
GAFA, Geom. funt. anal.Speial Volume { GAFA2000, 1 { 01016-443X/00/S40001-0 $ 1.50+0.20/0  Birkh�auser Verlag, Basel 2000GAFA Geometri And Funtional AnalysisCOMBINATORICS WITH A GEOMETRIC FLAVOR:SOME EXAMPLESGil KalaiDediated to the Memory of Rodia SimionAbstratIn this paper I try to present my �eld, ombinatoris, via �ve examplesof ombinatorial studies whih have some geometri avor. The �rsttopi is Tverberg's theorem, a gem in ombinatorial geometry, andvarious of its ombinatorial and topologial extensions. MMullen'supper bound theorem for the fae numbers of onvex polytopes andits many extensions is the seond topi. Next are general propertiesof subsets of the verties of the disrete n-dimensional ube and somerelations with questions of extremal and probabilisti ombinatoris.Our fourth topi is tree enumeration and random spanning trees, and�nally, some ombinatorial and geometrial aspets of the simplexmethod for linear programming are onsidered.IntrodutionThere is a deliate balane in mathematis between examples and generalpriniples, and in this paper I try to present my �eld, ombinatoris, via�ve examples of ombinatorial studies whih have some geometri avor.In order to make the presentation self-ontained, detailed and interest-ing, the hoie of material (even within the individual setions) is subje-tive and nonuniform. For an unbiased and omprehensive point of view thereader is referred to the many links and referenes. I have tried to inludemany open problems and to point out various possible onnetions, someof whih are quite speulative.Setion 1 deals with on�gurations of points in Eulidean spaes andspei�ally with Tverberg's theorem whih asserts that every set of(r � 1)(d+ 1) + 1 points in Rd an be divided into r parts whose onvexhulls have nonempty intersetion. A prinipal question is to �nd onditionswhih will guarantee the onlusion of Tverberg's theorem for a smaller setof points.



2 GIL KALAI GAFA2000Setion 2 is devoted to MMullen's upper bound theorem for onvexpolytopes whih asserts that among all d-polytopes with n verties theyli polytope has the maximal number of faes of any dimension. Sharpand general forms of this theorem and what will take to prove them aredisussed.The topi of setion 3 is the ube: the ombinatoris of subsets of theverties of the disrete ube, disrete isoperimetri relations and espeiallythe notion of inuene. General fats about Boolean and real valued fun-tions de�ned on the disrete ube are useful for various problems in extremalombinatoris, probability and mathematial physis.In setion 4, I disuss some reent results onerning random spanningtrees and tree enumeration and mention the reent emerging piture ofrandom spanning trees of grids in the plane.The prinipal problem in the �nal setion, x5 is to �nd a polynomial-time version of the simplex algorithm for linear programming. Combinato-rial and geometri aspets of the problem are onsidered.Although there are relations between the �ve setions they an be readin any order. The reader an safely skip any plae where she or he feelsthat the mathematis beomes too heavy-going. Probably these plaesreet the fat that either the mathematis should be improved or myunderstanding of it should.In the (unusual) style of the \Vision in Mathematis" meeting, eahsetion onludes with brief omments of a philosophial nature.1 Combinatorial Geometry: An Invitation to Tverberg'sTheorem1.1 Radon's theorem and order types (oriented matroids).Theorem 1.1 (Radon's Theorem). Every d + 2 points in Rd an bepartitioned into two parts suh that the onvex hulls of these parts havenonempty intersetion.A pair of disjoint subsets of X whose onvex hulls interset are alleda Radon partition. The points in the intersetion of the onvex hulls arealled Radon points.Radon's theorem follows at one from the fat that d+ 2 points in Rdare always aÆnely dependent. It implies at one another basi theoremon onvex sets { Helly's theorem: For every �nite family of onvex sets,if every d + 1 of its members have a point in ommon then all sets in the



Vol. 10, 2000 COMBINATORICS WITH A GEOMETRIC FLAVOR 3family have a point in ommon. The reader is referred to [14℄, [20℄ for muhinformation on Helly type theorems.Given n points on the line, the (minimal) Radon partitions determine(up to orientation of the line) the ordering of these points. In a similar waywe an lassify on�gurations of points in the plane or in Rd aording totheir Radon partitions. This leads to the theory of oriented matroids ororder types (see [10℄).1.2 Tverberg's theorem.Theorem 1.2 (Tverberg's Theorem). Every (d + 1)(r � 1) + 1 points inRd an be partitioned into r parts suh that the onvex hulls of these partshave nonempty intersetion.
Figure 1: Seven points in the plane and their Tverberg partion.Proofs of Tverberg's theoremwere given by Tverberg ('66) [27℄, Doignonand Valette ('77), Tverberg ('81), Tverberg and Vreia ('92), Sarkaria ('92)[25℄, and Roudne� ('99) [23℄. While the original proof was quite diÆult,the proofs of Sarkaria and Roudne� are remarkably simple.Roudne�'s reent proof is by minimizing the sum of squares of the rdistanes between a point x and the onvex hulls of r pairwise disjointsubsets of the points. It turns out (under mild assumptions of generiity)that if this minimum is positive, it is attained without using one of thepoints and this extra point an be used to push this minimum down.While the reent proofs of Tverberg's theorem give an algorithm to �ndthe partition, the omputational omplexity of �nding suh a partition isnot known.Problem 1.1. Find a polynomial-time algorithm to obtain a Tverberg



4 GIL KALAI GAFA2000partition when Tverberg's theorem applies.Note that (as will be lear below) deiding for a on�guration of pointsof less than 2d + 3 in Rd if a Tverberg partition to 3 parts exists is anNP-omplete problem. However, it is possible that when the number ofpoints is large enough to guarantee a partition then �nding suh a partitionis omputationally feasible.1.3 Topologial versions.Conjeture 1.2 (The Topologial Tverberg Conjeture). Let f be aontinuous funtion from the m-dimensional simplex �m to Rd. If m �(d+ 1)(r� 1) then there are r pairwise disjoint faes of �m whose imageshave a point in ommon.The ase r = 2 was proved by Bajmozy and B�ar�any using the Borsuk-Ulam theorem. The ase where r is a prime number was proved in aseminal paper of B�ar�any, Shlosman and Sz�us [8℄. The prime power asewas proved by Ozaydin (unpublished), Volovikov [30℄ and Sarkaria. Forthis ase the proofs are quite diÆult and are based on omputations ofertain harateristi lasses.If f is a linear funtion this onjeture redues to Tverberg's theorem.For a disussion of the topologial extensions of Tverberg's theorem in alarger ontext, see [32℄. It turns out that topologial methods are ruialfor proving various Tverberg type theorems even for linear maps.1.4 The dimension of Tverberg's points. For a set A, denote byTr(A) those points in Rd whih belong to the onvex hull of r pairwisedisjoint subsets of X . We all these points Tverberg points of order r.If we have (d+ 1)(r� 1) + 1 + k points in Rd, then we expet that thedimension of Tverberg points of order r will be at least k. This is so in the\generi" ase. Reay onjetured that it is enough to assume the points arein general position. Various speial ases were reently proved by Roudne�[23℄, [24℄.In another diretion, I onjetured that failing to have the \right" di-mension for the Tverberg points of order r implies the existene of a Tver-berg point of order r + 1.Conjeture 1.3 (Kalai, 1974). For every A � Rd,jAjXr=1 dimTr(A) � 0 :
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(a) T1=2 ; T2=1 ; Ti=�1 ; i�3 (b) T1=2 ; T2=T3=0 ; T4=T5=�1 :Figure 2: Two planar on�gurations of �ve points.Note that dim; = �1. This onjeture inludes Tverberg's theorem asa speial ase: if jAj = (r � 1)(d+ 1) + 1 dimA = d and Tr(A) = ;, thenthe sum in question is at most (r � 1)d+ (jAj � r + 1)(�1) = �1.It may even be true that Conjeture 1.3 holds if we replae Tr(A) bythe minimum of Tr(A0) over all on�gurations A0 of the same order typeas A.Kadari proved (around 1980) Conjeture 1.3 for planar on�gurations.Cruial to his proof is the fat that in the plane (but not in higher dimen-sions), the onvex hull of Tverberg points of order r is preisely the (r�1)-ore of A: The intersetion of all subsets of A of ardinality jAj � (r � 1).(Of ourse, every Tverberg point of order r belongs to the (r � 1)-ore.)1.5 Conditions for Tverberg partitions and graph olorings.1.5.1 Conditions for a Tverberg partition into 3 parts. Thefollowing problem seems important.Problem 1.4. Find onditions on the order type for a on�guration A ofm points (m < 2d + 3) in Rd that guarantee the existene of a Tverbergpartition into three parts.Note that deiding the existene of Tverberg partitions into three partswhen m < 2d+ 3 is NP-omplete, as will beome evident below, and doesnot depend only on the order type of the on�guration. However, I doexpet that there are useful topologial suÆient onditions. Conjeture1.3 gives one suh ondition: dimT2(A) < jAj � d� 2.



6 GIL KALAI GAFA20001.5.2 Point on�gurations from graphs. For a graphG = hV;Eionsider the on�guration of points in RV whih are the inidene vetorsof edges of the graph. Thus, the vetor assoiated to an edge fu; vg hasthe value `1' in the oordinates that orrespond to u and v and the value`0' in all other oordinates.Problem 1.5. What an be said about aÆne dependenies and Radonpoints (and Tverberg points) of suh point on�gurations?The Radon partitions of suh on�gurations arising from graphs, es-peially regular graphs, seem to be related to mathing theory for graphs[17℄.Note that a proper 3-oloring for the edges of a onneted ubi graphG is equivalent to the existene of a Tverberg partition into 3 parts for thepoint on�guration orresponding to G. Indeed, given a Tverberg partitioninto 3 parts, olor every edge aording to the part it belongs to. Everyvertex whih is inident to one olored edge must be inident to three edgesolored with the 3 di�erent olors and therefore the olored edges desribea proper 3-oloring of some ubi subgraph. Sine G is onneted this mustbe the entire graph.1.5.3 The four olor theorem. The four olor theorem (Appel-Haken, 1977, see [28℄) asserts that every planar map is four olorable. Anequivalent formulation of the four olor theorem is: Every 2-onneted ubiplanar graph is 3-edge olorable. (A ubi graph or a 3-regular graph isa graph all of whose verties have degree 3. A graph is 2-onneted if itremains onneted after deleting every vertex.)Now, onsider a on�guration of points P orresponding to a ubiplanar graph with n verties. Note, we have 3n=2 points in a (n � 1)-dimensional spae. (If G is bipartite, these points are in a (n� 2)-dimen-sional subspae.) Finding suÆient onditions for the existene of Tverbergpartitions when the number of points is smaller than 2d + 3 may thus berelevant to �nding new avenues towards the 4-olor theorem (and its manyopen generalizations).Remarks. 1. The idea of trying to relate Tverberg's theorem and thefour olor theorem (in a di�erent way) goes bak to Tverberg himself.2. There are, of ourse, 2-onneted ubi graphs whih are not 3-edgeolorable. The most famous example is the Petersen graph (identify pairs ofantipodal verties in the graph of the dodeahedron). It is worth noting thatthe 2-ore of point on�gurations assoiated to 2-onneted ubi graphs isalways nonempty. (The 2-ore is the intersetion of all onvex hulls of all



Vol. 10, 2000 COMBINATORICS WITH A GEOMETRIC FLAVOR 7but two of the points.)3. The Radon partitions of a set A of d+2+k points in Rd orrespondto the faes of a k-dimensional zonotope. Every point in the boundary ofthis zonotope orresponds to a (normalized) aÆne dependene of the pointsand is mapped to a Radon point of A. This map maps two antipodal pointson the zonotope to the same Radon point and thus indues a map fromRP k to Rd whose image is the Radon points of A.For generi 3n=2 points in Rn�1 the Radon points form an embeddingof the (n=2 � 1)-dimensional real projetive spae into Rn�1. The ase ofon�gurations of points arising from graphs is, of ourse, highly non-generi.1.6 Other problems and onnetions.1.6.1 Halving hyperplanes and olored Tverberg's theorems.An important problem in ombinatorial geometry is to determine the max-imal number of ways a on�guration of 2m points in Rd an be dividedinto two equal parts by a hyperplane. More generally, to determine themaximum number of ways a on�guration of n points in Rd an be dividedby a hyperplane to parts of sizes k and n� k (see [6℄). Equivalently, this isthe minimal possible number of Radon partitions into two equal parts (orparts of presribed sizes).Even in the plane there is a substantial gap between the best knownlower bound C1n � exp(plogn) (Toth, [29℄) and the upper bound C2n4=3(Dey, [13℄).The planar ase of the problem is losely related to the following alge-brai question: Given a redued (=minimal) representation of a permuta-tion in Sn as the produt of adjaent transpositions, what is the maximumnumber of appearanes of a spei� transposition? To see the onnetion,projet the points on a line and slowly rotate the line (see [15℄).For dimension d, it is easy to bound the maximal number of halvinghyperplanes between nd�1 and nd. Toth's lower bound extends to a lowerbound of nd�1 �exp(plogn) in any dimension. In spae, the best known up-per bound is n5=2 [26℄. In higher dimensions, the only known way for �ndingupper bounds for the halving hyperplane problem is via generalizations ofTverberg's theorem for olored on�gurations of points. Remarkably, theonly proofs of these generalizations are by the topologial method [33℄, [34℄.This gives, in every dimension d, an upper bound for the number of halvinghyperplanes of the form nd�d , for some d > 0.



8 GIL KALAI GAFA20001.6.2 Ekho�'s partition onjeture. Ekho� raised the possi-bility of �nding a purely ombinatorial proof of Tverberg's theorem basedon Radon's theorem. He onsidered replaing the operation \taking theonvex hull of a set A" by an arbitrary losure operation.Let X be a set endowed with an abstrat losure operation X ! l(X).The only requirements from the losure operation are: (1) l(l(X)) =l(X) and (2) A � B implies l(A) � l(B).De�ne tr(X) to be the largest size of a (multi)set in X whih annotbe partitioned to r parts whose losures have a point in ommon. Ekho�onjetured that always tr � t2 � (r� 1) :Thus, if X is the set of subsets of Rd and l(A) is the onvex hulloperation then Radon's theorem asserts that t2(X) = d+ 1 and Ekho�'spartition onjeture redues to Tverberg's theorem.1.7 Some links and referenes. The reader will �nd additional referenesto earlier works and survey papers in the more reent ones. Personal web sites(listed before the referenes at the end of the paper) will be ited by the nameappearing in square brakets. Many of the papers in the referenes as well asrelated ones an be found there. The handbooks [3℄, [2℄, [1℄ ontain many hapterswhih are relevant to this paper and we ite only a few.Helly and Radon type theorems [14℄, [20℄; topologial proofs of Radon typetheorems [8℄, [18℄, [31℄, [33℄, [34℄; ombinatorial geometry [22℄; topologial methodsin ombinatoris [9℄, [32℄; oriented matroids [10℄; halving lines and hyperplanes[6℄, [7℄, [26℄; olorings of graphs [16℄, [5℄; developments onerning the four olortheorem [28℄; mathing theory [17℄; graph theory [11℄; a Radon type theorem ofLarman whih deserves simple proofs and better understanding [19℄.Proofs, more proofs, \proofs from the book" and omputer proofsSiene has a dual role: exploring and explaining. In mathematis, unlikeother sienes, mathematial proofs are used as the basi tool for bothtasks: to explore mathematial fats and to explain them.The meaning of a mathematial proof is quite stable. It seems unharmedby the \foundation risis" and the inompleteness results at the beginningof the 20th entury, and una�eted by the reent notions of randomizedand interative proofs in theoretial omputer siene. Still, long and om-pliated proofs, as well as omputerized proofs, raise questions about thenature of mathematial explanations.Proofs are gradually beoming intolerably diÆult. This may suggest



Vol. 10, 2000 COMBINATORICS WITH A GEOMETRIC FLAVOR 9that our days of suessfully takling a large perentage of the problemswe pose will soon be over. This may also reet the small inentives tosimplify.Be that as it may, we annot be satis�ed without repeatedly �ndingnew onnetions and new proofs, and we should not give up hope of �ndingsimple and illuminating proofs that an be presented in the lassroom. Forsome \proofs from the book", see the lovely book by Aigner and Ziegler [4℄.Some believe that omputer proofs will take over [Zeilberger℄. Appeland Haken's proof of the four olor theorem was a landmark in this respet.The role of omputers in exploring mathematial fats is already signi�ant.As for explaining mathematial fats, it raises, for instane, the question\Explaining to whom? To humans, or to other omputers?"2 Polytopes and Algebrai Combinatoris: How General isthe Upper Bound Theorem?2.1 Cyli polytopes and the upper bound theorem.2.1.1 Cyli polytopes. Consider the moment urve x(t) =(t; t2; : : : ; td) � Rd. The yli polytope C(d; n) is the onvex hull of n(distint) points x(t1), x(t2); : : : ; x(tn) on the moment urve. The faestruture does not depend on the hoie of these points.Cyli polytopes are d=2-neighborly, namely the onvex hull of every setof k verties forms a fae of the polytope when k � d=2. Thus fk(C(d; n)),the number of k-dimensional faes (in brief, k-faes) of C(d; n) is � nk+1�,whenever k < d=2. Cyli polytopes were disovered by Carath�eodory andwere redisovered by Gale, who desribed their fae-struture.2.1.2 The upper bound theorem. The upper bound theorem(UBT), onjetured by Motzkin in 1957, asserts that the fae numbers of ad-polytope with n verties are bounded from above by the fae numbers ofthe yli d-polytope with n verties. This onjeture is of speial interestin onnetion with optimization, beause it gives the maximum number ofverties that an be possessed by a d-polytope P de�ned by means of nlinear inequality onstraints; hene it represents the maximum number ofloal strit maxima that an be attained by a onvex funtion over P .The assertion of the upper bound theorem was proved for polytopes(MMullen, 1970 [73℄), for simpliial spheres (Stanley, 1975 [79℄, [82℄) andfor simpliial manifolds with either vanishing middle homology or the sameEuler harateristi as a sphere (Novik, 1998 [74℄). It was also been proved



10 GIL KALAI GAFA2000when n is large w.r.t. d (n � d2=4, will do) for all Eulerian simpliialomplexes (Klee, 1964 [65℄. (An Eulerian simpliial omplex is a puresimpliial omplex in whih the link of eah simplex has the same Eulerharateristi as the sphere of the appropriate dimension.)2.1.3 A stronger form of the UBT. A stronger version of theUBT (referred to, below, as SUBC: strong upper bound onjeture) wasproved for simpliial d-polytopes and full dimensional subomplexes of theirboundary omplexes by Kalai [62℄. It asserts (roughly) that for every k,0 � k < d � 1, if one �xes the number of k-dimensional faes, then thenumber of (k + 1)-dimensional faes is maximized by a yli d-polytope.(More preisely, it gives a bound on the number of (k+1)-faes in terms ofthe number of k-faes that is similar in form to the Kruskal-Katona theo-rem, whih provides a similar bound for arbitrary simpliial omplexes.) Ionjeture that the SUBC applies to arbitrary polytopes (and more generalomplexes onsidered below).The SUBC was also motivated by a problem from optimization, namelyby an attempt to show expansion properties of graphs of d-polytopes. How-ever, appliations in this diretion were quite limited.2.2 Stanley-Reisner rings and their generi initial ideals (alge-brai shifting). Stanley's proof of the upper bound theorem for triangu-lation of spheres relies on the notion of the Stanley-Reisner ring assoiatedto a simpliial omplex and on the fat that this ring is Cohen{Maaulay.We will desribe below an algebrai statement onerning generi initialideals of the Stanley-Reisner rings whih implies the strong upper boundtheorem.Let me �rst explain the situation informally. The Stanley-Reisner ringis onstruted by assoiating to eah vertex i of a simpliial omplex avariable xi, and onsidering the ring of monomials whih \live" on theomplex. Consider next generi linear ombinations of these variables y1,y2; : : : ; yn and a Gr�obner basis for this ring w.r.t. monomials in the newvariables. This onstrution assoiates to every simpliial omplex K abasis of monomials GIN(K) (in the new variables) whih reord manytopologial, ombinatorial and algebrai properties of K.An algebrai statement for a (d� 1)-dimensional simpliial omplex Kwhih immediately implies the UBT, and in fat also the SUBC, is thatGIN(K) is a subset of GIN(C(d; n)), where n is the number of vertiesof K and C(d; n) is the boundary omplex of a yli d-polytope with nverties. When K is isomorphi to the boundary omplex of a simpliial



Vol. 10, 2000 COMBINATORICS WITH A GEOMETRIC FLAVOR 11polytope this relation follows from the Hard Lefshetz Theorem for torivarieties; see [62℄.Here is a more aurate desription of the Stanley-Reisner ring andGIN(K). Assoiate to eah vertex i of a simpliial omplex K a variablexi and onsider the quotientR(K) = R[x1; x2; : : : ; xn℄=I ;where I is the ideal spanned by monomials xi1 �xi2 � � �xir with fi1; i2; : : : ; irg=2 K.Consider now y1; y2 : : : ; yn, whih are n generi linear ombinations ofx1; x2 : : : xn and onstrut the Gr�obner basis GIN(K) w.r.t. the lexio-graphi order on the monomials in the yi's. (Clearly, all monomials in theyi's span the ring R(K).) Thus, a monomial m belongs to GIN(K) ifand only if its image em in R(K) is not a linear ombination of (imagesof) monomials whih are lexiographially smaller. (Reall that the lexio-graphi order is de�ned as follows: m1 <L m2 if the variable with smallestindex whih divides preisely one of the two monomials divides m1. Thusy21 <L y1y2 <L y1y3 <L � � �<L y1yn <L y22 <L � � � .)2.3 How general is the upper bound theorem?2.3.1 Witt spaes. Witt spaes [56℄, [77℄, [50℄ are orientable tri-angulated pseudomanifolds K suh that for every K 0 whih is an even-dimensional (proper) link of a fae ofK, the (middle perversity) intersetionhomology IHdimK0=2(K 0) vanishes. For these spaes middle perversity in-tersetion homology is de�ned and satis�es Poinar�e duality. These spaesinlude all (real) manifolds and (omplex, possibly singular) algebrai va-rieties.We ome now to the main onjeture of this setion.Conjeture 2.1. (i) For every triangulation K of a Witt spae withvanishing middle intersetion homologyGIN(K) � GIN�C(d; n)� : (2.1)(ii) The strong upper bound onjeture holds for arbitrary polyhedralomplexes (and even for all regular ell omplexes whose fae-poset forma lattie) whose underlying spae is a Witt spae with vanishing middleintersetion homology.



12 GIL KALAI GAFA2000What seems to be needed for a proof is an interpretation of intersetionhomology for simpliial pseudomanifolds in terms of the Stanley-Reisnerring and generi initial ideals. For the polyhedral ase, what is neededis a suitable analog of the Stanley-Reisner ring. For this purpose too,intersetion homology may play a ruial role. Intersetion homology oftori varieties already plays an important role in the ombinatorial studyof (rational) polytopes [51℄, [81℄ (see below).2.3.2 Embeddability. The upper bound theorem seems losely re-lated to questions onerning embeddability. At the root of things is theassertion that K5, the omplete graph on 5 verties, annot be embeddedin the plane.Van Kampen proved that the r-skeleton of �2r+2 (the (2r + 2)-dimen-sional simplex) annot be embedded inR2r. It seems that this property andorresponding loal properties (for links of faes) would imply the assertionsof the UBT, SUBC and relation (2.1). To understand suh a onnetionit will be useful to know if the Van Kampen theorem holds when R2r isreplaed by any 2r-dimensional manifold with vanishing middle homology,or even by any Witt spae with vanishing middle intersetion homology.2.3.3 An upper bound onjeture for j-sets. Emo Welzl [88℄has reently proposed another far-reahing extension for the upper boundtheorem. Given a on�guration A of n points in general position in Rdonsider the set of all hyperplanes, Hj , whih are determined by points inA and have at most j verties in one of their (open) sides (ompare setion1.6.1). For j = 0 these are supporting hyperplanes for onv(A). Next, letajr(A) be the number of r-dimensional simplies whih are determined bypoint in A and belong to a hyperplane in Hj . (For j = 0 these are justr-faes of onv(A).) Welzl asked whether ajr(A) is maximized for every rand j by n points on the moment urve in Rd. For j = 1 this is just theUBT and it is also known to be true for every j when d = 2 (Alon andGyori) and when d = 3 (Welzl).2.4 Duality and h-numbers. I have desribed very general ases forwhih I onjeture that the UBT and even the SUBC hold, and a strongproperty of GIN(K) needed to prove these onjetures. However, thesestrong algebrai and ombinatorial onjetures are known only in very lim-ited ases. For the known ases of the UBT, weaker ombinatorial andalgebrai statements are suÆient if ertain duality relations are also used.



Vol. 10, 2000 COMBINATORICS WITH A GEOMETRIC FLAVOR 132.4.1 The Dehn{Sommerville relations. For a (d � 1)-dimen-sional simpliial manifold K de�ne its h-numbers by the relation:dXk=0 hk(K)xd�k = dXk=0 fk�1(K)(x� 1)d�k: (2.2)The Dehn{Sommerville Relations asserts that ifK is the boundary om-plex of a simpliial polytope thenhk(K) = hd�k(K): (2.3)In fat, these relations hold whenever K is Eulerian simpliial omplex,namely K and all links of faes of K have the same Euler harateristisas a sphere of the same dimension.2.4.2 The Cohen{Maaulay property. For Stanley's proof of theUBT when K is a simpliial sphere we need to know in addition to theDehn{Sommerville relations that R(K) is a Cohen{Maaulay ring. WhenR(K) satis�es the Cohen{Maaulay property, then hk(K) is the num-ber of monomials of degree k in GIN(K) whih use only the variablesyd+1; yd+2; : : : ; yn. Novik [74℄ used GIN(K) to prove the UBT for sev-eral lasses of simpliial manifolds and she relied on the fat that R(K) isstill lose enough to being a Cohen{Maaulay ring (the tehnial term isBuhsbaum ring). In addition, she needed the analogs of Dehn{Sommervillerelations and Poinar�e duality. We would like to have a better understand-ing of these duality relations in terms of GIN(K) and for more generallasses of simpliial omplexes.2.4.3 Partial unimodality and the Braden{MaPherson the-orem. The fae numbers of polytopes are not unimodal. Indeed, the faenumbers of the yli polytope are highly onentrated near dimension 3d=4and therefore, by gluing a yli polytope and its dual, you will get twopeaks at d=4 and at 3d=4. To get a simpliial example glue a yli poly-tope to the ross polytope (with roughly the same total number of faes).You will get two peaks at 3d=4 and at 2d=3.An appealing appliation (using an argument of Bj�orner [47℄) of theSUBC for general polytopes will be:Conjeture 2.2. The fae numbers fi of d-polytopes are nondereasingfor i � [(d+ 3)℄=4 and noninreasing for i � [3(d� 1)=4℄.It is possible that this onjeture as well as a suitable (weaker) version ofthe SUBC will follow in a purely ombinatorial way from a reent result by



14 GIL KALAI GAFA2000Braden and MaPherson [51℄ whih relates the ombinatoris of a polytopewith that of faes and quotients.MMullen's original proof of the upper bound theorem relied on theobservation that for a simpliial polytope P and a vertex v,hk�lk(v; P )� � hk(P ) : (2.4)Here, lk(v; P ) is the link of v in P and hk is the h-number mentionedabove.The result of Braden and MaPherson is a sharpening as well as afar-reahing generalization of (2.4) for general polytopes. (It is proved,however, only for rational polytopes.) I will now state this result withoutexplaining properly the bakground and I refer the reader to [51℄, [81℄, [63℄for more. For a d-polytope P lethP (x) = dXk=0 hi(P )xk ; gP (x) = [d=2℄Xi=0 gk(P )xk :Here hk(P ) = dim IH2k(TP ), and gk(P ) = hk(P ) � hk�1(P ), where TP isthe tori variety assoiated to P and IH is intersetion homology. (Thequantities dimIHk(TP ) an be desribed in a purely ombinatorial wayfrom the fae struture of P and when P is simpliial this is just hk.)Braden and MaPherson proved that for every rational polytope P and afae F of P , gP (x) � gF (x)gP=F (x) : (2.5)(Namely, every oeÆient of the polynomial in the left hand side is atleast as large as the orresponding oeÆient on the right hand side.)The Braden{MaPherson inequality has already been used by Bayer [41℄to dedue a very sharp form of the UBT for general (rational) polytopes.2.4.4 Other duality relations. The Dehn{Sommerville duality re-lations hk(P ) = hd�k(P ) applies for arbitrary Eulerian simpliial om-plexes. For simpliial polytopes this numerial duality manifests Poinar�eduality for the assoiated tori varieties. When we adopt the ombinatorialformulas of intersetion homology the relations hk = hd�k extend even toarbitrary Eulerian partially ordered sets. For tori varieties assoiated torational polytopes these duality relations manifest Poinar�e duality for in-tersetion homology. In ommutative algebra this duality relations manifestthe Gorenstein property for the Stanley-Reisner ring of homology spheres.Another important notion of duality is duality between polytopes givenby the polar polytope. (Thus, the ube is dual to the otahedron, the



Vol. 10, 2000 COMBINATORICS WITH A GEOMETRIC FLAVOR 15dodeahedron is dual to the iosahedron and the tetrahedron is self-dual.)In 1985 I observed some mysterious numerial formulas relating h-numbersof a polytope and those of its dual. The simplest non-trivial relation ofthis type asserts that for every 4-dimensional polytope g2(P ) = g2(P �)[61℄. Some extensions were proved by Bayer and Klapper and by Stanley[81℄ who realized the orret ombinatorial ontext (inidene algebras) forunderstanding these formulas. Geometri or algebrai understanding ofthese relations is still missing but for very speial ases of tori varieties(whih give rise to Calabi{Yaumanifolds) it turned out that these numerialrelations manifest mirror symmetry [39℄.Added in proof. Tom Braden has reently found an algebrai explanationfor these duality relations via Koszul's duality.Yet another important notion of duality is duality of oriented matroidswhih inludes the notions of Gale transform and linear programming du-ality as speial ases (see [10, Chapter 10℄). The e�et of this duality onthe ombinatorial notions disussed here (as well as on the algebrai andgeometri ones) is yet to be explored.2.5 Neighborliness.2.5.1 Neighborly polytopes and spheres. For an extremal om-binatorial problem, studying the ases of equality is often as important asproving the inequality. Equality for the upper bound theorem is attained byall neighborly d-polytopes, namely polytopes for whih every [d=2℄ vertiesform a fae.Neighborly polytopes form an exiting but mysterious lass of polytopes(see [76℄). Their fae numbers are determined by the number of verties. Itis onjetured that every simpliial polytope is the quotient (link) of an evendimensional neighborly polytope [67℄. (The same onjeture an be madefor simpliial spheres.) For a generalization of the notion of neighborlypolytopes to the nonsimpliial ase, see Bayer [40℄.2.5.2 Triangulations of manifolds. Triangulations of 2k-dimen-sional manifolds an be even (k+1)-neighborly. An example is the 6-vertextriangulation of the 2-dimensional projetive plane obtained by identifyingthe opposite faes of the iosahedron. This is quite a fundamental om-binatorial objet and its dual graph is no other than the Petersen graph.Heawood, who around 1890 studied olorings of graphs embedded onsurfaes (in the ontext of extending the four olor onjeture), onjetured



16 GIL KALAI GAFA200056 4
4 56231Figure 3: The 6 vertex triangulation of the real projetive planethat Kn (the omplete graph on n verties) an be embedded in a surfaeM (exept for the Klein bottle) if and only ifn � �7 +p49� 24�(M)� :(Here, �(M) is the Euler harateristi of M .) Suh embeddings giving2-neighborly triangulations of M were indeed found in all ases by Ringeland Youngs (in some ases with other oauthors). See Ringel's book [75℄.However, there are only a handful of examples of (k + 1)-neighborly2k-manifolds, for k > 1 (see [68℄). Perhaps the most famous example is theremarkable 9-vertex triangulation of the omplex 2-dimensional projetivespae by K�uhnel and Lassman (see [70℄, [69℄).In K�uhnel's own words [68℄: \To onstrut the triangulation we denotethe nine verties by 1,2,3, ..., 9 and take the union of the 4-dimensionalsimplies 12456 and 12459 under the ation of a group of permutationsH54generated by: � = (147)(258)(369), � = (123)(465) and  = (12)(45)(78).This group is a 2-fold extension of the Heisenberg group over Z3.  or-responds to the ation of the omplex onjugation, in fat its �xed pointset is ombinatorially isomorphi to the 6-vertex triangulation of the realprojetive plane."Novik [74℄ proved an extension of the upper bound theorem for all tri-angulations of manifolds and it is plausible that this theorem, and a relatedonjeture by K�uhnel onerning how large the Euler harateristi an be,



Vol. 10, 2000 COMBINATORICS WITH A GEOMETRIC FLAVOR 17apply to arbitrary triangulations of Witt spaes.2.5.3 Neighborly embedded manifolds. The moment urve x(t)= (t; t2; : : : ; td) � Rd is an example of 1-dimensional [d=2℄-neighborly mani-folds inRd. Namely for every [d=2℄ points on the urve there is a hyperplanewhih supports the urve preisely at these points.While there are many di�erent neighborly polytopes there is only one(in terms of order types) [d=2℄-neighborly embedding of R into Rd, for deven. Moreover, for d even, the moment urve is the only order type ofan embedding of R into Rd where all points are in general position. Thisindiates that the as yet unexplored area of understanding the \order type"of nondisrete subsets in Rd (suh as embedded manifolds) may exhibitsome simpler phenomena than the disrete (�nite) ase.Perles asked: what is the smallest dimension d(k; n) of the ambient spaein whih a k-neighborly n-dimensional manifold exists? A simple dimensionount shows that we must have d(k; n) � (k + 1)n. On the other hand,a straightforward extension of the moment urve gives a bound for d(k; n)whih is exponential. Kalai and Wigderson found a simple onstrutionshowing a polynomial upper bound on d(k; n), and Vassiliev [86℄ showedby an intriate topologial argument that d(k; n) � 2kn � bin(n), wherebin(n) is the number of ones in the binary expansion of n.2.6 Other problems and onnetions.2.6.1 Clique omplexes and spheres. Start from a graph G andonsider its lique omplex K(G), a simpliial omplex whose faes orre-spond to the omplete subgraphs of G. Understanding the possible faenumbers of suh omplexes is an important problem in extremal ombi-natoris related to Turan's theorem; see [49℄, [72℄. Suppose that K(G) isa triangulated sphere. What an be said then? Charney and Davis [52℄formulated a onjeture onerning the fae numbers of suh omplexeswhih is losely related to onjetures of Hopf on the Euler harateris-ti of manifolds M with nonpositive setional urvature. For some reentdevelopments, see [71℄.2.6.2 Cubial upper bound theorems. Cubial omplexes seemof equal importane yet quite di�erent from simpliial omplexes, and muhless is known about them. (A struture of a ubial omplex on a manifoldseems to tell more on the geometry of the manifold.) Only reently someubial analogs of the yli polytopes were onstruted. Joswig and Ziegler[60℄ onstruted d-polytopes with 2n verties with [d=2℄-skeletons of the n-



18 GIL KALAI GAFA2000dimensional ube. Previously, Babson, Billara and Chan [38℄ onstrutedubial spheres with this property and found onnetions between questionson immersions of manifolds and the existene of ertain ubial spheres.There are analogs for yli polytopes, but the analog of the upper boundtheorem is false for spheres and probably also for polytopes. Adin [35℄found the right notion of h-numbers, but a onstrution for a \ubialStanley-Reisner ring" is yet unknown.2.7 Some links and referenes. Polytope theory [89℄, [58℄, [59℄, [42℄, [66℄,[46℄, [78℄ [Ziegler℄; fae numbers and h-numbers of polytopes and omplexes [43℄,[48℄, [45℄, [80℄, [63℄, open problems [85℄; ubial spheres and polytopes [38℄, [60℄;a ontinuous version of the UBT [87℄; Kuhnel's CP 2 and other speial triangu-lations [70℄, [69℄, [68℄; Kruskal-Katona theorem and related results [54℄; Turantype theorems [49℄, [55℄; ommutative algebra and ombinatoris [82℄, [53℄ [Her-zog℄, [Bayer℄; generi initial ideals and algebrai shifting [48℄, [74℄, [37℄, [57℄, [53℄[Herzog℄,[Bayer℄,[Kalai℄; intersetion homology [56℄, [50℄, and some ombinatorialappliations [81℄, [51℄; h-numbers and polytope duality [81℄, [63℄, and mirror sym-metry [39℄; algebrai ombinatoris �a la Stanley [Stanley℄ [44℄, [82℄, [83℄, [84℄, [85℄;Various proofs for the UBT: for Eulerian omplexes with many verties [65℄, forpolytopes using shellability [73℄, a simple dual form using linear objetive fun-tions, [187℄, for spheres using the Cohen{Maaulay property [79℄, using shellabilityand the Cohen{Maaulay property [64℄, using shellability and a strong form of anextremal theorem of Bollob�as [36℄, for manifolds, using relations between faenumbers and Betti numbers of Buhsbaum rings [74℄, a strong form for generalpolytopes using the Braden{MaPherson theorem [73℄.Problems and onjeturesThe posing of problems and onjetures is part of the proess of exploringthe fatual matters as well as of proposing explanations for them. Is thedevelopment of mathematis shaped by problems? And what are goodproblems? Do they arise naturally like the sphere-paking onjeture, orare they perhaps sporadi and ingenious like Fermat's last theorem and thefour olor problem? To what an extent are good mathematial problemssuggested by other sienes?Modern ombinatoris was greatly shaped by problems posed by Erd}os,who was very autious onerning our ability to predit the future of aproblem.



Vol. 10, 2000 COMBINATORICS WITH A GEOMETRIC FLAVOR 193 Extremal and Probabilisti Combinatoris: the DisreteCube and Inuene of Variables3.1 Inuene of variables on Boolean funtions.3.1.1 The disrete ube. We onsider the disrete ube 
n =f�1; 1gn and will try to understand real and Boolean funtions de�nedon 
n. Boolean funtions on 
n are of ourse in 1-1 orrespondene withsubsets of 
n. It turns out that many spei� problems in extremal om-binatoris, probability, mathematial physis and theoretial omputer si-ene an be formulated in terms of Boolean or real funtions on 
n andthat general properties of suh funtions are very useful.For x; y 2 
n the Hamming metri d(x; y) is de�ned by d(x; y) = jfi :xi 6= yigj. Some related metris will also be onsidered.Denote by 
n(p) the disrete ube endowed with the produt probabilitymeasure Pp, where Ppfx : xj = 1g = p. Usually, we onsider the uniformmeasure p = 1=2. (More general measures like FKG-measures should alsobe onsidered, but we will not attempt doing it here.)Notation: In addition to the standard big O and little o notation weuse the following notation: For positive real funtions f(x) and g(x), wewrite f(x) = �(g(x)) if, for some positive onstants 1 and 2, 1g(x) �f(x) � 2g(x), as x tends to in�nity. We write f(x) = 
(g(x)) if for somepositive onstant , f(x) � g(x).3.1.2 Inuene of variables. Consider an event A � 
n(p) andthe assoiated Boolean funtion f(x1; x2; : : : ; xn) = �A, the harateristifuntion of A. The inuene of the variable k on the Boolean funtion f ,denoted by Ipk(f) (and also by Ipk(A)), is the probability that ipping thevalue of xk will hange the value of f . The total inuene Ip(f) equalsP Ipk(f). We de�ne also IIp(f) =P(Ipk (f))2. (We will not use the super-sript p for p = 1=2.)Inuene of variables (in a muh greater generality) was introdued andstudied by Ben-Or and Linial [99℄ in the ontext of \olletive oin ipping",an important notion in theoretial omputer siene. The problem theyonsidered is, in short: \Is there a protool for a soiety of n proessors toprodue a random bit immune against a situation where a fration of theproessors is heating?" Having eah proessor produe a single randombit, and using a Boolean funtion to produe the \olletive bit" is a simplesuh protool. But it turns out (from Theorem 3.3 below) that it an neverbe immune against w(n)n= logn heaters, when w(n) tends to in�nity with



20 GIL KALAI GAFA2000n. A multistage protool immune against 
(n) heaters was found by Alonand Naor [92℄, see also Feige [110℄.

Figure 4: Two steps in Feige's protool for a olletive oin ipping. The agentsenter a random room and the proess ontinues with the room with the leastnumber of agents.Ik(f) is essentially idential to the Banzha� value in game theory. In[99℄, inuene of larger sets of variable is also onsidered.A funtion f is monotone if its value does not derease when we ip thevalue of a variable from -1 to 1. Some basi fats on inuenes are givenby:Theorem 3.1 (Loomis-Whitney, Hart, Harper).X Ik(f) � P(A) log�1=P(A)� :Theorem 3.2 (Banzha�). For monotone Boolean funtions f , II(f) � 1:



Vol. 10, 2000 COMBINATORICS WITH A GEOMETRIC FLAVOR 21The following result of Kahn, Kalai and Linial (KKL) has a entral rolein this setion.Theorem 3.3 (Kahn, Kalai and Linial, [119℄).maxk Ik(f) � KP(A) logn=n :Here, K is an absolute positive onstant. In fat, K = 1=2 will do.Note that this theorem implies that when all individual inuenes are thesame (e.g., when A is invariant under the indued ation from a transitivepermutation group on [n℄), then the total inuene is larger than C logn.For the ultimate sharpening of this result,nXk=1 Ipk (A)Æ� log(Ipk(A)� � KPp(A) ;see Talagrand [131℄.3.1.3 Russo's lemma and threshold intervals. For a monotoneevent A � 
n (i.e., �A is a monotone funtion), let Pp(A) be the measure ofA with respet to the produt measure Pp. Note that Pp(A) is a monotonefuntion of p. Russo's lemma (see [115℄) asserts thatdP(A)dp = Ip(f) :Given a small real number � > 0, onsider the threshold interval [p1; p2℄where Pp1(A) = � and Pp2(A) = 1 � �. Denote by pC the value so thatPpC(A) = 1=2, and all it the ritial probability for the event A. A basiresult of Bollob�as and Thomasson asserts that the threshold interval isalways bounded by a onstant times the ritial probability. By Russo'slemma, large total inuene around the ritial probability implies a shortthreshold interval.3.1.4 Fourier-Walsh expansion. Consider a Boolean funtion fon 
n(1=2). Consider the Fourier-Walsh expansion f = PS�[n℄ bf(S)uS ;where uS = Qi2S xi. (For the ase of general p, see [131℄.)Now, kfk22 = P(A) = P bf2(S) (Parseval) and one an show thatI(f) = PS�[n℄ bf2(S)jSj: The result of Kahn, Kalai and Linial (Theorem3.3) follows using ertain hyperontrative estimates of Bonamie and Bek-ner [95℄, [101℄. In reent years, harmoni analysis on Zn2 plays an importantrole in extremal and probabilisti ombinatoris and in omplexity theory.Bonamie's and related hyperontrative estimates are ruial for the proofsof several of the results disussed in this setion.



22 GIL KALAI GAFA20003.1.5 Noise sensitivity. The e�et of random hanges in the vari-ables is alled the noise sensitivity of f . A lass of funtions is uniformlynoise stable if for every � > 0 there is Æ > 0 suh that if you ip the valuesof Æn randomly hosen variables, the orrelation of the new value of f withthe original value is at least 1 � �. It an be shown that this is equiva-lent to the property that most of the 2-norm of f is onentrated in smallFourier oeÆients (i.e. f is well approximated (in `2) by a small degreepolynomial.) A sequene of Boolean funtions fm is (asymptotially) noisesensitive if for every Æ > 0 the orrelation just de�ned tends to zero as mtends to in�nity. These onepts were introdued by Benjamini, Kalai andShramm [97℄ (we will mention some of their results below) and (in a dif-ferent language and motivations) by Tsirelson, who desribed remarkablerelations and appliations in [140℄, [128℄, [139℄ [Tsirelson℄.Start a simple random walk (SRW) from a random point in A. Howquikly will you onverge to the uniform distribution on 
n? If P(A) isbounded away from 0 and 1, the answer is O(n). For a sequene Am ofsuh events, the answer is o(n) if and only if they are asymptotially noisesensitive.3.2 Other general properties of subsets of the disrete ube.3.2.1 Disrete isoperimetri inequalities. For A � 
n and x 2A let h(x) be the number of neighbors of x whih are not in A. The vertexboundary of A denoted by �v(A) is the set of x 2 A with h(x) > 0.Theorem 3.4. Consider A � 
n.1: Given the size of A the vertex boundary of A is minimized for Ham-ming balls.2: More generally, for every �xed T > 0, the number of the points whosedistane fromA is at least T is maximized when A is a Hamming ball.Therefore,P�x 2 
n : d(x;A) > tpn	 � exp(�t2=2)=P(A) : (3.1)Talagrand [133℄, [135℄, [134℄ found several deep extensions and surpris-ing appliations of the isoperimetri inequality. A very useful sharpening isto replae d(x;A) by the Eulidean distane dT (x;A) from x to the onvexhull of the points in A (onsidered as points in Rd).Theorem 3.5 (Talagrand isoperimetri inequality).Z
n(p) exp�14d2T (x;A)� � 1Pp(A) : (3.2)



Vol. 10, 2000 COMBINATORICS WITH A GEOMETRIC FLAVOR 23This inequality (in a dual formulation) is extremely useful for prov-ing tail-estimates [133℄, [135℄, [130℄. Inequalities (3.1), (3.2) manifest the\onentration of measure phenomenon". We use the term \hyperonen-tration" in ases where asymptotially stronger inequalities are valid.For A � 
n(p) let B(A) = Rx2Aph(x). Talagrand proposed B(A) asthe \orret" notion of boundary for A and proved it in [132℄ (sharpeninga result by Margulis).Theorem 3.6 (Margulis-Talagrand [132℄). Let A be an event in 
n(p),t = Pp(A) and Cp = min(p; q)=ppq, where q = 1� p. ThenB(A) � KCpt(1� t)plog(t(1� t)) :For related results see Bobkov and G�otze [102℄.3.2.2 FKG and Shearer's lemma. The simplest form of the FKGinequality states that two monotone events in 
n have a nonnegative or-relation. There are many extensions, variations and appliations; see [115℄,[106℄.Let Ji be subsets of [n℄ so that every element in [n℄ is overed at least rtimes. Let A � 
n be an event, H(A) its entropy and H(AjJi) the entropyfuntion of A onditioned on the set of oordinates Ji. Shearer's lemma(for some appliations, see [109℄, [117℄, [113℄, [127℄) asserts:XH(A) � 1m mXi=1 H(XjJi) :(When Ji = [n℄nfig, Shearer's inequality is essentially the Loomis-Whitney inequality (Theorem 3.1, Part 1).)3.3 Advaned theorems on inuenes. The following theorem de-sribes in loose terms the main advaned general theorems about inuenes.Reall that II(f) is the sum of the squares of the inuenes.Theorem 3.7 (Vague formulations). 1: [Talagrand℄, [136℄ For two mono-tone events A and B, a large inner produt of their inuene vetors impliesa stronger FKG-inequality.2: [Talagrand℄, [137℄ A small value of II(f) implies a large Margulis-Talagrand boundary.3: [Bourgain and Kalai℄, [105℄ High symmetry implies large total inu-ene.4: [Friedgut, [111℄℄ For a onstant p, if the total inuene is small, thenthe funtion is determined (approximately) by few oordinates.



24 GIL KALAI GAFA20005: [Friedgut, [112℄ and Bourgain, [104℄℄ When p tends to zero, boundedtotal inuene implies that f is \loal".6. [Benjamini, Kalai and Shramm℄, [97℄ For monotone events, sensi-tivity to noise is equivalent to having a small value of II(f).7: [Talagrand℄, [138℄ Small total inuene implies hyperonentration inthe mean for the Hamming metri.8: [Benjamini, Kalai and Shramm℄, [98℄ A small value of II(f) implieshyperonentration in terms of the seond moment for Talagrand's metri.Van Vu and Jeong Kim [143℄, [121℄ proved hyperonentration resultsfor events whih an be expressed by low-degree polynomials with smalloeÆients.3.4 Two basi problems.Problem 3.1. 1. Charaterize Boolean funtions for whih I(f) is small.Can suh funtions be always approximated by small-depth small-sizeBoolean iruits? (See setion 3.5.10 below.)2. Find general onditions for I(f) � n� . Is this always the ase whenthere is a notion of a saling limit [90℄, [139℄, [164℄?3. Charaterize Boolean funtions whose Fourier oeÆients have asmall support. (For example, funtions for whih most of the 2-norm isonentrated on a polynomial number in n of Fourier oeÆients.)Problem 3.2. 1. Let f be a real funtion on the disrete ube. Underwhih (ombinatorial) onditions an we guarantee that the distribution off is lose to a normal distribution?2. Under whih onditions an you expet a distribution whih is moreonentrated than normal? What kind of other distributions an you en-ounter from \natural" funtions?3.5 Examples. We onsider now some examples of real and Booleanfuntions de�ned on the disrete ube. Given a real funtion f , onsiderthe Boolean funtions ST (f) = sign(f(x) � T ). (Here, sign(x) = +1 ifx � 0 and sign(x) = �1, otherwise.) Consider also the important speialase M(f) = ST (f), where T is the median value of f .3.5.1 Weighted majority. For weights w1; : : : ; wn onsider thefuntions f(x) =Pwixi. The funtions ST (f) are alled weighted majorityfuntions. The usual majority funtion (all wi's are equal and T = 0) isa speial ase. For this example the inuene of eah variable is C=pn.Another speial ase is the funtion f(x1; x2; : : : ; xn) = x1. Here If (1) = 1



Vol. 10, 2000 COMBINATORICS WITH A GEOMETRIC FLAVOR 25and If (k) = 0 for k 6= 1. Weighted majority funtions are uniformly noise-stable [97℄. The Talagrand isoperimetri inequality is sharp for these fun-tions and so is the Margulis-Talagrand inequality. More general examplesare low degree polynomials and their signs. See also Bruk and Smolensky,[107℄.3.5.2 Majority of majorities, tribes, runs. Of ourse, we anpartition the set into parts and onsider the majority of majorities withvarious parameters. An important example is the tribe example of Ben-Orand Linial [99℄: Divide the variables into \tribes" of size logn � log lognand set f = 1 i� there is a tribe all of whose variables has the value 1.A related funtion is: Let f be the size of the longest run of `1's' and on-siderM(f). For these funtions the inuene of every variable is �(logn=n)(whih is optimal by Theorem 3.3).3.5.3 Reursive majorities. Let n be a power of 3. Divide the setof variables into three parts, divide eah part into 3 parts, and ontinuelog3 n steps. Let f be the majority of majorities ... of majorities of the3-element sets and let A � 
n be the orresponding event [99℄. If you starta SRW from a random vetor of A you will ome very lose to a uniformdistribution on 
n in nlog2= log3 steps. Mossel and Peres pointed out thatreplaing 3 by a larger (but onstant) t the number of steps required isredued to n1=2+Æ where Æ tends to 0 as t tends to in�nity.3.5.4 Random subsets of 
n and error orreting odes. Con-sider A, whih is not neessarily monotone. The parity funtionf(x1; x2; : : : ; xn) = x1x2 � � �xn is the most noise-sensitive with P(A) = 1=2.When log2 jAj = sn, 0 < s < 1, we an ask: how quikly an a SRWfrom a random uniformly hosen point of A reah a distribution that isalmost uniform on 
n? A reasonable guess is that the best hoie wouldbe to take A itself to be random. This is losely related to the onjeturethat the Gilbert-Varshamov bounds for odes are optimal (see [142℄).3.5.5 Cliques in graphs. This time, let the variables orrespond tothe n = �m2� edges of the omplete graph withm verties. Every assignmentof values to the variables orresponds to a graph: the graph whose edgesorrespond to the variables with value 1. Let f be the size of the largestlique in this graph.Again onsider M(f). (The median value is �(logn).) In this examplethe inuene of eah variable is �(log2 n=n). The threshold interval forhaving a lique of size a logn is �(1= log2 n).



26 GIL KALAI GAFA20003.5.6 General graph properties. More generally, every propertyof graphs on m verties (onneted, planar, have diameter � 3, et.) or-responds to a Boolean funtion on this set of �m2� variables. Bourgain andKalai [105℄ used their study of inuenes under symmetry (Theorem 3.7,Part 3) to show that for every graph property the threshold interval is ofsize at most �1= log2�� n, for every � > 0.The most important ases for random graph properties are when theritial probability pC itself depends on n. Already, Erd}os and Renyi intheir paper whih introdued random graph theory showed that many graphproperties (suh as onnetivity) have sharp threshold behavior, namely thethreshold interval is o(pC).Friedgut's theorem (Theorem 3.7, Part 5, [112℄) for graph propertiesan be stated as follows:\If a graph property does not have a sharp threshold then it an beapproximated by the property of having a subgraph from a given �nitelist".For example, the property \to have a omplete subgraph with 4 ver-ties" has a oarse threshold. But the \onnetivity" property has a sharpthreshold sine it annot be approximated by having a subgraph from a �-nite list. Friedgut's theorem has many important appliations for showingsharp threshold behavior.3.5.7 Random formulas, the 3-SAT problem. Consider aBoolean formula with n variables of the form(x11 _ �x12 _ x13)^ (�x21 _ �x22 _ x23) ^ � � � ^ (xm1 _ xm2 _ �xm3) :It is an NP-omplete problem to determine if the formula is satis�able.The problem of satis�ability of random formulas has drawn a lot of atten-tion reently. Friedgut [112℄ used his general riteria for bounded inueneto show that there is a sharp threshold between values of m for whih theformula is almost surely satis�able and those for whih it is almost surelyunsatis�able.3.5.8 Crossing events in perolation. Consider the graph of thek by m grid in the plane and let the variables orrespond to the edges (son is roughly 2km). Assume that the ratio k=m is bounded and boundedaway from zero. Consider the event of having a left-to-right rossing. Theinuene of a variable is known in perolation theory as \the probabilityfor an edge to be pivotal". I(f) is an important \ritial exponent" ofperolation. It is onjetured that I(f) = �(n3=8).



Vol. 10, 2000 COMBINATORICS WITH A GEOMETRIC FLAVOR 27A prinipal problem in perolation theory is that the probability forhaving a rossing tends to a limit if the ratio of k and m is �xed and ktends to in�nity. This is a speial ase of the (onjetured) existene of a\saling limit". In [97℄ it is shown that the rossing event is (asymptotially)sensitive to noise.3.5.9 First passage perolation. A simple (but representative)variant of �rst passage perolation (FPP) an be desribed as follows. Con-sider the plane grid on whih the length of eah edge is assigned the value0 with probability 1/4 (any p < 1=2 will do) and 1 with probability 3/4.We would like to know: What is be the distribution of the distane D fromthe origin to the point (m;m)? Here the distane is the minimum over allpaths from the origin to (m;m) of the sum of lengths of edges in that path.D is a real random variable de�ned on n Boolean variables where n or-responds to all the edges of the grid in some large region ontaining (0; 0)and (m;m). There are many exiting geometri and probabilisti problemsonerning FPP.Kesten showed that the variane of D is O(m), and another simpleproof with sub-Gaussian tail estimates was given by Talagrand [133℄ usinghis isoperimetri inequality. Inuenes and noise sensitivity (parts 5 and 7of Theorem 3.7) are used in [98℄ to show that for FPP \on the torus" (andon a large lass of symmetri graphs) the variane of D is atually o(m). Itis suggested by physiists that the variane behaves likem2=3 and it is evenspeulated that the distribution of D and the large deviation propertiesare related to the distribution of the largest eigenvalues of ertain randommatries; see [116℄.3.5.10 Boolean funtions expressed by bounded depth Boo-lean iruits. Consider a funtion desribed by a Boolean iruit (whosegates are: and, or, and negation) of depth  and size M . Linial, Man-sour and Nisan showed that the Fourier oeÆients of suh funtions deayexponentially [123℄. Boppana [103℄ showed that for suh a funtion fI(f) � log�1M :Note that this bound applies to the examples of tribes, runs and liques ingraphs mentioned above (see also [107℄, [97℄). An important example basedon ertain random depth-3 iruits was given by Ajtai and Linial [91℄.3.5.11 Determinants, eigenvalues. (Suggested by I. Benjamini.)Consider an m by m matrix with entries �1 and onsider its determinantD, the sign of D, its largest eigenvalue, et. All these an be regarded



28 GIL KALAI GAFA2000as (nonmonotone) real funtions on 
n with n = m2. The orrespondingBoolean funtions are also of interest. What an be said about inuenes,noise-sensitivity and the Fourier-Walsh oeÆients? Is there a notion ofsaling limit?3.5.12 Signed ombination of vetors. Given n vetors v1; :::; vnin some Eulidean spae, with kvik2 � 1, write f(�1; : : : ; �n) = kP �ivik1.The distribution of the values of f is of great interest and, in partiular,a onjeture of Komlos asserts that f always attains a value below someabsolute onstant.3.5.13 Linear objetive funtions. Consider a onvex d-polytopewhih is ombinatorially equivalent to the d-dimensional ube and let f begiven by the values on the verties of a linear funtional on Rd. Suhfuntions extend weighted majority funtions onsidered above and are ofgreat importane in the theory of linear programming (see setion 5).3.6 Some links and referenes. The standard soure for probabilistiombinatoris is [93℄, its seond edition will treat various further topis disussedhere. Various papers in [106℄ that we will not ite individually are good referenesfor some probability topis disussed in this setion and in the next one.Inuenes and olletive oin ipping [99℄, [119℄, [91℄, [92℄, [122℄; Talagrand'smethod and appliations [133℄, [135℄, [130℄; extremal ombinatoris [54℄; Booleaniruit omplexity [93℄, [107℄, [103℄, [123℄; random graphs [100℄, [93℄; ombinatorialproblems on the disrete ube [129℄; noise sensitivity [97℄, [98℄, [140℄, [128℄, [139℄,[141℄ [Tsirelson℄[Shramm℄; FKG variations and appliations [115℄, [106℄; entropyand Shearer's lemma [109℄, [113℄, [117℄; perolation and �rst passage perolation[125℄, [126℄, [106℄; random matries and ombinatorial onnetions [116℄, [118℄;Komlos onjeture [94℄; ExamplesIt is not unusual that a single example or a very few shape an entire math-ematial disipline. Examples are the Petersen graph, yli polytopes,the Fano plane, the prisoner dilemma, the real n-dimensional projetivespae and the group of two by two nonsingular matries. And it seems thatoverall, we are short of examples. The methods for oming up with use-ful examples in mathematis (or ounterexamples for ommonly believedonjetures) are even less lear than the methods for proving mathematialstatements.



Vol. 10, 2000 COMBINATORICS WITH A GEOMETRIC FLAVOR 294 Enumerative Combinatoris and Probability: CountingTrees and Random Trees4.1 Kirhho�, Cayley, Kasteleyn and Tutte. Cayley proved thatthe number of trees on n labeled verties is nn�2. There are many beauti-ful proofs whih demonstrate various prinipal tehniques in enumerationtheory and, amazingly, new proofs are still being found. See [162℄, [84℄[Stanley℄. The matrix tree theorem, asserting that the number of spanningtrees for a graph G is (essentially) the determinant of the Laplaian of G,is even earlier and is attributed to Kirhho�. Of the vast knowledge on treeenumeration, let me mention two additional results. Kasteleyn (see [17℄)found fundamental relations between the number of perfet mathings ofplanar graphs and tree enumeration. Tutte [166℄ onsidered graphs drawnon the 2-dimensional sphere, whih has the property that the antipodalmap indues an order-reversing bijetion between the faes (or dimensions0, 1 and 2) of this graph. In partiular, the graph is self-dual (but thisis not suÆient). He proved that the number of spanning trees of suh agraph is a perfet square and the square root is equal to the number ofself-dual trees.4.2 Random spanning trees and loop erased random walk. Itis now understood that there is an intimate onnetion between exat orapproximate enumeration of ertain objets and between the problem of�nding (exatly or approximately) a random element among them. Whatan be said about a random spanning tree of a graph G and how an yougenerate suh an objet?Broder [148℄ and Aldous [145℄ proposed a very simple way to generate arandom spanning tree in a �nite graph: Start a random walk and add to thetree all edges in the walk whih do not lose a irle when �rst traversed.Wilson [168℄ found a remarkable algorithm with superior performanes andimportant theoretial aspets. His algorithm is related to the disussionthat follows.Lawler [157℄, attempting to understand a self-avoiding random walk,onsidered the following (di�erent) model. Given two verties x and y,start from x a random walk until reahing y and erase all loops. Pemantleshowed that the distribution on x � y paths in Lawler's model of looperased random walk is preisely the distribution of paths between x and yin a random spanning tree.
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Figure 5: A random spanning tree and a loop erased random walk.4.3 Random spanning trees II. Rik Kenyon [152℄, [153℄, [154℄, [155℄was reently able to ompute ritial exponents, to prove onformal invari-ane and to establish the existene of saling limits for models based onrandom spanning trees of planar grids. His ingenious and involved proofsuse Kasteleyn's orrespondene between mathings and spanning trees forplanar grids in a ruial way. Here are two of Kenyon's results:� The expeted length of the path between the origin and the boundaryof the n by n grid in a random spanning tree of the standard planegrid (equivalently, the expeted length of the loop erased randomwalk) is �(n4=3).



Vol. 10, 2000 COMBINATORICS WITH A GEOMETRIC FLAVOR 31� Consider a smooth planar �gure F and three points x, y and z onits boundary, and the (unique) meeting point u of these three pointsin a random spanning tree of a �ne planar grid. In the limit, u is adistribution on points inside F . Kenyon proved that this distributionis invariant under onformal maps of the plane.4.4 Random spanning trees III. Oded Shramm [164℄ assumed astrong version of onformal invariane to show that various limiting objetsfor random spanning trees in planar grids are desribed by a ertain stohas-ti proess. Shramm onstruted a remarkable lass SLE� of stohastiproesses depending on a parameter � and showed that (assuming the exis-tene of saling limits and onformal invariane) these proesses for � = 2desribe the limiting paths of the loop erased random walk, and for � = 6the saling limit of ritial perolation luster boundaries. For � = 8 theyare related to random Peano urves arising from random spanning trees,and for � = 4 it is speulated that they desribe the domino di�erenemodel (introdued and studied by Kenyon). This established surprisingonnetions between objets whih previously seemed di�erent.Here is a short desription of Shramm's onstrution in his own words:\Consider a path  in the losed unit disk U from the boundary to 0,whih does not ross itself (and does not ontain a nontrivial ar on theunit irle). Consider an initial ar � of . Let q(�) be the endpoint of �whih is not the initial point of . By Riemann's mapping theorem, thereis a unique onformal map g = g� : U� � ! U normalized by g(0) = 0and g0(0) > 0. Set t(�) = � log g0(0). The map g extends ontinuouslyto the losure of U� �. In partiular, Æ = g(q(�)) is a well de�ned pointon the unit irle. We may think of �, and hene of Æ as funtions of t,Æ : [0;1)! �U. Loewner's slit mapping theorem shows that the olletionof maps g� = gt an be reonstruted from the funtion Æ(t), by solving adi�erential equation with Æ(t) as a parameter.In the SLE� proess, we take Æ(t) = B(�t), where � is a onstant andB is Brownian motion on the unit irle. By Loewner's theorem (and itsextensions) this gives suÆient information to reonstrut gt, hene ."Lawler, Shramm and Werner [159℄ related these objets to planarBrownian motion. Using onformal invariane whih is known for Brownianmotions and some earlier results of Lawler and Werner on the `universality'of ertain ritial exponents for a large lass of proesses they managed toompute ritial exponents antiipated by Duplantier-Kwon and Mandel-brot for Brownian motion in the plane.



32 GIL KALAI GAFA2000These developments are a wonderful symphony of probabilisti, geomet-ri, analytial and ombinatorial reasoning.4.5 Higher dimensions. Only a small fration of the harm and im-portane of trees survives when we onsider higher dimensional ayliomplexes. Yet in some ontexts (e.g., buildings) suh generalizationsare useful. When it omes to tree enumeration it turns out that Cay-ley's formula does extend easily with a little twist: The weighted sum ofQ-ayli k-dimensional ayli omplexes on n verties with a omplete(k � 1)-dimensional skeleton is n(n�2k ), where the weight of a omplex Kis jHk�1(K)2j. Thus, for n = 6; k = 2 the formula gives 66 and there isa single type of omplex, whih is ounted more than one (4 times): the6-vertex triangulation of the real projetive plane (Figure 3). The proofrelies on extending the matrix-tree theorem and identifying the eigenvaluesof ertain Laplaians.Very soon, as n grows, the weights in this formula beome muh largerthan the number of summands. See Kalai [151℄ and Adin [144℄. Analogsfor Kasteleyn's and for Tutte's theorems mentioned above are expetedbut not known. Kenyon suggested that an appropriate extension of Kaste-leyn's theorem to subomplexes of the 3-dimensional grid may be usefulin extending some of his expliit omputations of ritial exponents to 3dimensions.4.6 Haiman's diagonal harmonis. Consider the graded polynomialring Hn = C [x1 ; : : : ; xn; y1; : : :yn℄=I , where I is the ideal generated by allpolynomials in the xi's and yi's whih are invariant under the diagonalation of the symmetri group Sn on the variables.Haiman [150℄, based on experimentation with Maaulay [158℄, onje-tured that the dimension of Hn is (n+ 1)n�1, the number of labeled treeson n + 1 variables.Further experimentation showed that �ner statistis on the grading ofHn (the total degree or the degrees aording to the variables xi alone)turned out to be related to lassial enumeration statistis of trees. More-over, using the well known orrespondene between trees and parking fun-tions, it was possible to identify the representation of the symmetri groupSn on Hn. Haiman's onjeture turned out to be related to exiting issuesin algebrai geometry and representation theory. Many tried to solve it,but very reently Haiman himself proved his onjeture [Haiman℄.4.7 Some links and referenes. Tree enumeration [162℄, [84℄, [156℄; trees



Vol. 10, 2000 COMBINATORICS WITH A GEOMETRIC FLAVOR 33and probability [161℄, [106℄; random spanning trees and forests [146℄, [160℄, [163℄,[106℄; enumerative ombinatoris [83℄, [84℄, [147℄, [Zeilberger℄, [Stanley℄; Shramm'sproesses, Brownian motion [164℄, [159℄, [167℄ Haiman's onjetures [150℄, [Haiman℄;Maaulay [158℄, [Bayer℄; approximate enumeration [183℄, [186℄; eigenvalues ofLaplaians of high dimensional omplexes [Reiner℄.Our ommunityLike musiians who an enjoy and understand ompliated sores even in aworld with no sound, for us mathematis is a soure of delight, exitementand even ontroversy. This is hard to share with nonmathematiians.In our small world we should seek new ways for ommuniation andinteration and for the right balane between ompetition and solidarity,ritiism and empathy, exlusion and inlusion.5 Optimization: How Good is the Simplex Algorithm?5.1 The simplex method. Linear programming is the problem ofmaximizing a linear objetive funtion � = b1x1+b2x2+� � �+bdxd subjet ton linear inequalities in the d variables x1; x2; : : : ; xd. Linear programmingand Danzig's simplex algorithm are among the most important applia-tions of mathematis in the 20th entury. The set Q of solutions for theinequalities is alled the feasible polyhedron. The maximum of � on Q (if� is bounded on Q) is attained at a fae of Q and, in partiular, there is avertex v for whih the maximum is attained.The simplex algorithm is a method to solve a linear programming prob-lem by repeatedly moving from one vertex v to an adjaent vertex w ofthe feasible polyhedra so that in eah step the value of the objetive fun-tion is inreased. The spei� way to hoose w, given v, is alled the pivotrule. Klee and Minty [182℄, and later others, showed that various standardpivot rules may require exponentially many pivot steps in the worst ase.On the other hand, Khahiyan [178℄, [190℄, [177℄ showed that linear pro-gramming is in P (namely, there is a polynomial-time algorithm for linearprogramming), and various authors (for several notions of a random lin-ear programming problem) showed that the simplex algorithm requires apolynomial number of pivot steps on average [171℄.It is an important open problem to deide if there is a variant of thesimplex algorithm whose worst-ase behavior takes polynomial time. Re-



34 GIL KALAI GAFA2000lated problems are to show that there is a polynomial time algorithm forlinear programming \over the reals" or to �nd a \strongly polynomial" al-gorithm (over the rationals) in the usual Turing model. These problems offundamental importane in both omplexity and optimization lie (as theproblems of fatorization of integers and graph isomorphism) in the greyarea between P and NP, where surprising new results and insights areexpeted.In the early 90s randomized subexponential simplex algorithms werefound independently by Kalai [180℄ and by Matou�sek, Sharir and Welzl[185℄. These development as well as a related result on the diameter ofgraphs of polytopes [179℄ apply in a very general abstrat ombinatorialontext. While it is possible that further improvements and even polyno-mial simplex algorithms an be found in this generality, the main point Iwould like to raise in this setion is: an geometry help?5.2 The ombinatoris of linear programming. The following prop-erty is ruial:� (loal=global) � takes its maximum on a vertex v of Q if and only ifv is a loal maximum, i.e., �(v) � �(w) for every neighbor vertex wof v.An ordering of the verties of a polytope Q is an abstrat objetivefuntion if the property (loal=global) holds for Q and all its faes. (Itis possible to onsider also abstrat linear programming problems in evengreater generality; see [188℄, [179℄.)For our purposes, there is no loss of generality in assuming that the fea-sible polyhedron Q is bounded, that the linear objetive funtion is generiand that the problem is nondegenerate whih, in other words, says thatQ isa simple polytope: every vertex has d neighboring verties, or equivalentlyevery vertex belongs to exatly d faets.The ombinatoris of the problem involves the ombinatorial strutureof the polytope Q and the ombinatoris of the total ordering on the vertiesof Q indued by the linear objetive funtion �. The ombinatoris of Qis relevant beause the diameter of the graph of Q gives a lower bound onthe number of pivot steps needed. However, I feel that the main diÆultylies in the ombinatoris of objetive funtions and that understanding thease where Q is ombinatorially isomorphi to the d-dimensional ube willgo a long way towards solving the problem.An interesting onnetion with setion 2 is the following: Given a simplepolytope Q (think about the ube!) and a linear objetive funtion �, we



Vol. 10, 2000 COMBINATORICS WITH A GEOMETRIC FLAVOR 35an onsider for every vertex v its degree deg(v), whih is the number ofneighbors u of v with �(u) > �(v). It turns out that the distribution ofthe degrees of verties does not depend on the objetive funtion. Thenumber of verties of degree k is preisely the h-number hk (onsideredin setion 2). This applies to all abstrat objetive funtions and, in fat,haraterizes this lass of orderings of the verties of Q. This implies atone the Dehn{Sommerville relations hk = hd�k (replae � with ��), andrelation (2.4).The produt measure Pp on the disrete ube (setion 3) has a naturalextension in this ontext for arbitrary simple polytopes Q by assigning toa vertex v the measure (1� p)d�deg(v)pdeg(v).The ombinatoris of the full arrangement of hyperplanes whih orre-spond to points whih satisfy one of the inequalities as equality, is also ofgreat importane. In partiular one an read from the hyperplane arrange-ment (and the ordering given by � on its verties) the ombinatoris thedual linear programming problem.5.3 Some lasses of pivot rules. We will onsider now various pivotstrategies of a ombinatorial nature for the simplex algorithm. Given avertex v of the feasible polyhedron Q our aim is to reah the vertex of Qat the top.1. ( "Random improving edge") Choose a random improving neighbor.2. ("Random faet") Choose a random faet F ontaining v and runthe algorithm inside F until reahing the optimal vertex in that faet.Then repeat. The expeted number of pivot steps is bounded aboveby exp(Cpn logd) [185℄, [180℄.3. ("Universal instrutions") For every vertex v of Q you are givenan ordering of its neighbors. In eah step of the algorithm you moveto the �rst neighbor on the list whih improves �.3(R). ("Random universal instrutions") The same as 3, exept thatyou have a distribution on suh an assignment of orderings and youhoose a random one. (The best known randomized variant of thesimplex algorithm in terms of worst ase expeted behavior is of thistype [179℄.)4. (Taking into aount how well the neighbors improve) The same as 3(or 3(R)) exept the ordering in the vertex an depend on the orderingbetween the � values of the neighbors of v. One of the earliest pivotrules using the most improving neighbor is, of ourse, a speial ase.5. (Adaptive rule) The same as 3 (or 3(R) or 4 or 4(R)) exept the



36 GIL KALAI GAFA2000ordering in the vertex an depend on the history of the algorithm upto this stage.6. ("Random walk") The basi operation is: Given two verties v and uwith �(v) � �(u) start from a vertex v and perform a simple randomwalk on all verties whose � value is larger than �(u). Then updatev and u. (Note: here, we allow steps whih derease the value of theobjetive funtion.)All these rules apply for abstrat objetive funtions and for some ofthem (1-3(R)) all that is needed is the relation between the values of theobjetive funtion on neighboring verties.There are important pivot rules whih depend in a stronger way on thegeometry and annot be desribed in terms of abstrat objetive funtions.An important pratial example is to always hoose the steepest edge (to-wards the objetive funtion) leaving the vertex. An important pivot rulefrom a theoretial point of view is the shadow-boundary rule, whih isbased on projeting the polyhedra on a two-dimensional spae. For this(and only this) rule, it is known that the simplex algorithm is polynomialfor an average problem [171℄.5.4 Can geometry help? I: There are few objetive funtions.The �rst information about geometri objetive funtions is that there arenot too many of them. It is not diÆult to see that the number of abstratobjetive funtions on the verties of the d-ube is larger than 22d. (Forexample, onsider the orientation of edges of the disrete ube whih or-responds to the linear objetive funtion x1+ x2+ � � �+ xd. Then onsidera mathing between the verties of the two middle levels of the ubes. Youmay swith the orientation of any subset of edges of this mathing and theproperty (loal=global) will still hold (see, [89℄).)In sharp ontrast,Theorem 5.1. The number of di�erent possible geometri objetive fun-tions of the disrete d-dimensional ube is at most exp(d3 logd). More-over, the number of ombinatorial types of pairs (Q; �), where Q is a d-polytope with n faets and � a linear objetive funtion on Q, is at mostexp(Kd2n logn).The proof of this theorem relies on a theorem of Warren from real al-gebrai geometry on the number of sign patterns determined by a set ofpolynomials. The basi argument is due to Goodman and Pollak, [176℄,[169℄. (The result applies to the number of ombinatorial types of arrange-ments of n hyperplanes in Rd and the orderings given by a linear objetive



Vol. 10, 2000 COMBINATORICS WITH A GEOMETRIC FLAVOR 37funtion on the verties of the arrangement.)A hereditary lass of abstrat objetive funtions on disrete ubes issmall if the number of distint orderings on the verties of the d-ube isonly exponential in a polynomial of d.Problem 5.1. 1. Given a small hereditary lass of abstrat objetivefuntions, is it possible to prove the existene of an oblivious proess suhas "Random universal instrutions" whih works well for all abstratobjetive funtions in this lass?2. Is it possible, to improve algorithms like "Random faet" by \learn-ing" information from the low level reursion, in a way whih will dramat-ially redue the running time for all small hereditary lasses of abstratobjetive funtions?The seond option we raised, that of learning, needs further explanation.The situation seems to resemble what is alled a bounded VC-dimension[192℄, whih is an extremely useful ondition for various ombinatorial andalgorithmi appliations. Spei�ally, it is possible that applying an algo-rithm (suh as "Random faet") where the hoies of the algorithm higherup in the reursion are positively orrelated with suessful hoies in lowerlevels will perform well on every small lass of abstrat objetive funtions.A ase worthy of study (even experimentally) is a remarkable lass ofabstrat objetive funtions on the disrete d-ube desribed by Matou�sek[184℄. For an average abstrat objetive funtion in this lass the expetednumber of pivot steps needed for "Random faet" is indeed exp(Kpd).This lass is hereditary and small: the number of abstrat objetive fun-tions of this lass on the d-ube is exponential in d2.G�artner [174℄ showed that for Matou�sek's lass the geometry does helpas "Random faet" itself requires only a quadrati number of pivot stepsfor geometri objetive funtions in Matou�sek's lass. G�artner used onlythe onditions for geometri objetive funtions on the 3-dimensional faes.Abstrat objetive funtions on 3-dimensional polytopes were reentlyharaterized by Mihalisin and Klee [181℄. The orientations of graphs of3-dimensional polytopes indued by a geometri objetive funtion (eahedge is oriented from the smaller vertex to the larger) are preisely theayli orientations with a unique soure and a unique sink whih admitsthree disjoint independent monotone paths from the soure to the sink.5.5 Can geometry help? II: How to distinguish geometri obje-tive funtions. We should also try to �nd onrete ways to distinguishbetween abstrat and geometri objetive funtions. Consider the set Av of



38 GIL KALAI GAFA2000all verties u in the feasible polyhedron with �(u) � �(v). Whih propertiesdoes Av satisfy?A reent important result by Morris and Sinlair [186℄ shows that for thestandard ube and weighted majority funtions, Av has (mild) expansionproperties whih implies that a SRWon Av reahes an approximate-uniformdistribution in n8 steps.For an arbitrary linear programming problem, an the graph induedon Av always be divided into a polynomial (in d and n) number of parts,eah of whih is (mildly) expanding? (Mildly expanding means that theexpansion onstant is 1=p(d; n) for some polynomial p(d; n).) Sine everyordering of the verties of the ube given by a monotone real funtion isan abstrat objetive funtion and sine monotone subsets of 
n may havedismal expansion properties, the geometry must be used.Monotone funtions on 
n are not a real hallenge for the simplex al-gorithm as any (improving) pivot rule will reah the maximum vertex in atmost n steps. But understanding the lass of orderings and events of thetype Av whih ome from an objetive funtion on a polytope ombinatori-ally isomorphi to the n-ube is nevertheless of muh interest also from thepoint of view of omplexity theory. Going bak to the examples in setion 3it seems that repeated weighted majorities of various types an be realized.Perhaps the strongest known result towards a strongly polynomial al-gorithm for linear programming is by Eva Tardos [191℄. Fixing the feasiblepolyhedron (in fat, only the matrix of oeÆients), she desribed a stronglypolynomial algorithm independent of the objetive funtion. Proving thisresult with a simplex type algorithm (even randomized) will already be amajor ahievement (see [173℄ for a speial ase).Added in proof. Spielman and Teng have reently made substantialprogress towards a polynomial (not yet strongly polynomial) version ofthe simplex algorithm. They showed that the shadow-boundary pivot ruleneeds a polynomial number of steps for a small random gaussian perturba-tion of a linear programming problem.5.6 Some links and referenes. Linear programming [190℄, average asebehavior of the simplex method [171℄, randomized pivot rules [172℄, [173℄, [189℄,[175℄, [180℄, [188℄, [185℄, omputational geometry [187℄ algorithmi appliations ofrandom walks [183℄, [186℄, the diameter problem for polyhedra [179℄.



Vol. 10, 2000 COMBINATORICS WITH A GEOMETRIC FLAVOR 39Appliations and ExpetationsJudging from the onferene on `Vision in Mathematis', mathematiianshave a strong desire to interat and inuene other sienes, as well as teh-nology, industry, and even eonomi life. The trends towards isolationismhave been reversed, and there is a greater understanding of the subtletiesof applying mathematis to and interating with other �elds.The general publi knows very vaguely what mathematiians do. At thesame time people have quite lear expetations from mathematis. Morethan other sienes, and ertainly muh more than law, religion, politisand the media, mathematis is expeted to be rigorous and preise in tellingits uninteresting, irrelevant, and unomforting truths. The value of mathe-matis for soiety goes far beyond its appliations through tehnology; it isindeed a pillar of human ulture. After a entury of amazing tehnologialdevelopment along with rising inuene of pseudosienes and the oult,this value is important.Aknowledgement. I would like to thank many friends who made use-ful omments and orretions to earlier versions of this paper and NatiLinial, Yuval Peres, Edna Ullman{Margalit and G�unter Ziegler for helpfuldisussions.Rodia Simion, to whose memory this paper is dediated, was Professorof Mathematis at George Washington University until her untimely deathon January 7, 2000.Personal web sitesAlon, http://www.math.tau.a.il/~noga/Barvinok, http://www.math.lsa.umih.edu/~barvinok/Bayer, http://www.math.olumbia.edu/~bayer/vita.htmlBenjamini, http://www.wisdom.weizmann.a.il/~itai/Friedgut, http://www.ma.huji.a.il/~ehudf/Haiman, http://math.usd.edu/~mhaiman/Herzog, http://www.uni-essen.de/~mat300/Kalai, http://www.ma.huji.a.il/~kalai/Kenyon, http://topo.math.u-psud.fr/~kenyon/Lovasz, http://www.s.yale.edu/~lovasz/Lyons, http://php.indiana.edu/~rdlyons/Matou�sek, http://www.ms.m�.uni.z/~matousekPeres, http://www.ma.huji.a.il/~peresReiner, http://www.math.umn.edu/~reiner/Shramm, http://www.wisdom.weizmann.a.il/~shramm/Stanley, http://www-math.mit.edu/~rstan/
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