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Abstract

The vertices of the odd-distance graph are the points of the plane
R?. Two points are connected by an edge if their Euclidean distance
is an odd integer. We prove that the chromatic number of this graph
is at least five. We also prove that the odd-distance graph in R? is not
countably choosable.

1 Introduction

In 1950 Edward Nelson, a student at the University of Chicago, formulated
the alternative four-color problem: What is the minimum number of colors
for coloring the points of the plane so that points at unit distance apart
receive distinct colors. Nelson himself showed that at least four colors are
needed. Soon after learning about the problem from Ed Nelson, John Isbell
proved that the plane can be colored by seven colors. Fifty seven years
later, and numerous efforts by many researchers, these are still the best
known bounds. Some authors call it a disappointment or a disaster while
others call it frustrating. We would like to call it a a great opportunity
as evidenced by its high popularity and interesting history. After all, at
least five mathematicians were credited as the creators of the unit-distance
problem. Without a doubt, its popularity can be traced to its simplicity,
its elusive solution and to Paul Erdés who repeatedly publicized it in his
presentations and papers. It has produced many variations, numerous
papers, dissertations and occasional headaches, but no improvements on
the original bounds. Its interesting history was traced by A. Soifer [9]. A
nice account of the problem and its derivatives can be found in the book
Research Problems in Discrete Geometry [2].

In this paper we present yet another variation of the unit-distance graph: the
odd-distance graph. It is a simple, natural generalization of the unit-distance
graph. We wish to color the points of the plane so that points at odd
distance apart receive distinct colors. Since four points in the plane cannot
have pairwise odd integral distances, this graph does not contain K, as a
subgraph [5], [8]. It is thus natural to ask whether the plane can be colored
by a finite number of colors such that points at odd integral distance receive
distinct colors. In 1994 M. Rosenfeld asked Paul Erdos this question at



the 25 Southeastern International Conference on Combinatorics, Graph
Theory and Computing Florida Atlantic University, Boca Raton, Florida.
Erdés [4] presented this problem in his talk. Uncharacteristically, the
proceedings did not include his review. The first time this question appeared
in print was in 1996 [8] where it was called the Ruby - Rose problem. Erdds
also asked to determine the maximum number of odd distances among n
points in R2. It is curious to note that an identical question for the unit
distance was investigated by Erdds in 1946 [3] but not in the context of
graphs (in this context there is some justification to attribute the unit
distance problem also to P. Erdds). Since the odd distance graph spanned
by n points does not contain a K, as a subgraph, this number is bounded
by Turan’s function ¢(n), the maximum number of edges in a graph of order
n and no K,. L. Piepmeyer [7] showed that Turdn’s extremal graph, the
complete tri-partite graph Ky, mm can be embedded in the plane (actually
on a circle) such that two vertices connected by an edge will be at odd
distance apart. Note that this is a faithful embedding as no other vertices
are at odd distance apart. As an aside, answering a question of Erdos,
Maera, Ota and Tokushige [6] proved that every finite graph admits a
faithful representation in R? such that two vertices connected by an edge
will be at an integral distance apart.

It is interesting to compare the odd-distance graph and the unit-distance
graph. Clearly, the unit-distance graph is a subgraph of the odd-distance
graph. Its diameter is 2, while the diameter of the unit distance graph is not
bounded, any two vertices have countably many common neighbors while in
the unit distance graph any two points have at most two common neighbors.
As a result of these differences, some problems that are easy for one graph
are difficult for the other and vice versa. For instance, the lower bound
and upper bound for the chromatic number of the unit-distance graph are
relatively easy to obtain, while the same bounds for the odd-distance graph
are more difficult. Actually it is not known whether the upper bound is
finite. Since any two distinct circles have at most two points in common, it
is easy to find many graphs which are not subgraphs of the unit-distance
graph. For instance, K3 is such a graph. On the other hand, the only
forbidden subgraph of the odd-distance graph known to us is K,. Finding
the maximum number of edges among all subgraphs of order n is unknown
for the unit-distance graph, but follows a very predictive upper bound for



the odd-distance graph as proved in [7].

In this note we prove that the chromatic number of the odd-distance graph
is at least five. We could not find a finite upper bound other than the trivial
bound Xy. We suspect that this graph cannot be colored by a finite number
of colors.

In the next section we use the triangular lattice to construct a graph of order
21 with chromatic number five which, is a sub-graph of the odd-distance
graph. We also show that the odd-distance graph is countably colorable, the
rational odd-distance graph is 2-colorable and prove that the odd-distance
R3 is not Ng-choosable.

Let D be a set of numbers. We shall denote by GP(R?) the graph whose
vertices are the points of the Euclidean space R¢ and edges between points
whose distance € D. Its chromatic number will be denoted by x”(R¢)

2 The Odd-Distance Graph

2.1 Triangular grid

Let T be the triangular grid in the plane with edges of unit length. Aside from
points at odd integral distance along the grid lines, there are other points
on the grid at odd distance. In particular, consider the points B and D in
Figure 1. The triangle ABCD has sides 3 & 5 along the grid, ZBC'D = 120°.
Hence d(B,D)? = d(B,C)? + d(C,D)? — 2 x d(b,c) x d(c,d) cos(120°) =
52+32+3x5=49or d(B,D) =T.

Lemma 1. Let f be a proper 4-coloring of T. For any two points X and Y
at distance 8, we have f(X) = f(Y).

Proof. Let A and B be two points at distance 8 such that f(A) # f(B), say
f(A) = ¢y and f(B) = co. Then, since d(A,C) = 3 and d(C, B) = 5, C must
have a different color than ¢; and ¢y, say c3. Since d(A, D) = d(C, D) = 3,
and d(B,D) =17, f(D) = ¢4. Similarly, it follows that f(E) = ¢3, f(F) = ¢,
f(G) = ¢3 and f(H) = c4. Since each of I, Iy, I5 is at distance 3 from one
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Figure 1: The triengular grid

point colored c¢3 and one colored ¢4, we have f(I1), f(I5), f(I3) € {c1,c2}.
This is a contradiction since they are vertices of a triangle with side 1. [

Corollary 1. x%4(R?) > 5.

Proof. Take 2 copies of the triangle in Figure 1. Rotate the second copy
around the point A so that the image of B in the second copy will be at
distance 1 from B. By Lemma 1 this configuration is not 4-colorable. O

The graph thus obtained has 21 vertices and only four odd distances: D =
{1,3,5,7}. Clearly, the plane can be colored in a finite number of colors so
that two points with distance € D have distinct colors. We did not try to
find an upper bound for the chromatic number x”(R?).

The following theorem shows that the triangular grid by itself can be colored
by 4 colors.

Theorem 1. Let T = {(n+ 2, 2/3) : n,m € Z}. Then x°*(T) = 4.

27 2

Proof. 1t is easy to show that x9%(T) > 3.



The coloring function f is defined as follows:

if n and m are both even,
if n is odd and m is even,
if n is even and m is odd,
if n and m are both odd.

f(n~|—@,m\/?_>> =

=W N =

Note that all the color classes of this coloring are translations of the color
class of the color 1.

Let (m + 5, B 3) and (n2 + 52,5 3) be two points colored with the

color 1. Then

2
|01+ e, 2 vB) — (ny + 2, 22 V5|
(g + mizma) 4 (mizma 3y

= (ng —n2)? + (N1 — n2)(My — Mmy) + (My — my)?

which is an even integer. Hence, f is a proper 4-coloring of 7.
Therefore, x%4(T) = 4. O

2.2 The chromatic number of G%%(Q?)

We begin with two simple observations:
1. Let z,y,2 € Z be a Pythagorean triple, i.e. 22 + y? = 22. Then the
following statements are both true.

1. If 2 =0 (mod 2) then z =y = 0 (mod 2).

2. If z =1 (mod 2) then one of z and y is even and the other is odd.

2. Let z,y,2z € Z be a Pythagorean triple. Then if 2% divides z then 2*
divides both z and y.

Lemma 2. Let X = (z,y) = (2*m,2'n) and U = (u,v) = (2Pr, 29s) for some
k,l,p,q,m,n,r, s € L, where m,n,r,s are all odd. Then if d(X,U) is an odd
integer then x —u and y — v are both integers with different parity modulo 2.



Proof. Assume d(X,U) = o for some odd integer o. It is enough to show
that © — u € Z, since then y — v € Z and the rest of the theorem follow by
Theorem ?77.

(z,y) = (u,0)|]” = (2"m — 2°r)? + (2'n — 2%5)* = o? (1)
Case 1.1. Assume k,p > 0 (similarly for [, ¢ > 0). Then

r —u = 2*m — 2Pr is an integer.

Case 1.2. Assume p < 0 < k (similarly for ¢ < 0 <[). Then
(28 Pm — )2 + (21Pn — 207P5)? = (27P0)>.

Since both 2P0 and 2¥Pm — r are integers, 2! "Pn — 297 Ps is also an integer.
Therefore by Corollary ??, 277 divides 2 Pm —r. But since k —p > —p, 2P
divides 2¥Pm. Hence 277 divides r. But this is impossible since r is odd.

Case 1.3. Assume p< k< 0Oand ¢g<I1<0. Let a=—k, b= —p, c=—I
and d = —¢. Then 0 < a <band 0 < ¢ < d and (1) becomes

m  r\?2 noos\?2_
SE‘?)*(i‘ﬁﬂ =0

Assume without loss of generality that b > d. Then
(2" *m —r)>+ (2" “n — 2{’7“7’3)2 = (2%0)2.

Since all the terms in the above equality are integers and 2°|(2%0), by Corol-
lary 72, 2°| (2°"%m —r). But since m and r are both odd, this is possible
only if b = a, and in this case 2°|m — r. i.e.

m-—r _m r

B o p L

r—u=

O

Theorem 2. Let H be the induced subgraph of GP%(R?) on Q x Q. Then
H is a bipartite graph, i.e. H does not contain an odd cycle.

Proof. Assume by contradiction that it contains an odd cycle, say (z1,v1),

ok

im; lim:
(2,92), *+* , (T2t41, Y2r41) for some ¢ € N. Then z; = 2% and y; = £ for

some k;, l;,n;,p; € Zfor 1 <1 <2t+1 and m € Z and n;,p; and m are

7



odd. Then (2%ny,2p;), (2F2ny,2%2py), -+, (2K2+1 g g, 22041 pyy 1) s also
an odd cycle. Then by Lemma 2, (2¥in; — 2ki+in,, ), (24p; — 2li+1py,) € Z
and they have different parity for all 1 < ¢ < 2¢ 4+ 1 where indices are
calculated mod (2¢ + 1). Then

2%+ 1
Z (Qkini - 2ki+1ni+1) + (2lipi - 2li+1pi+1) = 0.

i=1

But this is a contradiction since in the left hand side all the summands are
odd and there are 2¢ + 1 of them.

Therefore, H is a bipartite graph. O

Remark

It is easy to see that the odd-distance graph is R, colorable. Just use any
tiling of the plane by countably many tiles of diameter < 1 (such as the
traingular lattice with side < 1) or squares of side %

3 Choosability

A graph G is k -choosable if for every assignment of an arbitrary set of
colors of cardinality  to each vertex of GG it is possible to properly color each
vertex of G with a color from its assigned set. Since the unit-distance graph
has finite regular subgraphs of arbitrarily large degree, it follows from N.
Alon’s Theorem [1] that the unit-distance graph and hence the odd-distance
graph are not finitely choosable. We believe that the odd-distance graph is
Ry choosable but we can prove that the odd-distance R® is not.

Consider the set of points
A={(z,9,0): 2* +y* = 1}
and
B ={B, =(0,0,y/4n? + 4n) : n € N}.
Note that for any u € A and any B,, d(u, B,) = 2n + 1, an odd integer.

Since |A| = N, there is a one to one correspondence 1, between A and the set
of all infinite subsets of N. Now for each n € N, let 7(B,) = {n,n+ 1,n +
2,...}. Let f be an Rg-coloring of G. It follows from the definition of 7 that

8
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Figure 2: List coloring of R?

f(B) is infinite so that there are points u € A such that ¢(u) C f(B). But
since the distance from v to any point in B is an odd integer, f (u) an not
be in f(B). This gives the desired contradiction. Therefore, x;(G) =
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