the colored edges describe
a proper 3-coloring of some cubic subgraph. Since G is connected this must
be the entire graph.

1.5.3 The four color theorem. The four color theorem (Appel-
Haken, 1977, see [28]) asserts that every planar map is four colorable. An
equivalent formulation of the four color theorem is: Every 2-connected cubic
planar graph is 3-edge colorable. (A cubic graph or a 3-regular graph is
a graph all of whose vertices have degree 3. A graph is 2-connected if it
remains connected after deleting every vertex.)

Now, consider a configuration of points P corresponding to a cubic
planar graph with n vertices. Note, we have 3n/2 points in a (n — 1)-
dimensional space. (If G is bipartite, these points are in a (n — 2)-dimen-
sional subspace.) Finding sufficient conditions for the existence of Tverberg
partitions when the number of points is smaller than 2d 4+ 3 may thus be
relevant to finding new avenues towards the 4-color theorem (and its many
open generalizations).

REMARKS. 1. The idea of trying to relate Tverberg’s theorem and the
four color theorem (in a different way) goes back to Tverberg himself.

2. There are, of course, 2-connected cubic graphs which are not 3-edge
colorable. The most famous example is the Petersen graph (identify pairs of
antipodal vertices in the graph of the dodecahedron). It is worth noting that
the 2-core of point configurations associated to 2-connected cubic graphs is
always nonempty. (The 2-core is the intersection of all convex hulls of all
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but two of the points.)

3. The Radon partitions of a set A of d+ 2+ k points in R? correspond
to the faces of a k-dimensional zonotope. Every point in the boundary of
this zonotope corresponds to a (normalized) affine dependence of the points
and is mapped to a Radon point of A. This map maps two antipodal points
on the zonotope to the same Radon point and thus induces a map from
RP* to R? whose image is the Radon points of A.

For generic 3n/2 points in R®~! the Radon points form an embedding
of the (n/2 — 1)-dimensional real projective space into R™"!. The case of
configurations of points arising from graphs is, of course, highly non-generic.

1.6 Other problems and connections.

1.6.1 Halving hyperplanes and colored Tverberg’s theorems.
An important problem in combinatorial geometry is to determine the max-
imal number of ways a configuration of 2m points in R? can be divided
into two equal parts by a hyperplane. More generally, to determine the
maximum number of ways a configuration of n points in R? can be divided
by a hyperplane to parts of sizes k and n — k (see [6]). Equivalently, this is
the minimal possible number of Radon partitions into two equal parts (or
parts of prescribed sizes).

Even in the plane there is a substantial gap between the best known

lower bound C)n - exp(y/Togn) (Toth, [29]) and the upper bound Cyn*/3
(Dey, [13]).

The planar case of the problem is closely related to the following alge-
braic question: Given a reduced (=minimal) representation of a permuta-
tion in S,, as the product of adjacent transpositions, what is the maximum
number of appearances of a specific transposition? To see the connection,
project the points on a line and slowly rotate the line (see [15]).

For dimension d, it is easy to bound the maximal number of halving
hyperplanes between n¢~! and n?. Toth’s lower bound extends to a lower
bound of n¢~1 -exp(y/log n) in any dimension. In space, the best known up-
per bound is n®/? [26]. In higher dimensions, the only known way for finding
upper bounds for the halving hyperplane problem is via generalizations of
Tverberg’s theorem for colored configurations of points. Remarkably, the
only proofs of these generalizations are by the topological method [33], [34].
This gives, in every dimension d, an upper bound for the number of halving
hyperplanes of the form n¢=4, for some cq > 0.
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1.6.2 Eckhoff’s partition conjecture. Ekchoff raised the possi-
bility of finding a purely combinatorial proof of Tverberg’s theorem based
on Radon’s theorem. He considered replacing the operation “taking the
convex hull of a set A” by an arbitrary closure operation.

Let X be a set endowed with an abstract closure operation X — cl(X).
The only requirements from the closure operation are: (1) cl(cl(X)) =
cl(X) and (2) A C B implies cl(A) C cl(B).

Define ¢,(X) to be the largest size of a (multi)set in X which cannot
be partitioned to r parts whose closures have a point in common. Eckhoff
conjectured that always

t, Stg'(‘l"—]_).

Thus, if X is the set of subsets of R? and cl(A) is the convex hull
operation then Radon’s theorem asserts that ¢3(X) = d 4+ 1 and Eckhoff’s
partition conjecture reduces to Tverberg’s theorem.

1.7 Some links and references. The reader will find additional references
to earlier works and survey papers in the more recent ones. Personal web sites
(listed before the references at the end of the paper) will be cited by the name
appearing in square brackets. Many of the papers in the references as well as
related ones can be found there. The handbooks [3], [2], [1] contain many chapters
which are relevant to this paper and we cite only a few.

Helly and Radon type theorems [14], [20]; topological proofs of Radon type
theorems [8], [18], [31], [33], [34]; combinatorial geometry [22]; topological methods
in combinatorics [9], [32]; oriented matroids [10]; halving lines and hyperplanes
[6], [7], [26]; colorings of graphs [16], [5]; developments concerning the four color
theorem [28]; matching theory [17]; graph theory [11]; a Radon type theorem of
Larman which deserves simple proofs and better understanding [19].

Proofs, more proofs, “proofs from the book” and computer proofs

Science has a dual role: exploring and explaining. In mathematics, unlike
other sciences, mathematical proofs are used as the basic tool for both
tasks: to explore mathematical facts and to explain them.

The meaning of a mathematical proof is quite stable. It seems unharmed
by the “foundation crisis” and the incompleteness results at the beginning
of the 20th century, and unaffected by the recent notions of randomized
and interactive proofs in theoretical computer science. Still, long and com-
plicated proofs, as well as computerized proofs, raise questions about the
nature of mathematical explanations.

Proofs are gradually becoming intolerably difficult. This may suggest
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that our days of successfully tackling a large percentage of the problems
we pose will soon be over. This may also reflect the small incentives to
simplify.

Be that as it may, we cannot be satisfied without repeatedly finding
new connections and new proofs, and we should not give up hope of finding
simple and illuminating proofs that can be presented in the classroom. For
some “proofs from the book”, see the lovely book by Aigner and Ziegler [4].

Some believe that computer proofs will take over [Zeilberger]. Appel
and Haken’s proof of the four color theorem was a landmark in this respect.
The role of computers in exploring mathematical facts is already significant.
As for explaining mathematical facts, it raises, for instance, the question
“Explaining to whom? To humans, or to other computers?”

2 Polytopes and Algebraic Combinatorics: How General is
the Upper Bound Theorem?

2.1 Cyeclic polytopes and the upper bound theorem.

2.1.1 Cyclic polytopes. Consider the moment curve z(t) =
(t,t%,...,t%) C R% The cyclic polytope C(d,n) is the convex hull of n
(distinct) points z(t1), z(t2),...,2(tn) on the moment curve. The face
structure does not depend on the choice of these points.

Cyclic polytopes are d/2-neighborly, namely the convex hull of every set
of k vertices forms a face of the polytope when k& < d/2. Thus f(C(d, n)),
the number of k-dimensional faces (in brief, k-faces) of C'(d, n) is (kil)’
whenever k < d/2. Cyclic polytopes were discovered by Carathéodory and
were rediscovered by Gale, who described their face-structure.

2.1.2 The upper bound theorem. The upper bound theorem
(UBT), conjectured by Motzkin in 1957, asserts that the face numbers of a
d-polytope with n vertices are bounded from above by the face numbers of
the cyclic d-polytope with n vertices. This conjecture is of special interest
in connection with optimization, because it gives the maximum number of
vertices that can be possessed by a d-polytope P defined by means of n
linear inequality constraints; hence it represents the maximum number of
local strict maxima that can be attained by a convex function over P.

The assertion of the upper bound theorem was proved for polytopes
(McMullen, 1970 [73]), for simplicial spheres (Stanley, 1975 [79], [82]) and
for simplicial manifolds with either vanishing middle homology or the same
Euler characteristic as a sphere (Novik, 1998 [74]). It was also been proved
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when n is large w.r.t. d (n > d?/4, will do) for all Eulerian simplicial
complexes (Klee, 1964 [65]. (An Eulerian simplicial complex is a pure
simplicial complex in which the link of each simplex has the same Euler
characteristic as the sphere of the appropriate dimension.)

2.1.3 A stronger form of the UBT. A stronger version of the
UBT (referred to, below, as SUBC: strong upper bound conjecture) was
proved for simplicial d-polytopes and full dimensional subcomplexes of their
boundary complexes by Kalai [62]. It asserts (roughly) that for every k,
0 < k < d-1, if one fixes the number of k-dimensional faces, then the
number of (k + 1)-dimensional faces is maximized by a cyclic d-polytope.
(More precisely, it gives a bound on the number of (k + 1)-faces in terms of
the number of k-faces that is similar in form to the Kruskal-Katona theo-
rem, which provides a similar bound for arbitrary simplicial complexes.) I
conjecture that the SUBC applies to arbitrary polytopes (and more general
complexes considered below).

The SUBC was also motivated by a problem from optimization, namely
by an attempt to show expansion properties of graphs of d-polytopes. How-
ever, applications in this direction were quite limited.

2.2 Stanley-Reisner rings and their generic initial ideals (alge-
braic shifting). Stanley’s proof of the upper bound theorem for triangu-
lation of spheres relies on the notion of the Stanley-Reisner ring associated
to a simplicial complex and on the fact that this ring is Cohen—Macaulay.
We will describe below an algebraic statement concerning generic initial
ideals of the Stanley-Reisner rings which implies the strong upper bound
theorem.

Let me first explain the situation informally. The Stanley-Reisner ring
is constructed by associating to each vertex ¢ of a simplicial complex a
variable #;, and considering the ring of monomials which “live” on the
complex. Consider next generic linear combinations of these variables y,
Ya,...,Yn and a Groébner basis for this ring w.r.t. monomials in the new
variables. This construction associates to every simplicial complex K a
basis of monomials GIN(K) (in the new variables) which record many
topological, combinatorial and algebraic properties of K.

An algebraic statement for a (d — 1)-dimensional simplicial complex K
which immediately implies the UBT, and in fact also the SUBC, is that
GIN(K) is a subset of GIN(C(d,n)), where n is the number of vertices
of K and C(d,n) is the boundary complex of a cyclic d-polytope with n
vertices. When K is isomorphic to the boundary complex of a simplicial
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polytope this relation follows from the Hard Lefschetz Theorem for toric
varieties; see [62].

Here is a more accurate description of the Stanley-Reisner ring and
GIN(K). Associate to each vertex ¢ of a simplicial complex K a variable
z; and consider the quotient

R(K) = Rlz1,22,...,2,]/I,

where [ is the ideal spanned by monomials #;, -;, - - - ;. with {i1,42,...,4,}
¢ K.
Consider now y1,¥ys . . ., Yn, which are n generic linear combinations of

T1,Zy...¢, and construct the Grobner basis GIN(K) w.r.t. the lexico-
graphic order on the monomials in the y;’s. (Clearly, all monomials in the
y;’s span the ring R(K).) Thus, a monomial m belongs to GIN(K) if
and only if its image m in R(K) is not a linear combination of (images
of ) monomials which are lexicographically smaller. (Recall that the lexico-
graphic order is defined as follows: m; <z mg if the variable with smallest
index which divides precisely one of the two monomials divides m;. Thus

Y} <L y1y2 <L 913 <L -+ <L Y1¥n <L Y3 <L -* )
2.3 How general is the upper bound theorem?

2.3.1 Witt spaces. Witt spaces [56], [77], [50] are orientable tri-
angulated pseudomanifolds K such that for every K’ which is an even-
dimensional (proper) link of a face of K, the (middle perversity) intersection
homology I Hy;,g1/2(K') vanishes. For these spaces middle perversity in-
tersection homology is defined and satisfies Poincaré duality. These spaces
include all (real) manifolds and (complex, possibly singular) algebraic va-
rieties.

We come now to the main conjecture of this section.

CoNJECTURE 2.1. (i) For every triangulation K of a Witt space with
vanishing middle intersection homology

GIN(K) C GIN(C(d,n)). (2.1)

(ii) The strong upper bound conjecture holds for arbitrary polyhedral
complexes (and even for all regular cell complexes whose face-poset form
a lattice) whose underlying space is a Witt space with vanishing middle
intersection homology.
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What seems to be needed for a proof is an interpretation of intersection
homology for simplicial pseudomanifolds in terms of the Stanley-Reisner
ring and generic initial ideals. For the polyhedral case, what is needed
is a suitable analog of the Stanley-Reisner ring. For this purpose too,
intersection homology may play a crucial role. Intersection homology of
toric varieties already plays an important role in the combinatorial study
of (rational) polytopes [51], [81] (see below).

2.3.2 Embeddability. The upper bound theorem seems closely re-
lated to questions concerning embeddability. At the root of things is the
assertion that Ky, the complete graph on 5 vertices, cannot be embedded
in the plane.

Van Kampen proved that the r-skeleton of 02"*2 (the (2r + 2)-dimen-
sional simplex) cannot be embedded in R?". It seems that this property and
corresponding local properties (for links of faces) would imply the assertions
of the UBT, SUBC and relation (2.1). To understand such a connection
it will be useful to know if the Van Kampen theorem holds when R?" is
replaced by any 2r-dimensional manifold with vanishing middle homology,
or even by any Witt space with vanishing middle intersection homology.

2.3.3 An upper bound conjecture for j-sets. Emo Welzl [88]
has recently proposed another far-reaching extension for the upper bound
theorem. Given a configuration A of n points in general position in R¢
consider the set of all hyperplanes, 77, which are determined by points in
A and have at most j vertices in one of their (open) sides (compare section
1.6.1). For j = 0 these are supporting hyperplanes for conv(A). Next, let
a;(A) be the number of r-dimensional simplices which are determined by
point in A and belong to a hyperplane in ’H” (For j = 0 these are just
r-faces of conv(A).) Welzl asked whether al(A) is maximized for every r
and j by n points on the moment curve in R% For j = 1 this is just the
UBT and it is also known to be true for every j when d = 2 (Alon and
Gyori) and when d = 3 (Welzl).

2.4 Duality and h-numbers. I have described very general cases for
which I conjecture that the UBT and even the SUBC hold, and a strong
property of GIN(K) needed to prove these conjectures. However, these
strong algebraic and combinatorial conjectures are known only in very lim-
ited cases. For the known cases of the UBT, weaker combinatorial and
algebraic statements are sufficient if certain duality relations are also used.
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2.4.1 The Dehn-Sommerville relations. For a (d — 1)-dimen-

sional simplicial manifold K define its A-numbers by the relation:

d d
D h(K)at* =" fii (K)(2 - 1)7F (2.2)
k=0 k=0

The Dehn—-Sommerville Relations asserts that if K is the boundary com-
plex of a simplicial polytope then

he(K) = ha_k(K). (2:3)

In fact, these relations hold whenever K is Fulerian simplicial complex,
namely K and all links of faces of K have the same Euler characteristics
as a sphere of the same dimension.

2.4.2 The Cohen—Macaulay property. For Stanley’s proof of the
UBT when K is a simplicial sphere we need to know in addition to the
Dehn—-Sommerville relations that R(K) is a Cohen-Macaulay ring. When
R(K) satisfies the Cohen-Macaulay property, then hi(K) is the num-
ber of monomials of degree k in GIN(K) which use only the variables
Yd+1,Yd+2s - - -, Yn. Novik [74] used GIN(K) to prove the UBT for sev-
eral classes of simplicial manifolds and she relied on the fact that R(K) is
still close enough to being a Cohen-Macaulay ring (the technical term is
Buchsbaum ring). In addition, she needed the analogs of Dehn-Sommerville
relations and Poincaré duality. We would like to have a better understand-
ing of these duality relations in terms of GIN(K) and for more general
classes of simplicial complexes.

2.4.3 Partial unimodality and the Braden—MacPherson the-
orem. The face numbers of polytopes are not unimodal. Indeed, the face
numbers of the cyclic polytope are highly concentrated near dimension 3d/4
and therefore, by gluing a cyclic polytope and its dual, you will get two
peaks at d/4 and at 3d/4. To get a simplicial example glue a cyclic poly-
tope to the cross polytope (with roughly the same total number of faces).
You will get two peaks at 3d/4 and at 2d/3.

An appealing application (using an argument of Bjdrner [47]) of the
SUBC for general polytopes will be:

CONJECTURE 2.2. The face numbers f; of d-polytopes are nondecreasing
for i < [(d+ 3)]/4 and nonincreasing for i > [3(d — 1)/4].

It is possible that this conjecture as well as a suitable (weaker) version of
the SUBC will follow in a purely combinatorial way from a recent result by
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Braden and MacPherson [51] which relates the combinatorics of a polytope
with that of faces and quotients.

McMullen’s original proof of the upper bound theorem relied on the
observation that for a simplicial polytope P and a vertex v,

hi(Ik(v, P)) < h(P). (2.4)

Here, lk(v, P) is the link of v in P and hj is the h-number mentioned
above.

The result of Braden and MacPherson is a sharpening as well as a
far-reaching generalization of (2.4) for general polytopes. (It is proved,
however, only for rational polytopes.) I will now state this result without
explaining properly the background and I refer the reader to [51], [81], [63]
for more. For a d-polytope P let

d [d/2]
hp(z) =Y hi(P)e*, gp(z) =) gr(P)c".
k=0 2=0

Here hi(P) = dim I Hyx(Tp), and gi(P) = hi(P) — hg—1(P), where Tp is
the toric variety associated to P and IH is intersection homology. (The
quantities dim I H(Tp) can be described in a purely combinatorial way
from the face structure of P and when P is simplicial this is just hg.)
Braden and MacPherson proved that for every rational polytope P and a
face F' of P,

gp(z) > gr(z)gp/r(z) - (2.5)
(Namely, every coefficient of the polynomial in the left hand side is at
least as large as the corresponding coefficient on the right hand side.)
The Braden—-MacPherson inequality has already been used by Bayer [41]
to deduce a very sharp form of the UBT for general (rational) polytopes.

2.4.4 Other duality relations. The Dehn-Sommerville duality re-
lations hg(P) = hq_r(P) applies for arbitrary Eulerian simplicial com-
plexes. For simplicial polytopes this numerical duality manifests Poincaré
duality for the associated toric varieties. When we adopt the combinatorial
formulas of intersection homology the relations hy = hg_j extend even to
arbitrary Eulerian partially ordered sets. For toric varieties associated to
rational polytopes these duality relations manifest Poincaré duality for in-
tersection homology. In commutative algebra this duality relations manifest
the Gorenstein property for the Stanley-Reisner ring of homology spheres.

Another important notion of duality is duality between polytopes given
by the polar polytope. (Thus, the cube is dual to the octahedron, the



Vol. 10, 2000 COMBINATORICS WITH A GEOMETRIC FLAVOR 15

dodecahedron is dual to the icosahedron and the tetrahedron is self-dual.)
In 1985 I observed some mysterious numerical formulas relating A-numbers
of a polytope and those of its dual. The simplest non-trivial relation of
this type asserts that for every 4-dimensional polytope ga(P) = g2(P*)
[61]. Some extensions were proved by Bayer and Klapper and by Stanley
[81] who realized the correct combinatorial context (incidence algebras) for
understanding these formulas. Geometric or algebraic understanding of
these relations is still missing but for very special cases of toric varieties
(which give rise to Calabi-Yau manifolds) it turned out that these numerical
relations manifest mirror symmetry [39].

Added in proof. Tom Braden has recently found an algebraic explanation
for these duality relations via Koszul’s duality.

Yet another important notion of duality is duality of oriented matroids
which includes the notions of Gale transform and linear programming du-
ality as special cases (see [10, Chapter 10]). The effect of this duality on
the combinatorial notions discussed here (as well as on the algebraic and
geometric ones) is yet to be explored.

2.5 Neighborliness.

2.5.1 Neighborly polytopes and spheres. For an extremal com-
binatorial problem, studying the cases of equality is often as important as
proving the inequality. Equality for the upper bound theorem is attained by
all neighborly d-polytopes, namely polytopes for which every [d/2] vertices
form a face.

Neighborly polytopes form an exciting but mysterious class of polytopes
(see [76]). Their face numbers are determined by the number of vertices. It
is conjectured that every simplicial polytope is the quotient (link) of an even
dimensional neighborly polytope [67]. (The same conjecture can be made
for simplicial spheres.) For a generalization of the notion of neighborly
polytopes to the nonsimplicial case, see Bayer [40].

2.5.2 Triangulations of manifolds. Triangulations of 2k-dimen-
sional manifolds can be even (k+1)-neighborly. An example is the 6-vertex
triangulation of the 2-dimensional projective plane obtained by identifying
the opposite faces of the icosahedron. This is quite a fundamental com-
binatorial object and its dual graph is no other than the Petersen graph.

Heawood, who around 1890 studied colorings of graphs embedded on
surfaces (in the context of extending the four color conjecture), conjectured
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4

Figure 3: The 6 vertex triangulation of the real projective plane

that K, (the complete graph on n vertices) can be embedded in a surface
M (except for the Klein bottle) if and only if

n < (74 /49 — 24X (M) .

(Here, X(M) is the Euler characteristic of M.) Such embeddings giving
2-neighborly triangulations of M were indeed found in all cases by Ringel
and Youngs (in some cases with other coauthors). See Ringel’s book [75].

However, there are only a handful of examples of (k + 1)-neighborly
2k-manifolds, for £ > 1 (see [68]). Perhaps the most famous example is the
remarkable 9-vertex triangulation of the complex 2-dimensional projective
space by Kiihnel and Lassman (see [70], [69]).

In Kiihnel’s own words [68]: “To construct the triangulation we denote
the nine vertices by 1,2,3, ..., 9 and take the union of the 4-dimensional
simplices 12456 and 12459 under the action of a group of permutations Hy,
generated by: o = (147)(258)(369), 8 = (123)(465) and v = (12)(45)(78).
This group is a 2-fold extension of the Heisenberg group over Z3. «y cor-
responds to the action of the complex conjugation, in fact its fixed point
set is combinatorially isomorphic to the 6-vertex triangulation of the real
projective plane.”

Novik [74] proved an extension of the upper bound theorem for all tri-
angulations of manifolds and it is plausible that this theorem, and a related
conjecture by Kiihnel concerning how large the Euler characteristic can be,
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apply to arbitrary triangulations of Witt spaces.

2.5.3 Neighborly embedded manifolds. The moment curve z(t)
= (¢,%%,...,t%) C R%is an example of 1-dimensional [d/2]-neighborly mani-
folds in R%. Namely for every [d/2] points on the curve there is a hyperplane
which supports the curve precisely at these points.

While there are many different neighborly polytopes there is only one
(in terms of order types) [d/2]-neighborly embedding of R into R¢, for d
even. Moreover, for d even, the moment curve is the only order type of
an embedding of R into R¢ where all points are in general position. This
indicates that the as yet unexplored area of understanding the “order type”
of nondiscrete subsets in R? (such as embedded manifolds) may exhibit
some simpler phenomena than the discrete (finite) case.

Perles asked: what is the smallest dimension d(k, n) of the ambient space
in which a k-neighborly n-dimensional manifold exists? A simple dimension
count shows that we must have d(k,n) > (k + 1)n. On the other hand,
a straightforward extension of the moment curve gives a bound for d(k, n)
which is exponential. Kalai and Wigderson found a simple construction
showing a polynomial upper bound on d(k, n), and Vassiliev [86] showed
by an intricate topological argument that d(k,n) > 2kn — bin(n), where
bin(n) is the number of ones in the binary expansion of n.

2.6 Other problems and connections.

2.6.1 Clique complexes and spheres. Start from a graph G and
consider its clique complex K (G), a simplicial complex whose faces corre-
spond to the complete subgraphs of G. Understanding the possible face
numbers of such complexes is an important problem in extremal combi-
natorics related to Turan’s theorem; see [49], [72]. Suppose that K(G) is
a triangulated sphere. What can be said then? Charney and Davis [52]
formulated a conjecture concerning the face numbers of such complexes
which is closely related to conjectures of Hopf on the Euler characteris-
tic of manifolds M with nonpositive sectional curvature. For some recent
developments, see [71].

2.6.2 Cubical upper bound theorems. Cubical complexes seem
of equal importance yet quite different from simplicial complexes, and much
less is known about them. (A structure of a cubical complex on a manifold
seems to tell more on the geometry of the manifold.) Only recently some
cubical analogs of the cyclic polytopes were constructed. Joswig and Ziegler
[60] constructed d-polytopes with 2™ vertices with [d/2]-skeletons of the n-
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dimensional cube. Previously, Babson, Billara and Chan [38] constructed
cubical spheres with this property and found connections between questions
on immersions of manifolds and the existence of certain cubical spheres.
There are analogs for cyclic polytopes, but the analog of the upper bound
theorem is false for spheres and probably also for polytopes. Adin [35]
found the right notion of h-numbers, but a construction for a “cubical
Stanley-Reisner ring” is yet unknown.

2.7 Some links and references. Polytope theory [89], [58], [59], [42], [66],
[46], [78] [Ziegler]; face numbers and h-numbers of polytopes and complexes [43],
[48], [45], [80], [63], open problems [85]; cubical spheres and polytopes [38], [60];
a continuous version of the UBT [87]; Kuhnel’s CP? and other special triangu-
lations [70], [69], [68]; Kruskal-Katona theorem and related results [54]; Turan
type theorems [49], [55]; commutative algebra and combinatorics [82], [53] [Her-
zog], [Bayer|; generic initial ideals and algebraic shifting [48], [74], [37], [57], [63]
[Herzog],[Bayer],[Kalai]; intersection homology [56], [50], and some combinatorial
applications [81], [51]; h-numbers and polytope duality [81], [63], and mirror sym-
metry [39]; algebraic combinatorics & la Stanley [Stanley] [44], [82], [83], [84], [85];
Various proofs for the UBT: for Eulerian complexes with many vertices [65], for
polytopes using shellability [73], a simple dual form using linear objective func-
tions, [187], for spheres using the Cohen—Macaulay property [79], using shellability
and the Cohen—-Macaulay property [64], using shellability and a strong form of an
extremal theorem of Bollobas [36], for manifolds, using relations between face
numbers and Betti numbers of Buchsbaum rings [74], a strong form for general
polytopes using the Braden—MacPherson theorem [73].

Problems and conjectures

The posing of problems and conjectures is part of the process of exploring
the factual matters as well as of proposing explanations for them. Is the
development of mathematics shaped by problems? And what are good
problems? Do they arise naturally like the sphere-packing conjecture, or
are they perhaps sporadic and ingenious like Fermat’s last theorem and the
four color problem? To what an extent are good mathematical problems
suggested by other sciences?

Modern combinatorics was greatly shaped by problems posed by Erdds,
who was very cautious concerning our ability to predict the future of a
problem.
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3 Extremal and Probabilistic Combinatorics: the Discrete
Cube and Influence of Variables

3.1 Influence of variables on Boolean functions.

3.1.1 The discrete cube. We consider the discrete cube Q, =
{-1,1}" and will try to understand real and Boolean functions defined
on {2,. Boolean functions on {2, are of course in 1-1 correspondence with
subsets of 2,,. It turns out that many specific problems in extremal com-
binatorics, probability, mathematical physics and theoretical computer sci-
ence can be formulated in terms of Boolean or real functions on €2, and
that general properties of such functions are very useful.

For z,y € Q, the Hamming metric d(z,y) is defined by d(z,y) = |{7 :
z; 7# y;}|. Some related metrics will also be considered.

Denote by §2,(p) the discrete cube endowed with the product probability
measure P, where P,{z : 2; = 1} = p. Usually, we consider the uniform
measure p = 1/2. (More general measures like FKG-measures should also
be considered, but we will not attempt doing it here.)

Notation: In addition to the standard big O and little o notation we
use the following notation: For positive real functions f(z) and g(z), we
write f(z) = ©(g(z)) if, for some positive constants ¢; and ¢z, c1g(z) <
f(z) < cag9(z), as © tends to infinity. We write f(z) = Q(g(z)) if for some
positive constant ¢, f(z) > cg(z).

3.1.2 Influence of variables. Consider an event A C Q,(p) and
the associated Boolean function f(z1,®2,...,%,) = X4, the characteristic
function of A. The influence of the variable k& on the Boolean function f,
denoted by It(f) (and also by I (A)), is the probability that flipping the
value of z; will change the value of f. The total influence IP(f) equals
SSIZ(f). We define also IIP(f) = Y- (I2(f))?. (We will not use the super-
script p for p =1/2.)

Influence of variables (in a much greater generality) was introduced and
studied by Ben-Or and Linial [99] in the context of “collective coin flipping”,
an important notion in theoretical computer science. The problem they
considered is, in short: “Is there a protocol for a society of n processors to
produce a random bit immune against a situation where a fraction of the
processors is cheating?” Having each processor produce a single random
bit, and using a Boolean function to produce the “collective bit” is a simple
such protocol. But it turns out (from Theorem 3.3 below) that it can never
be immune against w(n)n/logn cheaters, when w(n) tends to infinity with
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n. A multistage protocol immune against 2(n) cheaters was found by Alon
and Naor [92], see also Feige [110].
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Figure 4: Two steps in Feige’s protocol for a collective coin flipping. The agents
enter a random room and the process continues with the room with the least

number of agents.

It(f) is essentially identical to the Banzhaff value in game theory. In
[99], influence of larger sets of variable is also considered.

A function f is monotone if its value does not decrease when we flip the
value of a variable from -1 to 1. Some basic facts on influences are given
by:

Theorem 3.1 (Loomis—Whitney, Hart, Harper).

ka (4)log (1/P(4)) .

Theorem 3.2 (Banzhaff). For monotone Boolean functions f, II(f) < 1.
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The following result of Kahn, Kalai and Linial (KKL) has a central role
in this section.

Theorem 3.3 (Kahn, Kalai and Linial, [119]).
mkaXIk(f) > KP(A)logn/n.

Here, K is an absolute positive constant. In fact, K = 1/2 will do.
Note that this theorem implies that when all individual influences are the
same (e.g., when A is invariant under the induced action from a transitive
permutation group on [n]), then the total influence is larger than Clogn.
For the ultimate sharpening of this result,

D IE(A)/(log(IE(A)) > KPy(A);
k=1

see Talagrand [131].

3.1.3 Russo’s lemma and threshold intervals. For a monotone
event A C Q, (i.e., X4 is a monotone function), let P,(A) be the measure of
A with respect to the product measure P,. Note that P,(A) is a monotone
function of p. Russo’s lemma (see [115]) asserts that

TE =T,

Given a small real number ¢ > 0, consider the threshold interval [p;, ps]
where P, (A) = € and P,,(A) = 1 — €. Denote by pc the value so that
P,.(A) = 1/2, and call it the critical probability for the event A. A basic
result of Bollobds and Thomasson asserts that the threshold interval is
always bounded by a constant times the critical probability. By Russo’s
lemma, large total influence around the critical probability implies a short
threshold interval.

3.1.4 Fourier-Walsh expansion. Consider a Boolean function f
on (,(1/2). Consider the Fourier-Walsh expansion f = } g1, f(S)us,
where us = [[;cg ;. (For the case of general p, see [131].)

Now, [|f]3 = P(4) = X ]?Z(S) (Parseval) and one can show that
I(f) = Xscm P(S)|S| The result of Kahn, Kalai and Linial (Theorem
3.3) follows using certain hypercontractive estimates of Bonamie and Beck-
ner [95], [101]. In recent years, harmonic analysis on Z} plays an important
role in extremal and probabilistic combinatorics and in complexity theory.
Bonamie’s and related hypercontractive estimates are crucial for the proofs
of several of the results discussed in this section.
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3.1.5 Noise sensitivity. The effect of random changes in the vari-
ables is called the noise sensitivity of f. A class of functions is uniformly
noise stable if for every € > 0 there is § > 0 such that if you flip the values
of dn randomly chosen variables, the correlation of the new value of f with
the original value is at least 1 — e. It can be shown that this is equiva-
lent to the property that most of the 2-norm of f is concentrated in small
Fourier coeflicients (i.e. f is well approximated (in £3) by a small degree
polynomial.) A sequence of Boolean functions f,, is (asymptotically) noise
sensitive if for every § > 0 the correlation just defined tends to zero as m
tends to infinity. These concepts were introduced by Benjamini, Kalai and
Schramm [97] (we will mention some of their results below) and (in a dif-
ferent language and motivations) by Tsirelson, who described remarkable
relations and applications in [140], [128], [139] [Tsirelson].

Start a simple random walk (SRW) from a random point in A. How
quickly will you converge to the uniform distribution on Q,? If P(4) is
bounded away from 0 and 1, the answer is O(n). For a sequence A4,, of
such events, the answer is o(n) if and only if they are asymptotically noise
sensitive.

3.2 Other general properties of subsets of the discrete cube.

3.2.1 Discrete isoperimetric inequalities. For A C Q, and z €
A let h(z) be the number of neighbors of # which are not in A. The vertex
boundary of A denoted by 8,(A) is the set of z € A with h(z) > 0.

Theorem 3.4. Consider A C ,,.

1. Given the size of A the vertex boundary of A is minimized for Ham-
ming balls.

2. More generally, for every fixed T > 0, the number of the points whose
distance from A is at least T is maximized when A is a Hamming ball.
Therefore,

P{z € Q, : d(z, A) > ty/n} < exp(—t*/2)/P(4). (3.1)

Talagrand [133], [135], [134] found several deep extensions and surpris-

ing applications of the isoperimetric inequality. A very useful sharpening is

to replace d(z, A) by the Euclidean distance dr(z, A) from z to the convex
hull of the points in A (considered as points in R9).

Theorem 3.5 (Talagrand isoperimetric inequality).

exp [ Ed2(z,4)) < ——. (3.2)
/nn(p) (4 ) P,(4)
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This inequality (in a dual formulation) is extremely useful for prov-
ing tail-estimates [133], [135], [130]. Inequalities (3.1), (3.2) manifest the
“concentration of measure phenomenon”. We use the term “hyperconcen-
tration” in cases where asymptotically stronger inequalities are valid.

For A C Qn(p) let B(A) = [ ., \/h(z). Talagrand proposed B(4) as
the “correct” notion of boundary for A and proved it in [132] (sharpening
a result by Margulis).

Theorem 3.6 (Margulis-Talagrand [132]). Let A be an event in Q,(p),
t = P,(A) and Cp = min(p, q)/./pq, where ¢ =1 — p. Then

B(A) > KCpt(1 — t)+/log(t(1 —¢)).
For related results see Bobkov and Gotze [102].

3.2.2 FKG and Shearer’s lenmma. The simplest form of the FKG
inequality states that two monotone events in €2,, have a nonnegative cor-
relation. There are many extensions, variations and applications; see [115],
[106].

Let J; be subsets of [n] so that every element in [n] is covered at least »
times. Let A C Qy, be an event, H(A) its entropy and H(A4;;) the entropy
function of A conditioned on the set of coordinates J;. Shearer’s lemma
(for some applications, see [109], [117], [113], [127]) asserts:

Yo H(A) < Y H(X).

(When J; = [n]\{¢}, Shearer’s inequality is essentially the Loomis-
Whitney inequality (Theorem 3.1, Part 1).)

3.3 Advanced theorems on influences. The following theorem de-
scribes in loose terms the main advanced general theorems about influences.
Recall that II(f) is the sum of the squares of the influences.

Theorem 3.7 (Vague formulations). 1. [Talagrand], [136] For two mono-
tone events A and B, a large inner product of their influence vectors implies
a stronger FKG-inequality.

2. [Talagrand], [137] A small value of II(f) implies a large Margulis-
Talagrand boundary.

3. [Bourgain and Kalail, [105] High symmetry implies large total influ-
ence.

4. [Friedgut, [111]] For a constant p, if the total influence is small, then
the function is determined (approximately) by few coordinates.
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5. [Friedgut, [112] and Bourgain, [104]] When p tends to zero, bounded
total influence implies that f is “local”.

6. [Benjamini, Kalai and Schramm)], [97] For monotone events, sensi-
tivity to noise is equivalent to having a small value of II(f).

7. [Talagrand], [138] Small total influence implies hyperconcentration in
the mean for the Hamming metric.

8. [Benjamini, Kalai and Schramm], [98] A small value of II(f) implies
hyperconcentration in terms of the second moment for Talagrand’s metric.

Van Vu and Jeong Kim [143], [121] proved hyperconcentration results
for events which can be expressed by low-degree polynomials with small
coefficients.

3.4 Two basic problems.

ProBLEM 3.1. 1. Characterize Boolean functions for which I(f) is small.
Can such functions be always approximated by small-depth small-size
Boolean circuits? (See section 3.5.10 below.)

2. Find general conditions for I(f) > nP. Is this always the case when
there is a notion of a scaling limit [90], [139], [164]7

3. Characterize Boolean functions whose Fourier coefficients have a
small support. (For example, functions for which most of the 2-norm is
concentrated on a polynomial number in n of Fourier coefficients.)

ProBLEM 3.2. 1. Let f be a real function on the discrete cube. Under
which (combinatorial) conditions can we guarantee that the distribution of
f is close to a normal distribution?

2. Under which conditions can you expect a distribution which is more
concentrated than normal? What kind of other distributions can you en-
counter from “natural” functions?

3.5 Examples. We consider now some examples of real and Boolean
functions defined on the discrete cube. Given a real function f, consider
the Boolean functions St(f) = sign(f(z) — T). (Here, sign(z) = +1 if
z > 0 and sign(z) = —1, otherwise.) Consider also the important special
case M(f) = St(f), where T is the median value of f.

3.5.1 Weighted majority. For weights wi,...,w, consider the
functions f(z) = > w;z;. The functions St (f) are called weighted majority
functions. The usual majority function (all w;’s are equal and T = 0) is
a special case. For this example the influence of each variable is C'/4/n.
Another special case is the function f(z1,zs,...,%,) = 1. Here Iy(1) =1
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and Iy(k) = 0 for k # 1. Weighted majority functions are uniformly noise-
stable [97]. The Talagrand isoperimetric inequality is sharp for these func-
tions and so is the Margulis-Talagrand inequality. More general examples
are low degree polynomials and their signs. See also Bruck and Smolensky,

[107].

3.5.2 Majority of majorities, tribes, runs. Of course, we can
partition the set into parts and consider the majority of majorities with
various parameters. An important example is the tribe example of Ben-Or
and Linial [99]: Divide the variables into “tribes” of size logn — loglogn
and set f = 1 iff there is a tribe all of whose variables has the value 1.

A related function is: Let f be the size of the longest run of ‘1’s’ and con-
sider M (f). For these functions the influence of every variable is ©(log n/n)
(which is optimal by Theorem 3.3).

3.5.3 Recursive majorities. Let n be a power of 3. Divide the set
of variables into three parts, divide each part into 3 parts, and continue
logg n steps. Let f be the majority of majorities ... of majorities of the
3-element sets and let A C Q,, be the corresponding event [99]. If you start
a SRW from a random vector of A you will come very close to a uniform
distribution on €, in nl°82/1°83 gteps. Mossel and Peres pointed out that
replacing 3 by a larger (but constant) ¢ the number of steps required is
reduced to n'/2%4 where § tends to 0 as ¢ tends to infinity.

3.5.4 Random subsets of 2,, and error correcting codes. Con-
sider A, which is not necessarily monotone. The parity function
f(z1,22,...,2,) = 2122 - - - Ty, is the most noise-sensitive with P(4) = 1/2.

When log, |A| = sn, 0 < s < 1, we can ask: how quickly can a SRW
from a random uniformly chosen point of A reach a distribution that is
almost uniform on ,,7 A reasonable guess is that the best choice would
be to take A itself to be random. This is closely related to the conjecture
that the Gilbert-Varshamov bounds for codes are optimal (see [142]).

3.5.5 Cliques in graphs. This time, let the variables correspond to
the n = (’;) edges of the complete graph with m vertices. Every assignment
of values to the variables corresponds to a graph: the graph whose edges
correspond to the variables with value 1. Let f be the size of the largest
clique in this graph.

Again consider M(f). (The median value is @(logn).) In this example
the influence of each variable is ®(log?n/n). The threshold interval for
having a clique of size alogn is ©(1/ log? n).
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3.5.6 General graph properties. More generally, every property
of graphs on m vertices (connected, planar, have diameter > 3, etc.) cor-
responds to a Boolean function on this set of (’;) variables. Bourgain and
Kalai [105] used their study of influences under symmetry (Theorem 3.7,
Part 3) to show that for every graph property the threshold interval is of
size at most c,1/log?™" n, for every 7 > 0.

The most important cases for random graph properties are when the
critical probability pc itself depends on n. Already, Erd6s and Renyi in
their paper which introduced random graph theory showed that many graph
properties (such as connectivity) have sharp threshold behavior, namely the
threshold interval is o(pc).

Friedgut’s theorem (Theorem 3.7, Part 5, [112]) for graph properties
can be stated as follows:

“If a graph property does not have a sharp threshold then it can be
approximated by the property of having a subgraph from a given finite
list”.

For example, the property “to have a complete subgraph with 4 ver-
tices” has a coarse threshold. But the “connectivity” property has a sharp
threshold since it cannot be approximated by having a subgraph from a fi-
nite list. Friedgut’s theorem has many important applications for showing
sharp threshold behavior.

3.5.7 Random formulas, the 3-SAT problem. Consider a
Boolean formula with n variables of the form

(mll V :Elg V IE13) A (:Egl V :Ezg V :Ezg) FANKIIWAN (mml V Lm2 V :Emg) .

It is an NP-complete problem to determine if the formula is satisfiable.
The problem of satisfiability of random formulas has drawn a lot of atten-
tion recently. Friedgut [112] used his general criteria for bounded influence
to show that there is a sharp threshold between values of m for which the
formula is almost surely satisfiable and those for which it is almost surely
unsatisfiable.

3.5.8 Crossing events in percolation. Consider the graph of the
k by m grid in the plane and let the variables correspond to the edges (so
n is roughly 2km). Assume that the ratio £/m is bounded and bounded
away from zero. Consider the event of having a left-to-right crossing. The
influence of a variable is known in percolation theory as “the probability
for an edge to be pivotal”. I(f) is an important “critical exponent” of
percolation. Tt is conjectured that I(f) = ©(n?/8).
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A principal problem in percolation theory is that the probability for
having a crossing tends to a limit if the ratio of & and m is fixed and &
tends to infinity. This is a special case of the (conjectured) existence of a
“scaling limit”. In [97] it is shown that the crossing event is (asymptotically)
sensitive to noise.

3.5.9 First passage percolation. A simple (but representative)
variant of first passage percolation (FPP) can be described as follows. Con-
sider the plane grid on which the length of each edge is assigned the value
0 with probability 1/4 (any p < 1/2 will do) and 1 with probability 3/4.
We would like to know: What is be the distribution of the distance D from
the origin to the point (m, m)? Here the distance is the minimum over all
paths from the origin to (m, m) of the sum of lengths of edges in that path.
D is a real random variable defined on n Boolean variables where n cor-
responds to all the edges of the grid in some large region containing (0, 0)
and (m, m). There are many exciting geometric and probabilistic problems
concerning FPP.

Kesten showed that the variance of D is O(m), and another simple
proof with sub-Gaussian tail estimates was given by Talagrand [133] using
his isoperimetric inequality. Influences and noise sensitivity (parts 5 and 7
of Theorem 3.7) are used in [98] to show that for FPP “on the torus” (and
on a large class of symmetric graphs) the variance of D is actually o(m). It
is suggested by physicists that the variance behaves like m2/3
speculated that the distribution of D and the large deviation properties
are related to the distribution of the largest eigenvalues of certain random
matrices; see [116].

and it is even

3.5.10 Boolean functions expressed by bounded depth Boo-
lean circuits. Consider a function described by a Boolean circuit (whose
gates are: and, or, and negation) of depth ¢ and size M. Linial, Man-
sour and Nisan showed that the Fourier coefficients of such functions decay
exponentially [123]. Boppana [103] showed that for such a function f

I(f) <log=' M.

Note that this bound applies to the examples of tribes, runs and cliques in
graphs mentioned above (see also [107], [97]). An important example based
on certain random depth-3 circuits was given by Ajtai and Linial [91].

3.5.11 Determinants, eigenvalues. (Suggested by I. Benjamini.)
Consider an m by m matrix with entries -1 and consider its determinant
D, the sign of D, its largest eigenvalue, etc. All these can be regarded
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as (nonmonotone) real functions on 2, with n = m?. The corresponding

Boolean functions are also of interest. What can be said about influences,
noise-sensitivity and the Fourier-Walsh coeflicients? Is there a notion of
scaling limit?

3.5.12 Signed combination of vectors. Given n vectors vy, ..., Uy
in some Euclidean space, with ||v;||2 < 1, write f(e1,...,€:) = || D €ii||oo-
The distribution of the values of f is of great interest and, in particular,
a conjecture of Komlos asserts that f always attains a value below some
absolute constant.

3.5.13 Linear objective functions. Consider a convex d-polytope
which is combinatorially equivalent to the d-dimensional cube and let f be
given by the values on the vertices of a linear functional on R% Such
functions extend weighted majority functions considered above and are of
great importance in the theory of linear programming (see section 5).

3.6 Some links and references. The standard source for probabilistic
combinatorics is [93], its second edition will treat various further topics discussed
here. Various papers in [106] that we will not cite individually are good references
for some probability topics discussed in this section and in the next one.
Influences and collective coin flipping [99], [119], [91], [92], [122]; Talagrand’s
method and applications [133], [135], [130]; extremal combinatorics [54]; Boolean
circuit complexity [93], [107], [103], [123]; random graphs [100], [93]; combinatorial
problems on the discrete cube [129]; noise sensitivity [97], [98], [140], [128], [139],
[141] [Tsirelson][Schramm]; FKG variations and applications [115], [106]; entropy
and Shearer’s lemma [109], [113], [117]; percolation and first passage percolation
[125], [126], [106]; random matrices and combinatorial connections [116], [118];

Komlos conjecture [94];

Examples

It is not unusual that a single example or a very few shape an entire math-
ematical discipline. Examples are the Petersen graph, cyclic polytopes,
the Fano plane, the prisoner dilemma, the real n-dimensional projective
space and the group of two by two nonsingular matrices. And it seems that
overall, we are short of examples. The methods for coming up with use-
ful examples in mathematics (or counterexamples for commonly believed
conjectures) are even less clear than the methods for proving mathematical
statements.
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4 Enumerative Combinatorics and Probability: Counting
Trees and Random Trees

4.1 Kirchhoff, Cayley, Kasteleyn and Tutte. Cayley proved that
the number of trees on n labeled vertices is n” 2. There are many beauti-
ful proofs which demonstrate various principal techniques in enumeration
theory and, amazingly, new proofs are still being found. See [162], [84]
[Stanley]|. The matrix tree theorem, asserting that the number of spanning
trees for a graph G is (essentially) the determinant of the Laplacian of G,
is even earlier and is attributed to Kirchhoff. Of the vast knowledge on tree
enumeration, let me mention two additional results. Kasteleyn (see [17])
found fundamental relations between the number of perfect matchings of
planar graphs and tree enumeration. Tutte [166] considered graphs drawn
on the 2-dimensional sphere, which has the property that the antipodal
map induces an order-reversing bijection between the faces (or dimensions
0, 1 and 2) of this graph. In particular, the graph is self-dual (but this
is not sufficient). He proved that the number of spanning trees of such a
graph is a perfect square and the square root is equal to the number of
self-dual trees.

4.2 Random spanning trees and loop erased random walk. It
is now understood that there is an intimate connection between exact or
approximate enumeration of certain objects and between the problem of
finding (exactly or approximately) a random element among them. What
can be said about a random spanning tree of a graph G and how can you
generate such an object?

Broder [148] and Aldous [145] proposed a very simple way to generate a
random spanning tree in a finite graph: Start a random walk and add to the
tree all edges in the walk which do not close a circle when first traversed.
Wilson [168] found a remarkable algorithm with superior performances and
important theoretical aspects. His algorithm is related to the discussion
that follows.

Lawler [157], attempting to understand a self-avoiding random walk,
considered the following (different) model. Given two vertices z and y,
start from # a random walk until reaching y and erase all loops. Pemantle
showed that the distribution on # — y paths in Lawler’s model of loop
erased random walk is precisely the distribution of paths between z and y
in a random spanning tree.
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Figure 5: A random spanning tree and a loop erased random walk.

4.3 Random spanning trees II. Rick Kenyon [152], [153], [154], [155]
was recently able to compute critical exponents, to prove conformal invari-
ance and to establish the existence of scaling limits for models based on
random spanning trees of planar grids. His ingenious and involved proofs
use Kasteleyn’s correspondence between matchings and spanning trees for
planar grids in a crucial way. Here are two of Kenyon’s results:

e The expected length of the path between the origin and the boundary
of the n by n grid in a random spanning tree of the standard plane

grid (equivalently, the expected length of the loop erased random
walk) is ©(n%/3).
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e Consider a smooth planar figure F' and three points z, y and z on
its boundary, and the (unique) meeting point u of these three points
in a random spanning tree of a fine planar grid. In the limit, u is a
distribution on points inside F'. Kenyon proved that this distribution
is invariant under conformal maps of the plane.

4.4 Random spanning trees III. Oded Schramm [164] assumed a
strong version of conformal invariance to show that various limiting objects
for random spanning trees in planar grids are described by a certain stochas-
tic process. Schramm constructed a remarkable class SLE, of stochastic
processes depending on a parameter £ and showed that (assuming the exis-
tence of scaling limits and conformal invariance) these processes for K = 2
describe the limiting paths of the loop erased random walk, and for kK = 6
the scaling limit of critical percolation cluster boundaries. For k = 8 they
are related to random Peano curves arising from random spanning trees,
and for k = 4 it is speculated that they describe the domino difference
model (introduced and studied by Kenyon). This established surprising
connections between objects which previously seemed different.

Here is a short description of Schramm’s construction in his own words:
“Consider a path 7 in the closed unit disk U from the boundary to 0,
which does not cross itself (and does not contain a nontrivial arc on the
unit circle). Consider an initial arc S8 of . Let ¢(8) be the endpoint of 8
which is not the initial point of v. By Riemann’s mapping theorem, there
is a unique conformal map ¢ = gg : U — 8 — U normalized by g(0) = 0
and g¢'(0) > 0. Set t(8) = —logg’(0). The map g extends continuously
to the closure of U — 8. In particular, § = g(g(8)) is a well defined point
on the unit circle. We may think of 8, and hence of é§ as functions of ¢,
0 :[0,00) — 9U. Loewner’s slit mapping theorem shows that the collection
of maps gg = g; can be reconstructed from the function 6(¢), by solving a
differential equation with §(t) as a parameter.

In the SLE, process, we take 6(t) = B(kt), where & is a constant and
B is Brownian motion on the unit circle. By Loewner’s theorem (and its
extensions) this gives sufficient information to reconstruct g, hence .”

Lawler, Schramm and Werner [159] related these objects to planar
Brownian motion. Using conformal invariance which is known for Brownian
motions and some earlier results of Lawler and Werner on the ‘universality’
of certain critical exponents for a large class of processes they managed to
compute critical exponents anticipated by Duplantier-Kwon and Mandel-
brot for Brownian motion in the plane.
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These developments are a wonderful symphony of probabilistic, geomet-
ric, analytical and combinatorial reasoning.

4.5 Higher dimensions. Only a small fraction of the charm and im-
portance of trees survives when we consider higher dimensional acyclic
complexes. Yet in some contexts (e.g., buildings) such generalizations
are useful. When it comes to tree enumeration it turns out that Cay-
ley’s formula does extend easily with a little twist: The weighted sum of
Q-acyclic k-dimensional acyclic complexes on n vertices with a complete
(k — 1)-dimensional skeleton is n(nzz), where the weight of a complex K
is |Hg_1(K)?|. Thus, for n = 6,k = 2 the formula gives 6° and there is
a single type of complex, which is counted more than once (4 times): the
6-vertex triangulation of the real projective plane (Figure 3). The proof
relies on extending the matrix-tree theorem and identifying the eigenvalues
of certain Laplacians.

Very soon, as n grows, the weights in this formula become much larger
than the number of summands. See Kalai [151] and Adin [144]. Analogs
for Kasteleyn’s and for Tutte’s theorems mentioned above are expected
but not known. Kenyon suggested that an appropriate extension of Kaste-
leyn’s theorem to subcomplexes of the 3-dimensional grid may be useful
in extending some of his explicit computations of critical exponents to 3
dimensions.

4.6 Haiman’s diagonal harmonics. Consider the graded polynomial
ring H, = Clz1,...,2n,Y1,...Yn]/I, where I is the ideal generated by all
polynomials in the #;’s and y;’s which are invariant under the diagonal
action of the symmetric group S, on the variables.

Haiman [150], based on experimentation with Macaulay [158], conjec-
tured that the dimension of H, is (n + 1)"~!, the number of labeled trees
on n + 1 variables.

Further experimentation showed that finer statistics on the grading of
H, (the total degree or the degrees according to the variables z; alone)
turned out to be related to classical enumeration statistics of trees. More-
over, using the well known correspondence between trees and parking func-
tions, it was possible to identify the representation of the symmetric group
S» on H,. Haiman’s conjecture turned out to be related to exciting issues
in algebraic geometry and representation theory. Many tried to solve it,
but very recently Haiman himself proved his conjecture [Haiman)].

4.7 Some links and references. Tree enumeration [162], [84], [156]; trees
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and probability [161], [106]; random spanning trees and forests [146], [160], [163],
[106]; enumerative combinatorics [83], [84], [147], [Zeilberger], [Stanley]; Schramm’s
processes, Brownian motion [164], [159], [167] Haiman’s conjectures [150], [Haiman];
Macaulay [158], [Bayer]; approximate enumeration [183], [186]; eigenvalues of

Laplacians of high dimensional complexes [Reiner].

Our community

Like musicians who can enjoy and understand complicated scores even in a
world with no sound, for us mathematics is a source of delight, excitement
and even controversy. This is hard to share with nonmathematicians.

In our small world we should seek new ways for communication and
interaction and for the right balance between competition and solidarity,
criticism and empathy, exclusion and inclusion.

5 Optimization: How Good is the Simplex Algorithm?

5.1 The simplex method. Linear programming is the problem of
maximizing a linear objective function ¢ = byz;+bszs+- - -+bgz 4 subject to
n linear inequalities in the d variables z, s, ..., 24. Linear programming
and Danzig’s simplex algorithm are among the most important applica-
tions of mathematics in the 20th century. The set @ of solutions for the
inequalities is called the feasible polyhedron. The maximum of ¢ on @ (if
¢ is bounded on Q) is attained at a face of @ and, in particular, there is a
vertex v for which the maximum is attained.

The stmplex algorithm is a method to solve a linear programming prob-
lem by repeatedly moving from one vertex v to an adjacent vertex w of
the feasible polyhedra so that in each step the value of the objective func-
tion is increased. The specific way to choose w, given v, is called the pivot
rule. Klee and Minty [182], and later others, showed that various standard
pivot rules may require exponentially many pivot steps in the worst case.
On the other hand, Khachiyan [178], [190], [177] showed that linear pro-
gramming is in P (namely, there is a polynomial-time algorithm for linear
programming), and various authors (for several notions of a random lin-
ear programming problem) showed that the simplex algorithm requires a
polynomial number of pivot steps on average [171].

It is an important open problem to decide if there is a variant of the
simplex algorithm whose worst-case behavior takes polynomial time. Re-
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lated problems are to show that there is a polynomial time algorithm for
linear programming “over the reals” or to find a “strongly polynomial” al-
gorithm (over the rationals) in the usual Turing model. These problems of
fundamental importance in both complexity and optimization lie (as the
problems of factorization of integers and graph isomorphism) in the grey
area between P and NP, where surprising new results and insights are
expected.

In the early 90s randomized subexponential simplex algorithms were
found independently by Kalai [180] and by MatousSek, Sharir and Welzl
[185]. These development as well as a related result on the diameter of
graphs of polytopes [179] apply in a very general abstract combinatorial
context. While it is possible that further improvements and even polyno-
mial simplex algorithms can be found in this generality, the main point I
would like to raise in this section is: can geometry help?

5.2 The combinatorics of linear programming. The following prop-
erty is crucial:

e (local=global) ¢ takes its maximum on a vertex v of @ if and only if
v is a local mazimum, i.e., ¢(v) > ¢(w) for every neighbor vertex w
of v.

An ordering of the vertices of a polytope @ is an abstract objective
function if the property (local=global) holds for @ and all its faces. (It
is possible to consider also abstract linear programming problems in even
greater generality; see [188], [179].)

For our purposes, there is no loss of generality in assuming that the fea-
sible polyhedron @ is bounded, that the linear objective function is generic
and that the problem is nondegenerate which, in other words, says that @ is
a simple polytope: every vertex has d neighboring vertices, or equivalently
every vertex belongs to exactly d facets.

The combinatorics of the problem involves the combinatorial structure
of the polytope @) and the combinatorics of the total ordering on the vertices
of @ induced by the linear objective function ¢. The combinatorics of )
is relevant because the diameter of the graph of Q) gives a lower bound on
the number of pivot steps needed. However, I feel that the main difficulty
lies in the combinatorics of objective functions and that understanding the
case where () is combinatorially isomorphic to the d-dimensional cube will
go a long way towards solving the problem.

An interesting connection with section 2 is the following: Given a simple
polytope @ (think about the cube!) and a linear objective function ¢, we
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can consider for every vertex v its degree deg(v), which is the number of
neighbors u of v with ¢(u) > ¢(v). It turns out that the distribution of
the degrees of vertices does not depend on the objective function. The
number of vertices of degree k is precisely the h-number hj (considered
in section 2). This applies to all abstract objective functions and, in fact,
characterizes this class of orderings of the vertices of ). This implies at
once the Dehn—-Sommerville relations hy = hq_ (replace ¢ with —¢), and
relation (2.4).

The product measure P, on the discrete cube (section 3) has a natural
extension in this context for arbitrary simple polytopes @) by assigning to
a vertex v the measure (1 — p)?—des(v)pdea(v),

The combinatorics of the full arrangement of hyperplanes which corre-
spond to points which satisfy one of the inequalities as equality, is also of
great importance. In particular one can read from the hyperplane arrange-
ment (and the ordering given by ¢ on its vertices) the combinatorics the
dual linear programming problem.

5.3 Some classes of pivot rules. We will consider now various pivot
strategies of a combinatorial nature for the simplex algorithm. Given a
vertex v of the feasible polyhedron @ our aim is to reach the vertex of )
at the top.

1. ( "Random improving edge") Choose a random improving neighbor.

2. ("Random facet") Choose a random facet F' containing v and run
the algorithm inside F' until reaching the optimal vertex in that facet.
Then repeat. The expected number of pivot steps is bounded above
by exp(C+/nlogd) [185], [180].

3. ("Universal instructions") For every vertex v of Q you are given
an ordering of its neighbors. In each step of the algorithm you move
to the first neighbor on the list which improves ¢.

3(R). ("Random universal instructions") The same as 3, except that
you have a distribution on such an assignment of orderings and you
choose a random one. (The best known randomized variant of the
simplex algorithm in terms of worst case expected behavior is of this
type [179].)

4. (Taking into account how well the neighbors improve) The same as 3
(or 3(R)) except the ordering in the vertex can depend on the ordering
between the ¢ values of the neighbors of v. One of the earliest pivot
rules using the most improving neighbor is, of course, a special case.

5. (Adaptive rule) The same as 3 (or 3(R) or 4 or 4(R)) except the
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ordering in the vertex can depend on the history of the algorithm up
to this stage.

6. ("Random walk") The basic operation is: Given two vertices v and u
with ¢(v) > ¢(u) start from a vertex v and perform a simple random
walk on all vertices whose ¢ value is larger than ¢(u). Then update
v and u. (Note: here, we allow steps which decrease the value of the
objective function.)

All these rules apply for abstract objective functions and for some of
them (1-3(R)) all that is needed is the relation between the values of the
objective function on neighboring vertices.

There are important pivot rules which depend in a stronger way on the
geometry and cannot be described in terms of abstract objective functions.
An important practical example is to always choose the steepest edge (to-
wards the objective function) leaving the vertex. An important pivot rule
from a theoretical point of view is the shadow-boundary rule, which is
based on projecting the polyhedra on a two-dimensional space. For this
(and only this) rule, it is known that the simplex algorithm is polynomial
for an average problem [171].

5.4 Can geometry help? I: There are few objective functions.
The first information about geometric objective functions is that there are
not too many of them. It is not difficult to see that the number of abstract
objective functions on the vertices of the d-cube is larger than 22°. (For
example, consider the orientation of edges of the discrete cube which cor-
responds to the linear objective function z; + €5 + - - - + #4. Then consider
a matching between the vertices of the two middle levels of the cubes. You
may switch the orientation of any subset of edges of this matching and the
property (local=global) will still hold (see, [89]).)
In sharp contrast,

Theorem 5.1. The number of different possible geometric objective func-
tions of the discrete d-dimensional cube is at most exp(d®logd). More-
over, the number of combinatorial types of pairs (Q, ¢), where Q is a d-
polytope with n facets and ¢ a linear objective function on @), is at most
exp(K d?nlogn).

The proof of this theorem relies on a theorem of Warren from real al-
gebraic geometry on the number of sign patterns determined by a set of
polynomials. The basic argument is due to Goodman and Pollack, [176],
[169]. (The result applies to the number of combinatorial types of arrange-
ments of n hyperplanes in R and the orderings given by a linear objective
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function on the vertices of the arrangement.)

A hereditary class of abstract objective functions on discrete cubes is
small if the number of distinct orderings on the vertices of the d-cube is
only exponential in a polynomial of d.

ProBLEM 5.1. 1. Given a small hereditary class of abstract objective
functions, is it possible to prove the existence of an oblivious process such
as "Random universal instructions" which works well for all abstract
objective functions in this class?

2. Is it possible, to improve algorithms like "Random facet" by “learn-
ing” information from the low level recursion, in a way which will dramat-
ically reduce the running time for ell small hereditary classes of abstract
objective functions?

The second option we raised, that of learning, needs further explanation.
The situation seems to resemble what is called a bounded VC-dimension
[192], which is an extremely useful condition for various combinatorial and
algorithmic applications. Specifically, it is possible that applying an algo-
rithm (such as "Random facet") where the choices of the algorithm higher
up in the recursion are positively correlated with successful choices in lower
levels will perform well on every small class of abstract objective functions.

A case worthy of study (even experimentally) is a remarkable class of
abstract objective functions on the discrete d-cube described by Matousek
[184]. For an average abstract objective function in this class the expected
number of pivot steps needed for "Random facet" is indeed exp(K\/E).
This class is hereditary and small: the number of abstract objective func-
tions of this class on the d-cube is exponential in d2.

Gartner [174] showed that for Matousek’s class the geometry does help
as "Random facet" itself requires only a quadratic number of pivot steps
for geometric objective functions in Matousek’s class. Géartner used only
the conditions for geometric objective functions on the 3-dimensional faces.

Abstract objective functions on 3-dimensional polytopes were recently
characterized by Mihalisin and Klee [181]. The orientations of graphs of
3-dimensional polytopes induced by a geometric objective function (each
edge is oriented from the smaller vertex to the larger) are precisely the
acyclic orientations with a unique source and a unique sink which admits
three disjoint independent monotone paths from the source to the sink.

5.5 Can geometry help? II: How to distinguish geometric objec-
tive functions. We should also try to find concrete ways to distinguish
between abstract and geometric objective functions. Consider the set A, of
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all vertices u in the feasible polyhedron with ¢(u) > ¢(v). Which properties
does A, satisfy?

A recent important result by Morris and Sinclair [186] shows that for the
standard cube and weighted majority functions, A4, has (mild) expansion
properties which implies that a SRW on A, reaches an approximate-uniform
distribution in n® steps.

For an arbitrary linear programming problem, can the graph induced
on A, always be divided into a polynomial (in d and n) number of parts,
each of which is (mildly) expanding? (Mildly expanding means that the
expansion constant is 1/p(d, n) for some polynomial p(d,n).) Since every
ordering of the vertices of the cube given by a monotone real function is
an abstract objective function and since monotone subsets of €2,, may have
dismal expansion properties, the geometry must be used.

Monotone functions on 2, are not a real challenge for the simplex al-
gorithm as any (improving) pivot rule will reach the maximum vertex in at
most n steps. But understanding the class of orderings and events of the
type A, which come from an objective function on a polytope combinatori-
ally isomorphic to the n-cube is nevertheless of much interest also from the
point of view of complexity theory. Going back to the examples in section 3
it seems that repeated weighted majorities of various types can be realized.

Perhaps the strongest known result towards a strongly polynomial al-
gorithm for linear programming is by Eva Tardos [191]. Fixing the feasible
polyhedron (in fact, only the matrix of coefficients), she described a strongly
polynomial algorithm independent of the objective function. Proving this
result with a simplex type algorithm (even randomized) will already be a
major achievement (see [173] for a special case).

Added in proof. Spielman and Teng have recently made substantial
progress towards a polynomial (not yet strongly polynomial) version of
the simplex algorithm. They showed that the shadow-boundary pivot rule
needs a polynomial number of steps for a small random gaussian perturba-
tion of a linear programming problem.

5.6 Some links and references. Linear programming [190], average case
behavior of the simplex method [171], randomized pivot rules [172], [173], [189],
[175], [180], [188], [185], computational geometry [187] algorithmic applications of
random walks [183], [186], the diameter problem for polyhedra [179].
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Applications and Expectations

Judging from the conference on ‘Vision in Mathematics’, mathematicians
have a strong desire to interact and influence other sciences, as well as tech-
nology, industry, and even economic life. The trends towards isolationism
have been reversed, and there is a greater understanding of the subtleties
of applying mathematics to and interacting with other fields.

The general public knows very vaguely what mathematicians do. At the
same time people have quite clear expectations from mathematics. More
than other sciences, and certainly much more than law, religion, politics
and the media, mathematics is expected to be rigorous and precise in telling
its uninteresting, irrelevant, and uncomforting truths. The value of mathe-
matics for society goes far beyond its applications through technology; it is
indeed a pillar of human culture. After a century of amazing technological
development along with rising influence of pseudosciences and the occult,
this value is important.
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