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Abstract

We propose a model for noisy quantum evolutions
where the noise is forced to accumulate, and consider
related noise models, called “detrimental noise,” that
will cause quantum error correction and fault-tolerant
quantum computation to fail. We start with properties
of detrimental noise for two qubits and proceed to a
discussion of highly entangled states, the rate of noise,
and general noisy quantum systems.

1 Introduction

Quantum computers were offered by Feynman and
others and formally described by Deutsch [12]. The
idea was that since computations in quantum physics
require an exponential number of steps on digital com-
puters, computers based on quantum physics may out-
perform classical computers. A spectacular support
for this idea came with Shor’s theorem [27] that as-
serts that factoring is in BQP (the complexity class de-
scribed by quantum computers).

The feasibility of computationally superior quan-
tum computers is one of the most fascinating and clear-
cut scientific problems of our time. The main concern
regarding quantum-computer feasibility is that quan-
tum systems are inherently noisy. (This concern was
put forward in the mid-90s by Landauer [21, 22], Un-
ruh [30], and others.)

The theory of quantum error correction and fault-
tolerant quantum computation (FTQC) and, in par-
ticular, the threshold theorem[3, 18, 19], which as-
serts that under certain conditions FTQC is possible,
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provides strong support for the possibility of building
quantum computers.

However, as far as we know, quantum error correc-
tion and quantum fault tolerance (and the highly en-
tangled quantum states that enable them) are not expe-
rienced in natural quantum processes. It is therefore
not clear if computationally superior quantum compu-
tation is necessary to describe natural quantum pro-
cesses.

We will try to address two closely related questions.
The first is, what are the properties of quantum pro-
cesses that do not exhibit quantum fault tolerance and
how to formally model such processes. The second is,
what kind of noise models cause quantum error cor-
rection and FTQC to fail.

A main point we would like to make is that it is
possible that there is a systematic relation between the
noise and the intended state of a quantum computer.
Such a systematic relation does not violate linearity
of quantum mechanics, and it is expected to occur in
processes that do not exhibit fault tolerance.

Let me give an example: suppose that we want
to simulate on a noisy quantum computer a certain
bosonic state. The standard view of noisy quantum
computers asserts that this can be done up to some er-
ror that is described by the computational basis. In
contrast, the type of noise we expect amounts to hav-
ing a mixed state between the intended bosonic state
and other bosonic states (that represent the noise).

The first obvious obstacle for fault tolerance, sup-
ported by the threshold theorem, is that fault tolerance
fails “above the threshold,” namely, when the noise
rate is high. There are several papers ([3, 26, 9, 17])
that show that a high error rate is an obstacle for
fault-tolerant quantum computation (and also for fault-
tolerant classical computation). Another simple sug-
gestion (see, e.g., [25],) that we will study here is that
highly correlated noise may cause quantum error cor-
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rection and fault tolerance to fail.
The paper relies on a more detailed discussion pa-

per [13], see also [15, 14, 16]. We will now describe
the structure of the paper. Section 2 describes the ba-
sic framework for noisy quantum computers and the
threshold theorem.

While a major property of FTQC is that it allows
suppression of noise propagation, in Section 3 we pro-
pose a mathematical model that aims to describe quan-
tum evolutions with unsuppressed noise propagation.
The model is a variation of the standard model with
a certain additional “smoothing” in time. A formal
definition of detrimental noise based on this model is
given.

In Section 4 we discuss highly correlated noise, the
notion of noise synchronization, and the rate of highly
correlated noise. We draw a line between the types
of correlations to which the threshold theorem applies
and those to which it does not apply.

In Section 5, we propose two conjectures about
detrimental noise: the first is in terms of two-qubit
behavior, and the second is in terms of many highly
entangled qubits states. The two-qubit conjecture as-
serts informally that information leaks for two entan-
gled qubits are necessarily positively correlated. The
second conjecture asserts that the noise for a highly en-
tangled state manifests strong error synchronization.

In Section 6 we describe how our picture of deco-
herence differs from the standard one for general quan-
tum systems. In Section 7 we discuss linearity, causal-
ity, and the rate of detrimental noise. In Section 8 we
discuss some computational complexity aspects, and
in Section 9 we briefly discuss physical aspects.

2 Quantum computers, noise, fault tolerance,
and the threshold theorem

2.1 Quantum computers and noisy quan-

tum computers

We assume the standard model of quantum com-
puter based on qubits and gates with pure-state evo-
lution. The state of a quantum computer withn qubits
is a unit vector in a complex Hilbert spaceH: the2n-
dimensional tensor product of 2-dimensional complex
vector spaces for the individual qubits. The evolution
of the quantum computer is via “gates.” Each gateg

operates onk qubits, and we can assumek ≤ 2. Ev-
ery such gate represents a unitary operator on the (2k-
dimensional) tensor product of the spaces that corre-
spond to thesek qubits. At every “cycle time” a large
number of gates acting on disjoint sets of qubits oper-
ate. We will assume that measurement of qubits that
amount to a sampling of 0-1 strings according to the
distribution that these qubits represent is the final step
of the computation.

The basic locality conditions for noisy quantum
computers asserts that the way in which the state of the
computer changes between computer steps is approx-
imately statistically independent for different qubits.
We will refer to such changes as “storage errors” or
“qubit errors.” In addition, the gates that carry the
computation itself are imperfect. We can suppose that
every such gate involves a small number of qubits and
that the gate’s imperfection can take an arbitrary form,
and hence the errors (referred to as “gate errors”) cre-
ated on the few qubits involved in a gate can be sta-
tistically dependent. We will denote as “fresh errors”
the storage errors and gate errors in one computer cy-
cle. Of course, qubit errors and gate errors propagate
along the computation. The “overall error” describing
the gap between the intended state of the computer and
its noisy state takes into account also the cumulated ef-
fect of errors from earlier computer cycles.

The basic picture we have of a noisy computer is
that at any time during the computation we can ap-
proximate the state of each qubit only up to some small
error termǫ. Nevertheless, under the assumptions con-
cerning the errors mentioned above, computation is
possible. The noisy physical qubits allow the introduc-
tion of logical “protected” qubits that are essentially
noiseless.

In this paper we will consider the same model of
quantum computers with more general notions of er-
rors. We will study more general models for the fresh
errors. (We will not distinguish between the different
components of fresh errors, gate errors and storage er-
rors.) Our models require that the storage errors not be
statistically independent (on the contrary, they should
be very dependent) or that the gate errors not be re-
stricted to the qubits involved in the gates and be of
sufficiently general form.

There are several other models of quantum com-
puters that are equivalent in terms of their computa-
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tional power to the one described here. This equiva-
lence does not extend automatically to noisy versions
and exploring fault tolerance in noisy versions of these
models is an important challenge in FTQC.

2.2 The threshold theorem

We will not specify the noise at each computer cy-
cle but rather consider a large set, referred to as the
noise envelope, of quantum operations the noise can
be selected from.

LetD be the following envelope of noise operations
for the fresh errors: the envelope for storage errorsDs

will consist of quantum operations that have a tensor
product structure over the individual qubits. The enve-
lope for gate errorsDg will consist of quantum oper-
ations that have a tensor product structure over all the
gates involved in a single computer cycle (more pre-
cisely, over the Hilbert spaces representing the qubits
in the gates). For a specific gate the noise can be an
arbitrary quantum operation on the space representing
the qubits involved in the gate. (The threshold theo-
rem concerns a specific universal set of gatesG that is
different in different versions of the theorem.)

Theorem 2.1(Threshold theorem). [3, 18, 19] Con-
sider quantum circuits with a universal set of gatesG.
A noisy quantum circuit with a set of gatesG and noise
envelopesDs andDg is capable of effectively simulat-
ing an arbitrary noiseless quantum circuit, provided
that the error rate for every computer cycle is below a
certain thresholdη > 0.

The value of the threshold in original proofs of the
threshold theorem was aroundη = 10−6 and it has
since been improved by at least one order of magni-
tude. Recently, Knill [20] used error-detection codes
rather than error-correction codes and massive post-
selection for raising the value ofη (based on numeri-
cal simulations) to 3%. (It also leads to substantially
higher provable bounds [7].)

The threshold theorem relies on another important
assumption. It is allowed to add new qubits, “cold
ancillas” that are initialized to an error-free state|0〉.
Roughly speaking, they are needed to “cool” the sys-
tem. We will continue to make this assumption for our
adversarial noise models throughout the paper.

3 Modeling quantum systems with unsup-
pressed noise propagation

A main property of FTQC is that it enables us to
suppress noise propagation: the effect of the noise at a
certain computer cycle diminishes almost completely
already after a constant number of computer cycles. In
this section we would like to formally model quantum
systems for which noise propagation is not suppressed.

A way to force unsuppressed noise propagation into
the model is as follows. Start with an ideal quantum
evolutionρt : 0 ≤ t ≤ 1 and suppose thatUs,t de-
notes the unitary operator describing the transforma-
tion from times to time t, (s < t). Next consider a
noisy version whereEt is a noise operation describing
the infinitesimal noise at timet.

We will now describe a certain “smoothing” in time
of the noise. LetK be a positive continuous function
on [-1,1]. (We can assume thatK is supported in a
neighborhood of 0.) We writēK(t) =

∫ t

t−1
K(s)ds.

Replace the noiseEt at timet by

E′

t = (1)

(1/K̄(t)) ·

∫

1

0

K(t− s)Us,tEsU
−1

s,t ds.

Main Conjecture: (i) Relation (1) properly
models natural noisy quantum systems,

(ii) It will not allow quantum fault toler-
ance.1

For the rest of the paper we will restrict some-
what the class of noise operators and we will sup-
pose thatEt and henceE′

t are described by POVM-
measurements (see [24], Chapter 2).

Definition: Detrimental noise refers to
noise (described by a POVM-measurement)
that can be described by equation (1).

What could be a motivation for our main conjec-
ture? We will mention four reasons:

1For the second part of the conjecture we take noiseless clas-
sical computation for granted and continue to assume unlimited
supply of “cold ancillas.” We get both these assumptions forfree
from our conjecture on the rate of noise in Section 7.3.
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1) Regardless of the feasibility of quantum comput-
ers, unsuppressed noise propagation appears to be the
rule for open quantum systems in nature. The reason
is that we do not witness in nature quantum error cor-
rection needed to suppress noise propagation or other
mechanisms for this purpose. Relation (1) should al-
low modeling information leaks for quantum systems
in nature.

2) We expect that properties of unsuppressed noise
propagation can have various other physical causes.

3) If FTQC is not possible by whatever fundamen-
tal principle, the conclusion is that noise propagation
cannot be suppressed. If unsuppressed noise propaga-
tion is a consequence of any hypothetical fundamen-
tal principle that would cause FTQC to fail, we may
as well consider unsuppressed noise propagation to be
such a fundamental principle.

4) We expect that the main conjecture will have in-
teresting mathematical consequences leading to a co-
herent picture.

We can replace relation (1) by a discrete-time de-
scription. When we consider a quantum computer that
runsT computer cycles, we start with standard storage
noiseEt for the t-step. Then we consider instead the
noise operator

E′

t = 1/(
T

∑

s=1

K((t− s)/T ))· (2)

T
∑

s=1

K((t− s)/T )Us,tEtU
−1

s,t ,

where againUs,t is the intended unitary operation be-
tween steps and stept.

Remarks: 1. Relation (1) is offered as a mathemat-
ical device to describe the situation where noise prop-
agation is not suppressed. Relation (1) can represent
various scenarios. It may apply to noisy quantum cir-
cuits with standard noise above the threshold. It can
apply simply to standard noisy quantum circuits that
do not contain error-correction ingredients.

Relation (1) resembles somewhat the suggestion
that in the qubits/gates model, the gates are “slow”
(not instantaneous) and the noise occurs continuously
as gates are being applied. This notion appears in skep-
tical works regarding quantum computers ([6]), and is
also taken into account in various threshold theorems

[4]. (Our description, interpreted this way, amounts to
“very slow gates,” where the action of a gate spans a
constant fraction of the entire evolution. Even for such
a harsh assumption, the possibility of FTQC can be
quite delicate.)

2. In relation (1), it is not enough to assume thatK
is supported in an interval[0, t] for some positive real
t. Greg Kuperberg pointed out that in this case FTQC
is possible!

4 Correlated noise and noise synchronization

4.1 Describing error synchronization via

Pauli expansion

The concern regarding highly correlated noise has
been raised in several papers, yet there have been only
a few systematic attempts to study what kind of corre-
lated errors will cause the threshold theorem to fail.2

Error synchronization refers to a situation where,
while the expected number of qubit errors is small,
there is a substantial probability of errors affecting a
large fraction of qubits.

A simple way to describe error synchronization is
via the expansion of the quantum operationE in terms
of multi-Pauli operators. A quantum operationE can
be expressed as a linear combination

E =
∑

vwPw, (3)

wherew is a word of lengthn (i1, i2, . . . , in), and
ik ∈ {I,X, Y, Z} for every k, vw is a vector, and
Pw is the quantum operation that corresponds to the
tensor product of Pauli operators whose action on the
individual qubits is described by the multi-indexw.

The amount of error on thekth qubit is described
by

∑

{‖vw‖2

2
: ik 6= I}. For a multi-indexw define

|w| := |{k : ik 6= I}|. Let

f(s) :=
∑

{‖vw‖2

2 : |w| = s}.

We regard
∑n

s=1
f(s)s as theexpected number of

qubit errors.

2Of course, everyone has always known that the threshold the-
orem will fail for some noise models; e.g., it’s hard to protect your
quantum computer (or digital computer for that matter) froma me-
teor strike. But such models were considered as uninteresting and
unrealistic.
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Define therich error syndrometo be the probability
distribution described by assigning to the wordw the
value‖vw‖ (normalized). We will define thecoarse
error syndromeas the binary word of lengthn obtained
fromw by replacingI with ‘0’ and the other letters by
‘1’. Given a noise operationE, the distributionE of
the rich error syndrome is an important feature of the
noise. GivenE we will denote byD the probability
distribution of coarse error syndrome.f(s) is simply
the probability of a word drawn accordingD havings
‘1’s.

Suppose that the expected number of qubit errors is
αn wheren is the number of qubits.

All noise models studied in the original papers of
the threshold theorem, as well as some extensions that
allow time- and space-dependencies (e.g., [29, 7, 4]),
have the property thatf(s) decays exponentially (with
n) for s = (α + ǫ)n, whereǫ > 0 is any fixed real
number. (This is particularly simple when we consider
storage error, which is statistically independent over
different qubits.)

In contrast, we say thatE leads toerror synchro-
nizationif f(≥ s) is substantial for somes≫ αn. We
say thatE leads to avery strongerror synchroniza-
tion if f(≥ s) is substantial fors = 3/4 − δ where
δ = o(1) asn tends to infinity. By “substantial” we
mean larger than some absolute constant timesα/s,
or, in other words, the multi-Pauli terms for|I| ≥ s
contributes a constant fraction of the expected number
of qubit errors.

Remark: Error syndromes obtained by measuring
the noise in terms of the tensor product of Pauli opera-
tors is an important ingredient of several fault-tolerant
schemes. Note that our definition of the rich error syn-
drome (unlike error-syndromes used in quantum error
correction) is based on the quantum operationE rep-
resenting the noise. (Since quantum states can have
non-trivial Pauli stabilizers the rich error syndrome is
not defined uniquely just in terms of the intended and
noisy states.)

4.2 Generic noise

Proposition 4.1. Conditioning on the expected num-
ber αn of qubit errors, a random unitary operator
acting on all the qubits of the computer yields a very
strong error synchronization.

The proposition extends to the case where we allow
additional qubits representing the environment.

The proof of Proposition 4.1 is based on a standard
“concentration of measure” argument (see, e.g., [23]).
(We will give only a rough sketch.) When we con-
sider a typical expression of the form

∑

awPw where
∑

a2
w = 1 and

∑

{a2
w|w|} = an, it will have a large

support ona0 and the other coefficients will be sup-
ported onaw wherew itself is typical; i.e.,I (the error
syndrome) behaves like a random string of lengthn
with entries I,X,Y,Z. Hence|w| is around(3/4)n.

How relevant is Proposition 4.1? It is well known
that random unitary operations on the entire2n-
dimensional vector space describing the state of the
computer are not “realistic” (in other words, not “phys-
ical” or not “local”). The best formal explanation why
random unitary operators are “not physical” is actually
computational and relies on the following well-known

Proposition 4.2. For large n, it is impossible to ex-
press or even to approximate a random unitary op-
erator using a polynomial-size quantum circuit with
gates of bounded fan-in (namely, gates that operate on
a bounded number of qubits).

An interesting problem (posed in [16]) is to what
extent we can describe the basic statistical properties
of a random unitary operationU , conditioned on the
value ofa(U), as the outcome of simple polynomial-
size quantum circuits.

4.3 The boundary of the threshold theo-

rem

Recent works [29, 7, 4] show that the threshold
theorem prevails if we allow certain space- and time-
dependencies for the noise operations. We would now
like to draw a distinction between noise models that
support the threshold theorem and noise models that
do not.

For a quantum operationE describing the noise for
a quantum computer withn qubits we denote byα(E)
the expected number of qubit errors in terms of the
multi-Pauli expansion as described above.

Proposition 4.3. For the known noise models that al-
low FTQC via the threshold theorem:

1) The fresh noiseE expanded in terms of multi-
Pauli operations decays exponentially aboveα(E).
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2) The overall (cumulated) noiseE′ expanded in
terms of multi-Pauli operations decays exponentially
aboveα(E′).

There is an even simpler property of fresh and cu-
mulated noise for noise models for which the threshold
theorem holds.

Proposition 4.4. For the known noise models that al-
low FTQC via the threshold theorem:

3) The fresh noise (at every computer cycle) for al-
most every pair of qubits in the computer is almost sta-
tistically independent for the two qubits in the pair.

4) The overall noise for almost every pair of qubits
in the computer is almost statistically independent for
the two qubits in the pair.

Here when we talk about “almost every pair” we
refer to(1 − o(1))

(

n
2

)

of the pairs whenn is large.

The (rich) error syndrome will provide a simple way
to express correlation between the noise acting on two
qubits. For two qubitsi and j, denote bycorij(E)
the correlation between the events that the qubiti is
faulty and the event that the qubitj is faulty. In other
words,corij(E) is the correlation between the events
thatwi is not I, andwj is not I whenw is a word
drawn according to the distribution of error syndromes
described byE. Proposition 4.4 implies, in particu-
lar, that for models allowing the threshold theorem,
corij(E) and corij(E′) are close to 0 for most pairs
i, j of qubits. We will further discuss two-qubit be-
havior in Section 5.

Note that properties 1 and 3 refer to the noise model,
which is one of the assumptions for the threshold the-
orem, while properties 2 and 4 are consequences of
the threshold theorem and, in particular, of suppress-
ing error propagation. For the very basic noise models
where the storage errors are statistically independent
property 3 follows from the fact that the number of
pairs of interacting qubits at each computer cycle is at
most linear inn. Property 3 continues to hold for mod-
els that allow decay of correlations between qubit er-
rors that depend on the (geometric) distance between
them. Property 1 is a simple consequence of the in-
dependence (or locality) assumptions on the noise for
noise models that allow the threshold theorem.

4.4 The rate of highly correlated noise

Recall that the trace distanceD(σ, ρ) between two
density matricesρ andσ is equal to the maximum dif-
ference in the results of measuringρ andσ in the same
basis. D(σ, ρ) = 1/2‖σ − ρ‖tr. When the error is
represented by a quantum operationE the rate of error
for an individual qubit is the maximum over all possi-
ble statesρ of the qubit of the trace distance between
ρ andE(ρ).

Highly correlated errors are damaging for quantum
error correction, but a potentially even more damaging
property we face for highly correlated noise is that the
notion of “rate of noise for individual qubits” becomes
sharply different from the rate of noise as measured by
trace distance for the entire Hilbert space describing
the state of the computer.

Consider two extreme scenarios. In the first sce-
nario, for a time interval of lengtht there is a depo-
larizing storage noise that hits every qubit with prob-
ability pt. In the second scenario the noise is highly
correlated: all qubits are hit with probabilitypt and
with probability(1− pt) nothing happens. In terms of
the expected number of qubit errors both these noises
represent the same rate. The probability of every qubit
being corrupted at a time interval of lengtht is pt.
However, in terms of trace distance (and here we must
assume thatt is very small), the rate of the correlated
noise isn−1 times that of the uncorrelated noise. What
should be the correct assumption for the rate of noise
when we move away from the statistical independence
assumption? If noise propagation is the “role model”
then measuring the noise in terms of trace distance for
the entire Hilbert space appears to be correct.

5 Detrimental noise from two qubits to many

5.1 Two conjectures

In this subsection we present qualitative statements
of two conjectures concerning decoherence for quan-
tum computers which, if (or when) true, are damaging
to quantum error correction and fault tolerance.

The first conjecture concerns entangled pairs of
qubits.

Conjecture A: A noisy quantum computer

6



is subject to error with the property that in-
formation leaks for two substantially entan-
gled qubits have a substantial positive corre-
lation.

We emphasize that Conjecture A refers to part of
the overall error affecting a noisy quantum computer.
Other forms of errors and, in particular, errors consis-
tent with current noise models may also be present.

Recall that error synchronization refers to a situa-
tion where, although the error rate is small, there is
nevertheless a substantial probability that errors will
affect a large fraction of qubits.

Conjecture B: In any noisy quantum com-
puter in a highly entangled state there will
be a strong effect of error synchronization.

We should informally explain already at this point
why these conjectures, if true, are damaging. We start
with Conjecture B. The states of quantum computers
that apply error-correcting codes needed for FTQC are
highly entangled (by any formal definition of “high
entanglement”). Conjecture B will imply that at ev-
ery computer cycle there will be a small but substan-
tial probability that the number of faulty qubits will be
much larger than the threshold.3 This is in contrast to
standard assumptions that the probability of the num-
ber of faulty qubits being much larger than the thresh-
old decreases exponentially with the number of qubits.
Having a small but substantial probability of a large
number of qubits being faulty is enough to cause the
quantum error-correction codes to fail.

Why is conjecture A damaging? Here the situation
is trickier since without some additional assumptions
conjecture A is not relevant to the highly entangles
states used for FTQC. For such states, pairs of qubits
are not entangled.

Let us make the additional assumption that individ-
ual qubits can be measured without inducing errors on
other qubits. This is a standard assumption regard-
ing noisy quantum computers.4 When we start from

3Here we continue to assume that the probability of a qubit
being faulty is small for every computer cycle.

4It should be emphasized that the assumption that we canal-
waysmeasure a qubit without inducing errors on others, goes con-
trary to the picture of noisy quantum computers we try to draw.
We use it to examine stronger forms of the notion of entanglement
that are relevant.

highly entangled states needed for FTQC and measure
(and look at the results for) all but two qubits, we will
reach pairs of qubits (whose intended state is pure)
with almost statistically independent noise, in contrast
to Conjecture A. Under this assumption it is also pos-
sible to deduce Conjecture B from Conjecture A.

5.2 Mathematical formulation of Conjec-

ture A

In this subsection we will describe a mathematical
formulation of Conjecture A.

The first step in this formal definition is to re-
strict our attention to noise described by POVM-
measurements. This is a large class of quantum oper-
ations describing information leaks from the quantum
computer to the environment.

Our setting is as follows. Letρ be the intended
(“ideal”) state of the computer and consider two qubits
a andb. Consider a POVM-measurementE represent-
ing the noise. We describe correlation between the
qubit errors via the expansion in tensor products of
Pauli operators, or, in other words, via the error syn-
drome.

Associated toE (see Section 4.1) is a distribution
E(E) of error syndromes, i.e., words of lengthn in the
alphabet{I,X, Y, Z}. A coarser distributionD(E) of
binary strings of lengthn is obtained by replacing the
letterI with ‘0’ and all other letters by ‘1’.

As a measure of correlationcori,j(E) between in-
formation leaks for theith andjth qubit we will sim-
ply take the correlation between the eventsxi = 1 and
xj = 1 according toD(E).

We also defineri(E) as the probability thatxi = 1
according to the distributionD.

We now discuss how to measure entanglement.
Suppose thatρ is the intended state of the computer.
For a setZ of qubits and a stateρ we denote byρ|Z
the density matrix obtained after tracing out the qubits
not inZ. If Z contains only theith qubit, we writeρi

instead ofρ|Z .
As a measure of entanglement we simply take the

trace distance between the state induced on the two
qubits and a separable state. Formally, letSEP (i, j)
denote the set of mixed separable states onZ = {i} ∪
{j}, namely, states that are mixtures of tensor prod-
uct pure statesτ = τi ⊗ τj . DefineEnt(ρ : i, j) =
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max{‖ρi,j − ψ‖ : ψ ∈ SEP (i, j)}.
Here is the statement of Conjecture A for two

qubits:

Conjecture A: (mathematical formulation)

For every two qubits

cori,j(E) ≥ (4)

≥ K(ri(E), rj(E)) ·Ent(ρ : i, j).

Here, K(x, y) is a function ofx and y so that
K(x, y)/min(x, y)2 ≫ 1 when x and y are posi-
tive and small. (Note that Conjecture A) does not
claim anything when the two qubits are noiseless.) If
ri(E) = rj(E) = α for a small real numberα, then
the conjecture asserts thatcori,j(E) ≫ α2, and, as
we will see later, this is what is needed to derive error
synchronization.

Remark: We mainly use Conjecture A for the case
where the two qubits are in joint pure state. In this case
we can simply take the entropy of one of the qubits as
the measure of entanglement.

5.3 Emergent entanglement and Conjec-

ture B

We now describe Conjecture B formally and pro-
pose a strong form of Conjecture A for two qubits
based on a notion of “emergent entanglement.”

Definition: The emergent entanglementof two
qubits is the maximum over allseparablemeasure-
ments of the remaining qubits of the expected amount
of entanglement between the two qubits when we look
at the outcome of the measurements.

Define ahighly entangled stateas a state where
the expected emergent entanglement among pairs of
qubits is large. This is the case for states used in quan-
tum error correction. A strong form of Conjecture A
is obtained if we take emergent entanglement as the
measure of entanglement.

Theorem 5.1. For noisy quantum computers Conjec-
ture A implies conjecture B in the following two cases:

(1) When we add the assumptions that qubits can be
measured without introducing noise on other qubits.

(2) When we formulate Conjecture A for “emergent
entanglement”.

The proof is based on applying Proposition 5.1 be-
low to the coarse error-syndrome.

Proposition 5.1. Let η < 1/20 ands > 4η. Suppose
thatD is a distribution of 0-1 strings of lengthn such
thatpi(D) ≥ η andcorij(D) ≥ s. Then

Prob(
n

∑

i=1

xi > sn/2) > sη/4. (5)

The proof of this proposition is described in [14].

5.4 Mathematical challenges and censor-

ship

The main mathematical challenge is to show that
Conjectures A and B are satisfied when we force un-
suppressed noise propagation.

Main mathematical conjecture: The asser-
tion of Conjectures A and B are satisfied for
noisy quantum computers where the noise is
described by equation (1).

It will be interesting to check whether the assertion
of Conjectures A and B holds for noisy adiabatic com-
puters [11].

Several extensions of Conjecture A to pairs of qu-
dits (rather than qubits), and to a larger number of
qubits are proposed in [15, 14, 13]. Several alternative
approaches for how to define “highly entangled states”
for Conjecture B are also considered.

We can expect that detrimental noise will lead to
“very highly entangled states” being completely infea-
sible for noisy quantum computers. Limitations on
feasible states of a quantum computer are referred to
as “censorship.” Computational complexity poses se-
vere restrictions on the feasible states of (noiseless)
quantum computers. For example, as we already men-
tioned, a state that is approximately the outcome of a
random unitary operator on the entire2n-dimensional
Hilbert space is computationally out of reach when the
number of qubits is large. We expect that detrimen-
tal noise will lead to further (statistical) restrictions on
feasible states for noisy quantum computers and it will
be interesting to study what can be the nature of such
statistical censorship.5 Some proposals in this direc-
tion are suggested in [13].

5One interesting potential aspect of statistical censorship (fol-
lowing suggestions by Ronnie Kosloff) is that there are mixed
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6 Detrimental noise for general quantum sys-
tems

Consider the very simple example of a quantum
computer where, when the quantum memory is in a
stateρ andρ = Uρ0, the noiseE will be UE0U

−1.
Here,ρ0 is the initial state of the computer andU is
the unitary intended evolution leading toρ. When we
try to describe the relation between the state of the
computer and the noise, this example describes, for
every stateρ, an envelope of noiseDρ = {UE0U

−1 :
Uρ0 = ρ}. This is a huge class of quantum operations
most of which are irrelevant (being computationally
infeasible.) An important property of this noise is:

DUρ = UDρU
−1. (6)

Relation (6) amounts to saying that there is a com-
ponent of quantum noise that is invariant under unitary
operations and thus does not depend on the device that
carries these operations. Note that relation (6) applies
to the envelope of noise operations as a set (and not to
individual quantum operations in the noise envelope).

As before, we restrict our attention to noise de-
scribed by POVM-measurements. We can now ask:
what are the laws of decoherence for general noisy
quantum systems that follow the properties of (un-
suppressed) noise propagation?

As with the case of standard models of noise, we
would like to describe an envelope of noise, i.e., a large
set of quantum operations, so that when we model
noisy quantum operations or more general processes
the incremental (or infinitesimal) noise should be taken
from this envelope. Conjectures A and B propose
some systematic connection between the noise and the
state. However, in these conjectures both the assump-
tion in terms of entanglement and the conclusion in
terms of correlation rely on the tensor product struc-
ture ofH.

Here is a proposal on how to formalize this connec-
tion for general systems:

Definition: A D-noise of a quantum sys-
tem at a stateρ is a quantum operationE
that commutes with some non-identity uni-
tary quantum operation that stabilizesρ.

states that cannot be “cooled.” Such a property is not expected
for computationally based censorship.

This definition describes a (huge) classDρ of
quantum operations that respect the relationDUρ =
UDρU

−1.

Conjecture D:

D-noise cannot be avoided in a noisy quan-
tum process described by relation (1).

On its own our suggested definition of D-noise is
extremely inclusive, and so is any (nonempty) enve-
lope of noise operations that satisfies relation (6). For
example, a D-noise on a state of the formρ⊗ ρ can be
standard even ifρ is highly entangled. However, there
are two additional conditions we have to keep in mind:

1. The hypothesis that the overall noise contains a
large D-component applies to every subsystem
of our original system. (An appropriate “hered-
itary” version of Conjecture D may suffice to im-
ply Conjectures A and B for noisy quantum com-
puters. This has yet to be explored.)

2. The operation describing the noise should be “lo-
cal”; namely, it should be computationally fea-
sible in terms of local operations describing the
system.

Remark: There are three related contexts for which
the discussion of decoherence for quantum systems
applies. The first and the closest to the discussion re-
garding quantum computers is when we regard the gap
between an intended controlled evolution and the pro-
cess actually carried out. A second context is the study
of information leaks from the system to its environ-
ment. Finally, a third context is the study of errors in
any descriptionof the evolution of a noisy quantum
system.

7 Linearity, causality, and rate

7.1 Linearity

Our conjectures for noisy quantum computers and
for noisy quantum systems amount to a nonlinear re-
lation between the noise envelope and the state of the
computer. Such nonlinear relations do not violate lin-
earity of quantum mechanics. For example, if we con-
sider the noise in our main relation (1) as a function of
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the entire evolution, then it is completely linear. Non-
linearity is caused by ignoring the entire evolution and
considering the relation between the noise and the state
for all possible evolutions leading to this state.

7.2 Causality

Consider an intended pure-state evolutionρt, 0 ≤
t ≤ 1 of a quantum computer, and a noisy realization
σt, 0 ≤ t ≤ 1. Assuming thatσt is close6 to ρt for the
entiretime interval may create a systematic relation of
the infinitesimal noise at an intermediate timet on the
entire intended evolutionρt.7

It is a consequenceof FTQC that the dependence
of the errors on past evolution and on future intended
evolution becomes negligible.

7.3 The rate of noise for noisy quantum

evolutions

We can exhibit extremely stable entangled quantum
states, and yet we believe that quantum systems are in-
herently noisy. We can also have isolated qubits that
do not interact at all that are subject to uncorrelated
noise, and yet we propose in this paper that for the ap-
propriate model of noisy quantum computers the noise
should be highly correlated. The noise (its rate and its
form) depends on the fact that we need to manipulate
the qubits, but what is the formal description of such a
dependence?

When we model the fresh (or infinitesimal) noise
for the evolution of a noisy quantum computer or even
a general noisy system, what should be a lower bound
on the rate of noise? This is an interesting issue even
when it comes to a single noisy qubit.

Recall that the usual assumption regarding the rate
of noise is that for every qubit the probability of it be-
ing faulty is a small constant for every computer cycle.
We propose the following refinement of this assump-
tion.

Conjecture E: A noisy quantum computer
is subject to (detrimental) noise with the fol-
lowing property: the rate of noise at timet

6In some sense, e.g., in terms of the expected number of qubit
errors.

7This is easier to understand if the success ofσt in approxi-
matingρt is achieved via post-selection.

(in terms of trace distance) is bounded from
below by a measure of noncommutativity
between the operators describing the evolu-
tion prior to timet and those describing it
after timet.

The lower bound according to Conjecture E for the
rate of noise when the process starts or ends is zero.
The rate of noise can also vanish for classical systems
where all the operations commute. (Conjecture E also
gives cold ancillas qubits for free.) Conjecture E can
be regarded as a proposed refinement on the assump-
tions regarding the rate of noise even for a single qubit.

8 Computational complexity

The problem of describing complexity classes of
quantum computers subject to various models of noise
was proposed by Peter Shor in the nineties. (Although
we naturally expect computational power between
BQP and BPP it is possible, in principle, that certain
noise models will allow efficient algorithms even for
problems not in BQP.) Scott Aaronson [1] asked for
the computational complexity consequences of various
hypothetical restrictions on feasible (physical) states
for quantum computers. In particular, he posed the in-
teresting “Sure/Shor challenge”: to describe such re-
strictions that do not allow for polynomial-time factor-
ing of integers and at the same time do not violate what
can already be demonstrated empirically.

The threshold theorem and some of its recent ver-
sions give a fairly good description of the board mod-
els of noise that allow universal quantum computing
when the noise rate is sufficiently small. There are sev-
eral results ([5, 26, 17]) showing that for the standard
noise models when the computation is reversible or
when the noise rate is high, the computational power
reduces to BPP (for some results) orBPPBQNC (the
power of classical computers together with log-depth
quantum circuits).

How bad can the effect of correlated errors be? I
tend to think that for an arbitrary form of noise, if the
expected number of qubit errors in a computer cycle is
sufficiently small then problems inBPPBQNC and,
in particular, polynomial-time factoring can prevail.8

8Cleve and Watrous [10] gave a polynomial algorithm for fac-
toring that requires, beyond classical computation, only log-depth
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A rough argument in this direction would go as fol-
lows. First replace a given log-depth circuit by a larger
one capable of correcting standard errors; then run the
computation a polynomial or quasi-polynomial (de-
pending on the precise overhead in the fault-tolerant
circuit) number of times to account for highly synchro-
nized errors.

On the other hand, it may be possible (but not easy)
to prove that highly correlated errors of the kind un-
der consideration do not allow fault tolerance based
on quantum error correction, and perhaps also that
they suffice to reduce the computational power to
BPPBQNC .

The most interesting direction, in my opinion,
would be to show that with the full power of detri-
mental errors, e.g., as defined in equation (1), includ-
ing the conjectured effect on the expected number of
qubit errors in one computer cycle (Sections 4.4,7.3),
the computational power of noisy quantum computers
reduces to BPP.

9 Physics

A criticism expressed by several readers of an early
version of this paper is that no attempt is made to moti-
vate the conjectures from a physical point of view and
that the suggestions seem “unphysical.” What can jus-
tify the assumption that a given error lasts for a con-
stant fraction of the entire length of the process? If
a noisy quantum computer at a highly entangled state
has correlated noise between faraway qubits as we sug-
gest, wouldn’t it allow signaling faster than the speed
of light?

It is important and may be fruitful, in our opinion,
to examine various models of noise while putting the
physics aside. Nevertheless, we will briefly discuss
some physical aspects.

Let us go back to the example of simulating bosonic
states with a noisy quantum computer. When errors
accumulate I expect that a large (even dominant) part
of the noise will not consist of local noise based on the
computational bases but rather it will be a mix of the
intended bosonic state with other unintended bosonic
states.

We do not yet have quantum computers that simu-
late bosonic states but we do have several natural and

quantum computation.

experimental processes that come close to this descrip-
tion, like phonons, which can be regarded as a bosonic
state (on a macroscopic scale) “simulated” on micro-
scopic “qudits”. (There are several other examples as
well.) These examples can serve as a good place to
examine noise.

Another place to examine some suggestions of this
paper is current implementations of ion-trap comput-
ers. In these implementations we need to move qubits
together in order to gate them, and this suggests that,
in each computer cycle, errors will be correlated forall
pairs of qubits. At present, the rate of noise is still the
major concern of experimentalists, but it is not clear
how a large pairwise correlation between all pairs of
qubits can be avoided in current architecture. Specific
alternative suggestions (based on teleportation) of per-
forming gates for ion-trap computers without moving
the qubits may not solve this problem since we cannot
assume for these suggested implementations that mea-
suring qubits will not induce noise on other qubits.

If our suggested properties of noise for some (hypo-
thetical) quantum computer architecture at some quan-
tum stateρ allow instantaneous signaling, then the pro-
posed conclusion is that this quantum computer ar-
chitecture simply does not accommodate the quantum
stateρ.

Finally, another comment was that FTQC via topo-
logical quantum computing does not rely on the
threshold theorem and Conjectures A and B are not
relevant for this model. However, the underlying
mathematics behind the threshold theorem and behind
FTQC via topological quantum computers is quite
similar. The extreme stability to noise expected for
non-Abelian anyons (and Abelian anyons) relies on
similar assumptions to those enabling quantum error
correction. When we create Abelian anyons in the lab-
oratory, or try to create non-Abelian anyons, there is no
reason to believe that the process for creating them will
involve suppression of propagated noise and therefore,
just as when we simulate fermions or bosons, we ex-
pect a mixture of the intended state with other states
of the same type. When noise accumulates there is no
reason to expect the strong stability of certain anyons
that is predicted by current models.

11



References

[1] S. Aaronson, Multilinear formulas and skepti-
cism of quantum computing,Proceedings of the
36th Annual ACM Symposium on Theory of Com-
puting, ACM, New York, 2004, pp. 118–127,
quant-ph/0311039.

[2] D. Aharonov and M. Ben-Or, Polynomial sim-
ulations of decohered quantum computers,37th
Annual Symposium on Foundations of Computer
Science, IEEE Comput. Soc. Press, Los Alami-
tos, CA, 1996, pp. 46–55.

[3] D. Aharonov and M. Ben-Or, Fault-tolerant
quantum computation with constant error, STOC
’97, ACM, New York, 1999, pp. 176–188.

[4] D. Aharonov, A. Kitaev, and J. Preskill, Fault-
tolerant quantum computation with long-range
correlated noise,Phys. Rev. Lett.96 (2006),
050504, quant-ph/0510231.

[5] D. Aharonov, M. Ben-Or, R. Impagliazzo, and N.
Nisan, Limitations of noisy reversible computa-
tion, 1996, quant-ph/9611028.

[6] R. Alicki, D.A. Lidar, and P. Zanardi, Are the
assumptions of fault-tolerant quantum error cor-
rection internally consistent?,Phys. Rev. A73
(2006), 052311, quant-ph/0506201.

[7] P. Aliferis, D. Gottesman, and J. Preskill,
Quantum accuracy threshold for concatenated
distance-3 codes,Quant. Inf. Comput.6 (2006),
97–165, quant-ph/0504218.

[8] E. Bernstein and U. Vazirani, Quantum complex-
ity theory,Siam J. Comp.26 (1997), 1411-1473.
(Earlier version,STOC, 1993.)

[9] H. Buhrman, R. Cleve, N. Linden, M. Laut-
ent, A. Schrijver, and F. Unger, New limits on
fault-tolerant quantum computation,47th Annual
IEEE Symposium on Foundations of Computer
Science (FOCS), 2006, pp. 411–419, quant-
ph/0604141.

[10] R. Cleve and J. Watrous, Fast parallel circuits
for the quantum Fourier transform,Proceedings

of the 41st Annual Symposium on Foundations
of Computer Science, 2000, pp. 526–536, quant-
ph/0006004.

[11] A. M. Childs, E. Farhi, and J. Preskill, Robust-
ness of adiabatic quantum computation,Phys.
Rev A65 (2002), 012322, quant-ph/0108048.

[12] D. Deutsch, Quantum theory, the Church-Turing
principle and the universal quantum computer,
Proc. Roy. Soc. Lond. A400 (1985), 96–117.

[13] G. Kalai, Quantum computers: noise prop-
agation and adversarial noise models, 2009,
arXiv:0904.3265.

[14] G. Kalai, Detrimental decoherence, 2008, quant-
ph/08062443.

[15] G. Kalai, How quantum computers can fail,
2006, quant-ph/0607021.

[16] G. Kalai, Thoughts on noise and quantum com-
puting, 2005, quant-ph/0508095.

[17] J. Kempe, O. Regev, F. Unger, and R. de
Wolf, Upper bounds on the noise threshold
for fault-tolerant quantum computing, quant-ph
0802.1462.

[18] A. Y. Kitaev, Quantum error correction with im-
perfect gates, inQuantum Communication, Com-
puting, and Measurement (Proc. 3rd Int. Conf.
of Quantum Communication and Measurement),
Plenum Press, New York, 1997, pp. 181–188.

[19] E. Knill, R. Laflamme, and W. H. Zurek, Re-
silient quantum computation: error models and
thresholds, Proc. Royal Soc. London A454
(1998), 365–384, quant-ph/9702058.

[20] E. Knill, Quantum computing with very noisy
devices, Nature 434 (2005), 39-44, quant-
ph/0410199.

[21] R. Landauer, Is quantum mechanics useful?,Phi-
los. Trans. Roy. Soc. London Ser. A353 (1995),
367–376.

[22] R. Landauer, The physical nature of information,
Phys. Lett. A217 (1996), 188–193.

12



[23] M. Ledoux, The Concentration of Measure
Phenomenon,American Mathematical Society,
Providence, RI, 2001.

[24] M. A. Nielsen and I. L. Chuang,Quantum Com-
putation and Quantum Information, Cambridge
University Press, Cambridge, 2000.

[25] J. Preskill, Quantum computing: pro and con,
Proc. Roy. Soc. Lond. A454 (1998), 469-486,
quant-ph/9705032.

[26] A. Razborov, An upper bound on the threshold
quantum decoherence rate,Quantum Informa-
tion and Computation4 (2004), 222-228, quant-
ph/0310136.

[27] P. W. Shor, Polynomial-time algorithms for
prime factorization and discrete logarithms on a
quantum computer,SIAM Rev.41 (1999), 303-
332. (Earlier version,Proceedings of the 35th
Annual Symposium on Foundations of Computer
Science, 1994.)

[28] P. Shor, Fault-tolerant quantum computation,An-
nual Symposium on Foundations of Computer
Science,1996.

[29] B. B. Terhal and G. Burkard, Fault-tolerant quan-
tum computation for local non-Markovian noise,
Phys. Rev. A71 (2005), 012336.

[30] W. G. Unruh, Maintaining coherence in quantum
computers,Phys. Rev. A51 (1995), 992–997.

13


