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Abstract provides strong support for the possibility of building
guantum computers.

We propose a model for noisy quantum evolutions However, as far as we know, quantum error correc-
where the noise is forced to accumulate, and considertion and quantum fault tolerance (and the highly en-
related noise models, called “detrimental noise,” that tangled quantum states that enable them) are not expe-
will cause quantum error correction and fault-tolerant rienced in natural quantum processes. It is therefore
gquantum computation to fail. We start with properties not clear if computationally superior quantum compu-
of detrimental noise for two qubits and proceed to a tation is necessary to describe natural quantum pro-
discussion of highly entangled states, the rate of noise,cesses.
and general noisy quantum systems. We will try to address two closely related questions.

The first is, what are the properties of quantum pro-

cesses that do not exhibit quantum fault tolerance and
1 Introduction how to formally model such processes. The second is,
what kind of noise models cause quantum error cor-
Quantum computers were offered by Feynman ang'ection a_lnd FTQC to fail, _ . L

A main point we would like to make is that it is

others and formally described by Deutsch [12]. The . . ) )
idea was that since computations in quantum physicspossmle that there is a systematic relation between the

require an exponential number of steps on digital com-Noise and the mt_ended _state of a quaptum cc_)mpu_ter.
puters, computers based on quantum physics may out—SUCh a systematic r_elatlon d_oes not violate Imeant_y
perform classical computers. A spectacular supportOf quanturrlhm;aghanlfs, E'r:)qt 'ft |s|tetX|c|)ected to oceur in
for this idea came with Shor’s theorem [27] that as- processes that do not exnibit fault tolerance.

serts that factoring is in BQP (the complexity class de-t L?t nl]et give an e_xample: tsuppose t?at we V\f[am
scribed by quantum computers). 0 simulate on a noisy quantum computer a certain

The feasibility of computationally superior guan- bosonic state. The standard view of noisy quantum

; o computers asserts that this can be done up to some er-
tum computers is one of the most fascinating and clear-

L . ; ror that is described by the computational basis. In
cut scientific problems of our time. The main concern .

. Do contrast, the type of noise we expect amounts to hav-
regarding quantum-computer feasibility is that quan-

: . . ing a mixed state between the intended bosonic state
tum systems are inherently noisy. (This concern was

put forward in the mid-90s by Landauer [21, 22], Un- and other bosonic states (that represent the noise).
ruh [30], and others.) T The first obvious obstacle for fault tolerance, sup-

. ported by the threshold theorem, is that fault tolerance
The theory of quantum error correction and fault-

ol i N tai FTOC d i fails “above the threshold,” namely, when the noise
olerant quanium computation (FTQC) an L 1N PAT ate is high. There are several papers ([3, 26, 9, 17])
ticular, thethreshold theoreni3, 18, 19], which as-

s that und i diti FTOC | ib| that show that a high error rate is an obstacle for
serts that under certain conditions FTQC is possi © fault-tolerant guantum computation (and also for fault-
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BSF grant. highly correlated noise may cause quantum error cor-




rection and fault tolerance to fail. operates ort qubits, and we can assumke< 2. Ev-

The paper relies on a more detailed discussion pa-ery such gate represents a unitary operator on2he (
per [13], see also [15, 14, 16]. We will now describe dimensional) tensor product of the spaces that corre-
the structure of the paper. Section 2 describes the baspond to thesé qubits. At every “cycle time” a large
sic framework for noisy quantum computers and the number of gates acting on disjoint sets of qubits oper-
threshold theorem. ate. We will assume that measurement of qubits that

While a major property of FTQC is that it allows amount to a sampling of 0-1 strings according to the
suppression of noise propagation, in Section 3 we pro-distribution that these qubits represent is the final step
pose a mathematical model that aims to describe quanef the computation.
tum evolutions with unsuppressed noise propagation. The basic locality conditions for noisy quantum
The model is a variation of the standard model with computers asserts that the way in which the state of the
a certain additional “smoothing” in time. A formal computer changes between computer steps is approx-
definition of detrimental noise based on this model is imately statistically independent for different qubits.
given. We will refer to such changes as “storage errors” or

In Section 4 we discuss highly correlated noise, the “qubit errors.” In addition, the gates that carry the
notion of noise synchronization, and the rate of highly computation itself are imperfect. We can suppose that
correlated noise. We draw a line between the typesevery such gate involves a small number of qubits and
of correlations to which the threshold theorem applies that the gate’s imperfection can take an arbitrary form,
and those to which it does not apply. and hence the errors (referred to as “gate errors”) cre-

In Section 5, we propose two conjectures about ated on the few qubits involved in a gate can be sta-
detrimental noise: the first is in terms of two-qubit tistically dependent. We will denote as “fresh errors”
behavior, and the second is in terms of many highly the storage errors and gate errors in one computer cy-
entangled qubits states. The two-qubit conjecture ascle. Of course, qubit errors and gate errors propagate
serts informally that information leaks for two entan- along the computation. The “overall error” describing
gled qubits are necessarily positively correlated. Thethe gap between the intended state of the computer and
second conjecture asserts that the noise for a highly enits noisy state takes into account also the cumulated ef-
tangled state manifests strong error synchronization. fect of errors from earlier computer cycles.

In Section 6 we describe how our picture of deco-  The basic picture we have of a noisy computer is
herence differs from the standard one for general quanthat at any time during the computation we can ap-
tum systems. In Section 7 we discuss linearity, causal-proximate the state of each qubit only up to some small
ity, and the rate of detrimental noise. In Section 8 we error terme. Nevertheless, under the assumptions con-
discuss some computational complexity aspects, ancterning the errors mentioned above, computation is
in Section 9 we briefly discuss physical aspects. possible. The noisy physical qubits allow the introduc-

tion of logical “protected” qubits that are essentially
2 Quantum computers, noise, fault tolerance, noiseless.

and the threshold theorem In this paper we will consider the same model of
guantum computers with more general notions of er-

2.1 Quantum computers and noisy quan- rors. We will study more general models for the fresh
tum computers errors. (We will not distinguish between the different

components of fresh errors, gate errors and storage er-
We assume the standard model of quantum com-rors.) Our models require that the storage errors not be
puter based on qubits and gates with pure-state evostatistically independent (on the contrary, they should
lution. The state of a quantum computer witlyubits be very dependent) or that the gate errors not be re-
is a unit vector in a complex Hilbert spag¢é the 2”- stricted to the qubits involved in the gates and be of
dimensional tensor product of 2-dimensional complex sufficiently general form.
vector spaces for the individual qubits. The evolution  There are several other models of quantum com-
of the quantum computer is via “gates.” Each gate puters that are equivalent in terms of their computa-
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tional power to the one described here. This equiva-3 Modeling quantum systems with unsup-
lence does not extend automatically to noisy versions  pressed noise propagation
and exploring fault tolerance in noisy versions of these

models is an important challenge in FTQC. A main property of FTQC is that it enables us to
suppress noise propagation: the effect of the noise at a
2.2 The threshold theorem certain computer cycle diminishes almost completely

already after a constant number of computer cycles. In

We will not specify the noise at each Computer cy- this section we would like to forma”y model quantum
cle but rather consider a large set, referred to as theSystems for which noise propagation is not suppressed.
noise envelopeof quantum operations the noise can A way to force unsuppressed noise propagation into
be selected from. the model is as follows. Start with an ideal quantum

Let D be the following envelope of noise operations €volutionp, : 0 < ¢ < 1 and suppose thdf, de-
for the fresh errors: the envelope for storage erfoys ~ notes the unitary operator describing the transforma-
will consist of quantum operations that have a tensortion from times to time¢, (s < t). Next consider a
product structure over the individual qubits. The enve- NOISY version wheré, is a noise operation describing
lope for gate error®, will consist of quantum oper-  the infinitesimal noise at time
ations that have a tensor product structure over all the We will now describe a certain “smoothing” in time
gates involved in a Sing|e Computer Cyc|e (more pre- of the noise. LetK be a pOSitive continuous function
cisely, over the Hilbert spaces representing the qubitson [-1,1]. (We can assume thaf is supported in a
in the gates). For a specific gate the noise can be arfeighborhood of 0.) We writd (t) = [;' | K(s)ds.
arbitrary quantum operation on the space representingeplace the noisé; at timet by
the qubits involved in the gate. (The threshold theo- ,
rem concerns a specific universal set of g&tebat is by = @)
different in different versions of the theorem.) L

(1/K(t)) - / K(t —8) U, E U ds.
Theorem 2.1(Threshold theorem)[3, 18, 19] Con- 0 ’
sider quantum circuits with a universal set of gatgs
A noisy quantum circuit with a set of gatésnd noise
enveloped, andD, is capable of effectively simulat-
ing an arbitrary noiseless quantum circuit, provided (i) It will not allow quantum fault toler-
that the error rate for every computer cycle is below a ancet
certain threshold; > 0.

Main Conjecture: (i) Relation (1) properly
models natural noisy guantum systems,

For the rest of the paper we will restrict some-
The value of the threshold in original proofs of the what the class of noise operators and we will sup-

threshold theorem was around= 10~° and it has  pose that, and hence®; are described by POVM-
since been improved by at least one order of magni-measurements (see [24], Chapter 2).

tude. Recently, Knill [20] used error-detection codes
rather than error-correction codes and massive post- Definition: Detrimental noiserefers to
selection for raising the value of (based on numeri- noise (described by a POVM-measurement)
cal simulations) to 3%. (It also leads to substantially that can be described by equation (1).
higher provable bounds [7].)

The threshold theorem relies on another important  What could be a motivation for our main conjec-
assumption. It is allowed to add new qubits, “cold tyre? We will mention four reasons:

ancillas” that are initialized to an error-free stée. I . .
For the second part of the conjecture we take noiseless clas-

ROUghly speakm_g, they are nee_ded to CO(_)l the Sys- sical computation for granted and continue to assume utani
tem. We will continue to make this assumption for our supply of “cold ancillas.” We get both these assumptionsfriee

adversarial noise models throughout the paper. from our conjecture on the rate of noise in Section 7.3.




1) Regardless of the feasibility of quantum comput- [4]. (Our description, interpreted this way, amounts to
ers, unsuppressed noise propagation appears to be theery slow gates,” where the action of a gate spans a
rule for open quantum systems in nature. The reasorconstant fraction of the entire evolution. Even for such
is that we do not witness in nature quantum error cor- a harsh assumption, the possibility of FTQC can be
rection needed to suppress noise propagation or othequite delicate.)
mechanisms for this purpose. Relation (1) should al- 2. In relation (1), it is not enough to assume that
low modeling information leaks for quantum systems is supported in an intervad, ¢] for some positive real
in nature. t. Greg Kuperberg pointed out that in this case FTQC

2) We expect that properties of unsuppressed noisds possible!
propagation can have various other physical causes.

3) If FTQC is not possible by whatever fundamen- 4 Correlated noise and noise synchronization
tal principle, the conclusion is that noise propagation
cannot be suppressed. If unsuppressed noise propaga.1 Describing error synchronization via
tion is a consequence of any hypothetical fundamen- Pauli expansion
tal principle that would cause FTQC to fail, we may
as well consider unsuppressed noise propagation to be The concern regarding highly correlated noise has
such a fundamental principle. been raised in several papers, yet there have been only

4) We expect that the main conjecture will have in- a few systematic attempts to study what kind of corre-
teresting mathematical consequences leading to a colated errors will cause the threshold theorem to4ail.
herent picture. Error synchronization refers to a situation where,

We can replace relation (1) by a discrete-time de- while the expected number of qubit errors is small,
scription. When we consider a quantum computer thatthere is a substantial probability of errors affecting a
runsT computer cycles, we start with standard storage large fraction of qubits.
noise E; for thet-step. Then we consider instead the A simple way to describe error synchronization is

noise operator via the expansion of the quantum operatiéin terms
of multi-Pauli operators. A quantum operatiédhcan
T be expressed as a linear combination
E{ =1/ K((t-s)/T))- )
s=1 E = Z ’Uwa, (3)
T
ZK((t _ S)/T)Us,tEtU;tl, wherew is a word of lengthn (i1, 42, ...,4,), and

i € {I,X,Y,Z} for every k, v* is a vector, and
PY is the quantum operation that corresponds to the
tensor product of Pauli operators whose action on the
individual qubits is described by the multi-index

The amount of error on thikth qubit is described
y S {|[v* |3 : i # I}. For a multi-indexw define
Fw\ = |{k i # I} Let

s=1

where agairU; ; is the intended unitary operation be-
tween ste and step.

Remarks: 1. Relation (1) is offered as a mathemat-
ical device to describe the situation where noise prop-
agation is not suppressed. Relation (1) can represen
various scenarios. It may apply to noisy quantum cir-
cuits with standard noise above the threshold. It can F(s) = Z{””w”% : [w| = s}
apply simply to standard noisy quantum circuits that
do not contain error-correction ingredients. n

Relation (1) resembles somewhat the suggestion\c,l\(l%i:i??c:izszl f(s)s as theexpected number of
that in the qubits/gates model, the gates are “slow”
(not instantaneous) and the noise occurs continuously 20f course, everyone.has always known that the threshold the-
orem will fail for some noise models; e.g., it's hard to paitgour

as gates are being applied. This notion appears in ske quantum computer (or digital computer for that matter) fame-

tical works _regarding qU"_Jmtum_ computers ([6]), and is teor strike. But such models were considered as unintageatid
also taken into account in various threshold theoremsunrealistic.




Define therich error syndromeo be the probability The proposition extends to the case where we allow
distribution described by assigning to the wardhe additional qubits representing the environment.
value [[v™|| (normalized). We will define theoarse The proof of Proposition 4.1 is based on a standard
error syndromeas the binary word of lengthobtained  “concentration of measure” argument (see, e.g., [23]).
from w by replacingl with ‘0’ and the other letters by  (We will give only a rough sketch.) When we con-
‘1’. Given a noise operatiotr, the distribution€ of sider a typical expression of the forln a,, P,, where
the rich error syndrome is an important feature of the 3" a2 = 1 and>_{a? |w|} = an, it will have a large
noise. GivenE we will denote byD the probability  support onag and the other coefficients will be sup-
distribution of coarse error syndromé(s) is simply ported o, wherew itself is typical; i.e.,l (the error
the probability of a word drawn accordifg havings syndrome) behaves like a random string of length

‘1’s. with entries I,X,Y,Z. Hencéw| is around(3/4)n.
Suppose that the expected number of qubit errors is How relevant is Proposition 4.1? It is well known
an wheren is the number of qubits. that random unitary operations on the entizé-

All noise models studied in the original papers of dimensional vector space describing the state of the
the threshold theorem, as well as some extensions thatomputer are not “realistic” (in other words, not “phys-
allow time- and space-dependencies (e.g., [29, 7, 4]),ical” or not “local”). The best formal explanation why
have the property that(s) decays exponentially (with  random unitary operators are “not physical” is actually
n) for s = (a + €)n, wheree > 0 is any fixed real ~ computational and relies on the following well-known
number. (This is particularly simple when we consider
storage error, which is statistically independent over
different qubits.)

In contrast, we say that' leads toerror synchro-
nizationif f(> s) is substantial for some>> an. We
say thatE leads to avery strongerror synchroniza-
tion if f(> s) is substantial fors = 3/4 — ¢ where An interesting problem (posed in [16]) is to what
§ = o(1) asn tends to infinity. By “substantial” we extent we can describe the basic statistical properties
mean larger than some absolute constant timés of a random unitary operatioti, conditioned on the
or, in other words, the multi-Pauli terms fof| > s value ofa(U), as the outcome of simple polynomial-
contributes a constant fraction of the expected numbersize quantum circuits.
of qubit errors.

Remark: Error syndromes obtained by measuring 4:3 The boundary of the threshold theo-
the noise in terms of the tensor product of Pauli opera- rem
tors is an important ingredient of several fault-tolerant
schemes. Note that our definition of the rich error syn- o ] )
drome (unlike error-syndromes used in quantum errorth€orem prevails if we allow certain space- and time-
correction) is based on the quantum operatidrep- dependencies for the noise operations. We would now

resenting the noise. (Since quantum states can havike to draw a distinction between noise models that
non-trivial Pauli stabilizers the rich error syndrome is SUPPOrt the threshold theorem and noise models that

not defined uniquely just in terms of the intended and do not. _ . _
noisy states.) For a quantum operatiofi describing the noise for

a quantum computer with qubits we denote by (E)
the expected number of qubit errors in terms of the
multi-Pauli expansion as described above.

Proposition 4.2. For large n, it is impossible to ex-
press or even to approximate a random unitary op-
erator using a polynomial-size quantum circuit with
gates of bounded fan-in (namely, gates that operate on
a bounded number of qubits).

Recent works [29, 7, 4] show that the threshold

4.2 Generic noise

Proposition 4.1. Conditioning on the expected num- Proposition 4.3. For the known noise models that al-
ber an of qubit errors, a random unitary operator low FTQC via the threshold theorem:

acting on all the qubits of the computer yields a very 1) The fresh noiséZ expanded in terms of multi-
strong error synchronization. Pauli operations decays exponentially abeug”).



2) The overall (cumulated) noise” expanded in 4.4 The rate of highly correlated noise
terms of multi-Pauli operations decays exponentially
abovea(E'). Recall that the trace distande(c, p) between two
density matriceg ando is equal to the maximum dif-

There is an even simpler property of fresh and cu- ference in the results of measuripgndo in the same

mulated noise for noise models for which the threshold Pasis. D(a; p) = 1/2[lo — p|,-. When the error is
theorem holds. represented by a quantum operatigithe rate of error

for an individual qubit is the maximum over all possi-
ble states of the qubit of the trace distance between
pandE(p).

Highly correlated errors are damaging for quantum
) G ) error correction, but a potentially even more damaging
most every pair of qubits in the computer is almost sta- ,operty we face for highly correlated noise is that the
tistically independent for the two qubits in the pair.  4tion of “rate of noise for individual qubits” becomes

4) The overall noise for almost every pair of qubits sharply different from the rate of noise as measured by
in the computer is almost statistically independent for trace distance for the entire Hilbert space describing
the two qubits in the pair. the state of the computer.

Consider two extreme scenarios. In the first sce-

Here when we talk about “almost every pair” we nario, for a time interval of length there is a depo-

refer to(1 — 0(1))(3) of the pairs whem is large. larizing storage noise that hits every qubit with prob-

The (rich) error syndrome will provide a simple way ability pt. In the sgcond sc_ena_rio the noi_s_e is highly
to express correlation between the noise acting on twg=orrelated: all qubits are hit with probabiligyt and
qubits. For two qubits and j, denote bycor;;(E)  With probability (1 — pt) nothing happens. In terms of
the correlation between the events that the qilst the expected number of qubit errors both these noises
faulty and the event that the qubjs faulty. In other ~ répresentthe same rate. The probability of every qubit
words, cor;; (E) is the correlation between the events D€ing corrupted at a time interval of lengthis pt.
that w; is not I, andw; is not I whenw is a word However, in terms of trace distance (and here we must

drawn according to the distribution of error syndromes assume that is very small), the rate of the correlated
described byE. Proposition 4.4 implies, in particu- Noise isn~! times that of the uncorrelated noise. What

lar, that for models allowing the threshold theorem, should be the correct assumption for the rate of noise
cor;;(E) and cor;;(E') are close to 0 for most pairs when we move away from the statistical independence

i, 7 of qubits. We will further discuss two-qubit be- assumption? If noise propagation is the “role model”
havior in Section 5. then measuring the noise in terms of trace distance for
I the entire Hilbert space appears to be correct.

Proposition 4.4. For the known noise models that al-
low FTQC via the threshold theorem:

3) The fresh noise (at every computer cycle) for al-

Note that properties 1 and 3 refer to the noise mode
which is one of the assumptions for the threshold the-
orem, while properties 2 and 4 are consequences 0
the threshold theorem and, in particular, of suppress-
ing error propagation. For the very basic noise models3-1 Two conjectures
where the storage errors are statistically independent
property 3 follows from the fact that the number of  |n this subsection we present qualitative statements
pairs of interacting qubits at each computer cycle is atof two conjectures concerning decoherence for quan-
most linear im. Property 3 continues to hold for mod- tym computers which, if (or when) true, are damaging
els that allow decay of correlations between qubit er- to quantum error correction and fault tolerance.
rors that depend on the (geometric) distance between The first conjecture concerns entangled pairs of
them. Property 1 is a simple consequence of the in-qubits.
dependence (or locality) assumptions on the noise for
noise models that allow the threshold theorem. Conjecture A: A noisy quantum computer

p Detrimental noise from two qubits to many



is subject to error with the property that in- highly entangled states needed for FTQC and measure

formation leaks for two substantially entan- (and look at the results for) all but two qubits, we will
gled qubits have a substantial positive corre- reach pairs of qubits (whose intended state is pure)
lation. with almost statistically independent noise, in contrast

to Conjecture A. Under this assumption it is also pos-

We emphasize that Conjecture A refers to part of gjye 1o deduce Conjecture B from Conjecture A.

the overall error affecting a noisy quantum computer.
Other.forms of erro_rs and, in particular, errors consis- 5.2 Mathematical formulation of Conjec-
tent with current noise models may also be present. ture A

Recall that error synchronization refers to a situa-
tion where, although the error rate is small, there is
nevertheless a substantial probability that errors will
affect a large fraction of qubits.

In this subsection we will describe a mathematical
formulation of Conjecture A.
The first step in this formal definition is to re-

Conjecture B: In any noisy quantum com- strict our attention to noise described by POVM-
puter in a highly entangled state there will measurements. This is a large class of quantum oper-
be a strong effect of error synchronization. ations describing information leaks from the quantum

computer to the environment.

We should informally explain already at this point  Qur setting is as follows. Lep be the intended
why these conjectures, if true, are damaging. We start(“ideal”) state of the computer and consider two qubits
with Conjecture B. The states of quantum computers q andb. Consider a POVM-measuremehtrepresent-
that apply error-correcting codes needed for FTQC areing the noise. We describe correlation between the
highly entangled (by any formal definition of “*high qubit errors via the expansion in tensor products of
entanglement”). Conjecture B will imply that at ev- Pauli operators, or, in other words, via the error syn-
ery computer cycle there will be a small but substan- drome.
tial probability that the number of faulty qubits willbe  Associated toF (see Section 4.1) is a distribution
much larger than the thresholdThis is in contrast to £(E) of error syndromes, i.e., words of lengthin the
standard assumptions that the probability of the num-alphabet{1, X,Y, Z}. A coarser distributiorD(E) of
ber of faulty qubits being much larger than the thresh- pinary strings of length is obtained by replacing the
old decreases exponentially with the number of qubits. |etter I with ‘0’ and all other letters by ‘1.

HaVing a small but substantial prObablIlty of a Iarge As a measure of Corre|ati0ﬂ)»,«ij(E) between in-
number of qubits being faulty is enough to cause theformation leaks for theth and;jth qubit we will sim-

quantum error-correction codes to fail. ply take the correlation between the evengs= 1 and
Why is conjecture A damaging? Here the situation z; = 1 according taD(E).

is trickier since without some additional assumptions  \\e also define;(E) as the probability that; = 1
conjecture A is not relevant to the highly entangles according to the distributiof.

states used for FTQC. For such states, pairs of qubits \\e now discuss how to measure entanglement.
are notentangled. _ ~ Suppose thap is the intended state of the computer.

ual qubits can be measured without inducing errors one density matrix obtained after tracing out the qubits
other qubits. This is a standard assumption regard-net in 7. If Z contains only theth qubit, we writep;
ing noisy quantum computefsWhen we start from  instead ofp|z.

*Here we continue to assume that the probability of a qubit ~AS @ measure of entanglement we simply take the
being faulty is small for every computer cycle. trace distance between the state induced on the two
“It should be emphasized that the assumption that weatan qubits and a separable state. Formally,d&tP (i, ;)

waysmeasure a qubit without inducing errors on others, goes con- . .
trary to the picture of noisy quantum computers we try to draw denote the set of mixed separable state&/on {Z} U

We use it to examine stronger forms of the notion of entangtem 1/} namely, states that are m?XtureS of tensor prod-
that are relevant. uct pure states = 7; ® 7;. DefineEnt(p : i,j) =



maz{||pi; — Y| : ¢ € SEP(i,5)}. The proof is based on applying Proposition 5.1 be-
Here is the statement of Conjecture A for two low to the coarse error-syndrome.

qubits: Proposition 5.1. Letn < 1/20 and s > 47. Suppose
Coniecture A: th tical f lati that D is a distribution of 0-1 strings of length such
onjecture A: (mathematical formulation) thatp;(D) > 1 andcory;(D) > s. Then

For every two qubits

cors s (E) > @ Prob(; x; > sn/2) > sn/4. (5)

> K(ri(E),r;(E)) - Ent(p : i, j). The proof of this proposition is described in [14].

5.4 Mathematical challenges and censor-

Here, K(z,y) is a function ofz and y so that ‘
ship

K(x,y)/min(z,y)?> > 1 whenz andy are posi-
tive and small. (Note that Conjecture A) does not
claim anything when the two qubits are noiseless.) If
ri(E) = r;(E) = o for a small real numbes, then
the conjecture asserts thair; j(E) > o2, and, as

The main mathematical challenge is to show that
Conjectures A and B are satisfied when we force un-
suppressed noise propagation.

we will see later, this is what is needed to derive error Main mathematical conjecture: The asser-
synchronization. tion of Conjectures A and B are satisfied for
Remark: We mainly use Conjecture A for the case noisy quantum computers where the noise is

where the two qubits are in joint pure state. In this case described by equation (1).
we can simply take the entropy of one of the qubits as

It will be interesting to check whether the assertion
the measure of entanglement.

of Conjectures A and B holds for noisy adiabatic com-
puters [11].

Several extensions of Conjecture A to pairs of qu-
dits (rather than qubits), and to a larger number of
qubits are proposed in [15, 14, 13]. Several alternative
approaches for how to define “highly entangled states”
for Conjecture B are also considered.

We can expect that detrimental noise will lead to
“very highly entangled states” being completely infea-
sible for noisy quantum computers. Limitations on
feasible states of a quantum computer are referred to
as “censorship.” Computational complexity poses se-
vere restrictions on the feasible states of (noiseless)

. uantum computers. For example, as we already men-
the expected emergent entanglement among pairs o?i

o .S . oned, a state that is approximately the outcome of a
qubits is large. This is the case for states used in quan- . . :
. : random unitary operator on the ent?@é-dimensional
tum error correction. A strong form of Conjecture A

. . . Hilbert space is computationally out of reach when the
is obtained if we take emergent entanglement as the L :
number of qubits is large. We expect that detrimen-
measure of entanglement. . . o -
tal noise will lead to further (statistical) restrictions o
Theorem 5.1. For noisy quantum computers Conjec- feasible states for noisy quantum computers and it will
ture A implies conjecture B in the following two cases: b€ interesting to study what can be the nature of such
(1) When we add the assumptions that qubits can b§tat|st|cal censorsh_r?).Some proposals in this direc-
measured without introducing noise on other qubits.  tion are suggested in [13].
(2) When we formulate Conjecture A for “emergent  sone interesting potential aspect of statistical censpréfi-

entanglement”. lowing suggestions by Ronnie Kosloff) is that there are mixe

5.3 Emergent entanglement and Conjec-
ture B

We now describe Conjecture B formally and pro-
pose a strong form of Conjecture A for two qubits
based on a notion of “emergent entanglement.”

Definition: The emergent entanglemerdf two
qubits is the maximum over alleparablemeasure-
ments of the remaining qubits of the expected amount
of entanglement between the two qubits when we look
at the outcome of the measurements.

Define ahighly entangled statas a state where




6 Detrimental noise for general quantum sys- This definition describes a (huge) clags, of

tems quantum operations that respect the relation, =

UD,U .
Consider the very simple example of a quantum

computer where, when the quantum memory is in a  Conjecture D:
statep andp = Upo, the noiseE will be U EoU . D-noise cannot be avoided in a noisy quan-
Here, po is the initial state of the computer arid is tum process described by relation (1).
the unitary intended evolution leading po When we
try to describe the relation between the state of the On its own our suggested definition of D-noise is
computer and the noise, this example describes, forextremely inclusive, and so is any (honempty) enve-
every statep, an envelope of nois®, = {UE, U1 lope of noise operations that satisfies relation (6). For
Upo = p}. This is a huge class of quantum operations example, a D-noise on a state of the fosm p can be
most of which are irrelevant (being computationally standard even i is highly entangled. However, there
infeasible.) An important property of this noise is: are two additional conditions we have to keep in mind:

Dy, = UDPU‘I. (6) 1. The hypothesis that the overall noise contains a
large D-component applies to every subsystem
of our original system. (An appropriate “hered-
itary” version of Conjecture D may suffice to im-
ply Conjectures A and B for noisy quantum com-
puters. This has yet to be explored.)

Relation (6) amounts to saying that there is a com-
ponent of quantum noise that is invariant under unitary
operations and thus does not depend on the device that
carries these operations. Note that relation (6) applies
to the envelope of noise operations as a set (and not to
individual quantum operations in the noise envelope). 2. The operation describing the noise should be “lo-

As before, we restrict our attention to noise de- cal”; namely, it should be computationally fea-
scribed by POVM-measurements. We can now ask:  sible in terms of local operations describing the
what are the laws of decoherence for general noisy system.
quantum systems that follow the properties of (un-
suppressed) noise propagation? Remark: There are three related contexts for which

As with the case of standard models of noise, we the discussion of decoherence for quantum systems
would like to describe an envelope of noise, i.e., alargeapplies. The first and the closest to the discussion re-
set of quantum operations, so that when we modelgarding quantum computers is when we regard the gap
noisy quantum operations or more general processedetween an intended controlled evolution and the pro-
the incremental (or infinitesimal) noise should be taken cess actually carried out. A second context is the study
from this envelope. Conjectures A and B propose of information leaks from the system to its environ-
some systematic connection between the noise and thenent. Finally, a third context is the study of errors in
state. However, in these conjectures both the assumpany descriptionof the evolution of a noisy quantum
tion in terms of entanglement and the conclusion in system.
terms of correlation rely on the tensor product struc-

ture of H. 7 Linearity, causality, and rate
Here is a proposal on how to formalize this connec-
tion for general systems: 7.1 Linearity
Definition: A D-noise of a quantum sys- Our conjectures for noisy quantum computers and
tem at a state Is a quantum operatioy for noisy quantum systems amount to a nonlinear re-
that commutes with some non-identity uni- lation between the noise envelope and the state of the
tary quantum operation that stabilizes computer. Such nonlinear relations do not violate lin-
states that cannot be “cooled” Such a property is not eegect €@rity of quantum mechanics. For example, if we con-
for computationally based censorship. sider the noise in our main relation (1) as a function of



the entire evolution, then it is completely linear. Non- (in terms of trace distance) is bounded from

linearity is caused by ignoring the entire evolution and below by a measure of honcommutativity

considering the relation between the noise and the state  between the operators describing the evolu-

for all possible evolutions leading to this state. tion prior to timet and those describing it
after timet.

7.2 Causality
The lower bound according to Conjecture E for the
Consider an intended pure-state evolutign0 < rate of noise when the process starts or ends is zero.
t < 1 of a quantum computer, and a noisy realization The rate of noise can also vanish for classical systems
o1, 0 < t < 1. Assuming thab is closé to p; for the  where all the operations commute. (Conjecture E also
entiretime interval may create a systematic relation of gives cold ancillas qubits for free.) Conjecture E can
the infinitesimal noise at an intermediate timen the  be regarded as a proposed refinement on the assump-
entireintended evolution,.” tions regarding the rate of noise even for a single qubit.
It is a consequencef FTQC that the dependence
of the errors on past evolution and on future intendedg Computational complexity
evolution becomes negligible.

) ) The problem of describing complexity classes of
7.3 The r‘f‘te of noise for noisy quantum guantum computers subject to various models of noise
evolutions was proposed by Peter Shor in the nineties. (Although

. we naturally expect computational power between
We can exhibit extremely stable entangled quantumBQP and BPP it is possible, in principle, that certain

states, and yet we believe that quantum systems are ingise models will allow efficient algorithms even for

herentl;_/ noisy. We can also have_lsolated qubits thatproblems not in BOP.) Scott Aaronson [1] asked for
do not interact at all that are subject to uncorrelated the computational complexity consequences of various

noise, and yet we propose in this paper that for the "_ip'hypothetical restrictions on feasible (physical) states
propriate model of noisy quantum computers the noise,, o,antum computers. In particular, he posed the in-

should be highly correlated. The noise (its rate z_alnd itsteresting “Sure/Shor challenge” to describe such re-
form) depends on the fact that we need to manipulategyictions that do not allow for polynomial-time factor-

the qubits, but what is the formal description of such & j4 ot integers and at the same time do not violate what
dependence? - ~ can already be demonstrated empirically.

When we model the fresh (or infinitesimal) noise The threshold theorem and some of its recent ver-
for the evolution of a noisy quantum computer or even gjong give a fairly good description of the board mod-
a general noisy system, yvhat ShQUId be.a onver boundels of noise that allow universal qguantum computing
on the rate of noise? This is an interesting iSsue evenpen, the noise rate is sufficiently small. There are sev-

when it comes to a single noisy qubit. , eral results ([5, 26, 17]) showing that for the standard
Recall that the usual assumption regarding the rate

b ) - ) noise models when the computation is reversible or
of noise is that for every qubit the probability of it be- when the noise rate is high, the computational power

ing faulty is a small constant for every computer cycle. .o q,ces to BPP (for some results)BP PBONC (the
We propose the following refinement of this assump- ey of classical computers together with log-depth
tion. guantum circuits).

How bad can the effect of correlated errors be? |
tend to think that for an arbitrary form of noise, if the
expected number of qubit errors in a computer cycle is
sufficiently small then problems iBPPBNC and,

®In some sense, e.g., in terms of the expected number of qubitin particular, polynomial-time factoring can preVAil.
errors.

"This is easier to understand if the successpfn approxi- 8Cleve and Watrous [10] gave a polynomial algorithm for fac-
matingp. is achieved via post-selection. toring that requires, beyond classical computation, oodydepth

Conjecture E: A noisy quantum computer
is subject to (detrimental) noise with the fol-
lowing property: the rate of noise at tinite
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A rough argument in this direction would go as fol- experimental processes that come close to this descrip-
lows. First replace a given log-depth circuit by a larger tion, like phonons, which can be regarded as a bosonic
one capable of correcting standard errors; then run thestate (on a macroscopic scale) “simulated” on micro-
computation a polynomial or quasi-polynomial (de- scopic “qudits”. (There are several other examples as
pending on the precise overhead in the fault-tolerantwell.) These examples can serve as a good place to
circuit) number of times to account for highly synchro- examine noise.

nized errors.

On the other hand, it may be possible (but not easy) Another place to examine some suggestions of this
to prove that highly correlated errors of the kind un- paper is current implementations of ion-trap comput-
der consideration do not allow fault tolerance baseders. In these implementations we need to move qubits
on quantum error correction, and perhaps also thatiogether in order to gate them, and this suggests that,
they suffice to reduce the computational power to in each computer cycle, errors will be correlateddbr
BPPBINC, pairs of qubits. At present, the rate of noise is still the

The most interesting direction, in my opinion, major concern of experimentalists, but it is not clear
would be to show that with the full power of detri- how a large pairwise correlation between all pairs of
mental errors, e.g., as defined in equation (1), includ-qubits can be avoided in current architecture. Specific
ing the conjectured effect on the expected number ofalternative suggestions (based on teleportation) of per-
qubit errors in one computer cycle (Sections 4.4,7.3), forming gates for ion-trap computers without moving
the computational power of noisy quantum computersthe qubits may not solve this problem since we cannot
reduces to BPP. assume for these suggested implementations that mea-

suring qubits will not induce noise on other qubits.
9 Physics
If our suggested properties of noise for some (hypo-

A criticism expressed by several readers of an earlythetical) quantum computer architecture at some quan-
version of this paper is that no attempt is made to moti- tym statep allow instantaneous signaling, then the pro-
vate the conjectures from a physical point of view and posed conclusion is that this quantum computer ar-

that the suggestions seem “unphysical.” What can jus-chitecture simply does not accommodate the quantum
tify the assumption that a given error lasts for a con- statey.

stant fraction of the entire length of the process? If

a noisy quantum computer at a highly entangled state Finally, another comment was that FTQC via topo-
has correlated noise between faraway qubits as we SUpgical quantum computing does not rely on the
gest, wouldn't it allow signaling faster than the speed yreshold theorem and Conjectures A and B are not
of light? relevant for this model. However, the underlying

It is important and may be fruitful, in our opinion,  mathematics behind the threshold theorem and behind
to examine various models of noise while putting the FTQC via topological quantum computers is quite

physics aside. Nevertheless, we will briefly discuss gimijar, The extreme stability to noise expected for
some physical aspects. . _ _ non-Abelian anyons (and Abelian anyons) relies on
Let us go back to the example of simulating bosonic gjmilar assumptions to those enabling quantum error
states with & noisy quantum computer. When errorsqrection. When we create Abelian anyons in the lab-
accumulate | expect that a large (even dominant) partyratory, or try to create non-Abelian anyons, there is no
of the noise will not consist of local noise based on the ra50n 10 believe that the process for creating them will
computational bases but rather it will be a mix of the ;4 olve suppression of propagated noise and therefore,
intended bosonic state with other unintended bosonicjust as when we simulate fermions or bosons, we ex-
states. ~ pect a mixture of the intended state with other states
We do not yet have quantum computers that Simu-f the same type. When noise accumulates there is no
late bosonic states but we do have several natural angas50n to expect the strong stability of certain anyons

guantum computation. that is predicted by current models.
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