
First Passage Perolation HasSublinear Distane VarianeItai Benjamini Gil Kalai Oded ShrammMarh 20, 2002AbstratLet 0 < a < b <1, and for eah edge e of Zd let !e = a or !e = b,eah with probability 1=2, independently. This indues a randommetri dist! on the verties of Zd, alled �rst passage perolation. Weprove that for d > 1 the distane dist!(0; v) from the origin to a vertexv, jvj > 2, has variane bounded by C jvj= log jvj, where C = C(a; b; d)is a onstant whih may only depend on a, b and d. Some relatedvariants are also disussed.1 IntrodutionConsider the following model of �rst passage perolation. Fix some d =2; 3; : : : , and let E = E(Zd) denote the set of edges in Zd. Also �x numbers0 < a < b < 1. Let 
 := fa; bgE arry the produt measure, whereP[!e = a ℄ = P[!e = b ℄ = 1=2 for eah e 2 E. Given ! = (!e : e 2 E) 2 
and verties v; u 2 Zd, let dist!(v; u) denote the least distane from v to uin the metri indued by !; that is, the in�mum of Pe2� !e, where � rangesover all �nite paths in Zd from u to v. Let jvj := kvk1 for verties v 2 Zd.Theorem 1. There is a onstant C = C(d; a; b) suh that for every v 2 Zd,jvj � 2, var�dist!(0; v)� � C jvjlog jvj :
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In [14℄ Kesten used martingale inequalities to prove var�dist!(0; v)� �C jvj and proved some tail estimates. Talagrand [18℄ used his \onvexi�ed"disrete isoperimetri inequality to prove that for all t > 0,Ph jdist!(0; v)�M j � tpjvj i � C exp(�t2=C) ; (1)where M is the median value of dist!(0; v). (Both Kesten's and Talagrand'sresults apply to more general distributions of the edge lengths !e.) \Noviereaders might expet to hear next of a entral limit theorem being proved,"writes Durrett [8℄, desribing Kesten's results, \however physiists tell us. . . that in two dimensions the standard deviation . . . is of order jvj1=3."Reent remarkable work [1, 11, 7℄ not only supports this predition, butsuggests what the limiting distribution and large deviation behavior is. Thease of a ertain variant of oriented �rst passage perolation is settled byJohansson [11℄. For lower bounds on the variane in two-dimensional �rstpassage perolation see Newman-Piza [15℄ and Pemantle-Peres [16℄.As in Kesten's and Talagrand's earlier results, the most essential featureabout �rst passage perolation whih we use is that the number of edgese 2 E suh that modifying !e inreases dist!(0; v) is bounded by C jvj.Another essential ingredient in the urrent paper is the following extensionby Talagrand [17℄ of an inequality by Kahn, Kalai and Linial [12℄. Let J be a�nite index set. For j 2 J , and ! 2 fa; bgJ let �j ! be the element of fa; bgJwhih is di�erent from ! only in the j-th oordinate. For f : fa; bgJ ! R set�jf(!) := f(!)� f(�j !)2 :Talagrand's [17, Thm. 1.5℄ inequality isvar(f) � C Xj2J k�jfk221 + log�k�jfk2=k�jfk1� ; (2)where C is a universal onstant. (In Setion 4 we supply a diret proof of (2)from the Bonami-Bekner inequality. A very reasonable upper bound for Can be obtained from this proof.)The basi idea in the proof of Theorem 1 is to apply this inequality tof(!) := dist!(0; v). For this, we wanted to show that, roughly,P� �ef(!) 6= 0 �is small, exept for a small number of edges e. However, sine we were notable to prove this, we had to resort to an averaging trik.2



Theorem 1 should hold for other models of �rst passage perolation, wherethe edge lengths have more general distributions. However, we hose to prefersimpliity to generality. There are some nontrivial diÆulties to obtain someof the expeted generalizations. The relevant result of [12℄, as well as (2) relyon the Bonami-Bekner [6, 2℄ inequality, whih holds for fa; bgn, but fails onsome more general produt spaes. However, [5℄ does extend some of theseresults to general produt spaes. See also [9℄. Talagrand's [17, Thm. 1.5℄applies to produt measures on fa; bgn, whih are not neessarily uniform.To �rst illustrate the basi tehnique in a simpler setting we will alsoprove the following theorem about the variane of the �rst passage perola-tion diameter in graphs with symmetries. If G = �V (G); E(G)� is a �niteonneted graph, and ! : E(G)! fa; bg, de�nediam!(G) := maxv;u2V (G) dist!(v; u) :(Although we have de�ned dist! only for Zd, the de�nition obviously extendsto arbitrary graphs.) Also, let diam(G) denote the diameter of G in the graphmetri; that is, diam(G) = diam1(G).Theorem 2. Let G = �V (G); E(G)� be a �nite onneted graph, and let �be the group of automorphisms of G. Set Y := min�j�ej : e 2 E(G)	; thatis, the ardinality of the smallest orbit of edges under �. Let ! 2 fa; bgE(G)be random-uniform. Thenvar�diam!G� � C (b� a)2 (b=a) diamG1 + ��log�(a=b)Y=diamG��� ;where C is a universal onstant.One an also prove similar estimates for the least !-length of a losed pathin the m � n torus Z=mZ� Z=nZ whose projetion on the �rst oordinatehas degree 1. The details are left to the reader.2 Proof of Theorem 2Let f(!) := diam!(G). Let u1; u2 2 V (G) be a (random) pair of vertieswhere dist!(u1; u2) = diam!(G), and let � be a path from u1 to u2 suh thatPe2� !e = diam!(G). We use some arbitrary but �xed method for hoosing3



between all possible hoies for the triple (u1; u2; �). Clearly, diam!(G) �b � diam(G). Therefore, j�j � (b=a) diam(G) ; (3)where j�j denotes the number of edges in �.Let e 2 E(G). Note that if �e f(!) < 0, then we must have e 2 �. By (3),this gives Xe2E(G)P[ �e f(!) < 0 ℄ � E� j�j � � (b=a) diam(G) : (4)Fix e 2 E(G). By symmetry, P[ �ef < 0 ℄ = P[ �e0f < 0 ℄ for every e0 2 �e.Consequently,j�ejP[ �ef < 0 ℄ � Xe02E(G)P[ �e0f < 0 ℄ � (b=a) diam(G) : (5)Now learly, P[ �ef 6= 0 ℄ = 2P[ �ef < 0 ℄ and k�efk1 � (b�a)=2. Therefore,k�efk22 � (1=2) (b� a)2P[ �ef < 0 ℄ : (6)By Cauhy-Shwarz, k�efk1 �pP[ �ef 6= 0 ℄ k�efk2 : (7)By (2), we have var(f) � C Pe2E(G) k�efk22mine2E(G) log�k�e fk2=k�e fk1� :To estimate the numerator, we use (6) and (4), and for the denominator (5)and (7). The theorem easily follows.3 Proof of Theorem 1If v; u 2 Zd, and � is a path from v to u, then � will be alled an !-geodesiif it minimizes !-length; that is, dist! = Pe2� !e. Given !, let  be an!-geodesi from 0 to v. Although there may be more than one suh geodesi,4



we require that  depends only on !. (For example, we may use an arbitrarydeterministi hoie among any possible olletion of !-geodesis.)The general strategy for the proof of Theorem 1 is as for Theorem 2.However, the diÆulty is that there is not enough symmetry to get a goodbound on P� �e dist!(0; v) < 0 �. It would have been enough to show thatP� e 2  � < C jvj�1=C holds with the exeption of at most C jvj= log jvj edges,for some onstant C > 0. But we ould not prove this. Therefore, we willneed an averaging argument, for whih the following lemma will be useful.Lemma 3. There is a onstant  > 0 suh that for every m 2 N there is afuntion g = gm : fa; bgm2 ! f0; 1; 2; : : : ; mgsatisfying k�j g � gk1 � 1for every j = 1; 2; : : : ; m2 andmaxy P[ g(x) = y ℄ � =m ;where x is random-uniform in fa; bgm2 .The easy proof of the lemma is left to the reader.Fix some v 2 Zd with jvj large, and set f = f(!) := dist!(0; v). Clearly,f(!) � b jvj, and therefore jj � (b=a) jvj, where jj denotes the number ofedges in . In partiular, f depends on only �nitely many of the oordinatesin !. Also, jj � (b=a)jvj impliesXe2E P[ e 2  ℄ = E� jj � � (b=a) jvj : (8)Fix m := bjvj1=4, and let S := f1; : : : ; dg � f1; : : : ; m2g. Let  > 0 andg = gm be as in Lemma 3. Given x = �xi;j : fi; jg 2 S� 2 f0; 1gS letz = z(x) := dXi=1 g(xi;1; : : : ; xi;m2) ei ;where fe1; : : : ; edg is the standard basis for Rd . De�ne~f(x; !) := dist!(z; v + z) :5



We think of ~f as a funtion on the spae ~
 := fa; bgS[E. Sine jzj � md, itfollows that j ~f � f j � 2mdb. In partiular,var(f) � var( ~f) + 4mdbqvar( ~f) + 4m2d2b2 : (9)It therefore suÆes to �nd a good estimate for var( ~f).Let e 2 E be some edge. We want to estimate its inuene:Ie( ~f) := P��e ~f(x; !) 6= ~f(x; !) � = 2P��e ~f(x; !) > ~f(x; !) � :Note that if the pair (x; !) 2 ~
 satis�es �e ~f(x; !) > ~f(x; !), then e must beon every !-geodesi from z to v + z. Consequently, onditioning on z andtranslating ! and e by �z givesIe( ~f) = 2P��e ~f(x; !) > ~f(x; !) � � 2P� e� z 2  � : (10)Let Q be the set of edges e0 2 E(Zd) suh that P[ e� z = e0 ℄ > 0. TheL1 diameter of Q is O(m). (We allow the onstants in the O(�) notation todepend on d; a and b, but not on v.) Hene, the diameter of Q in the dist!metri is also O(m), and therefore j \Qj � O(m). But the lemma givesmaxz0 P� z = z0 � � (=m)d :By onditioning on  and summing over the edges in  \Q, we therefore getP� e 2  + z ��  � � O(1)m1�d :Consequently, (10) and the hoie of m giveIe( ~f) � O(1) jvj�1=4 : (11)Also, (8) implies Xe2E P� e� z 2  �� z � � (b=a) jvj :Combining this with (10) therefore givesXe2E Ie( ~f) � 2 (b=a) jvj :6



Applying (11) yieldsXe2E Ie( ~f)1 + ��log Ie( ~f)�� � O(1) jvj= log jvj : (12)On the other hand, Is( ~f) � b � a for s 2 S. As jSj = O(1) jvj1=2 andk�qfk1 = O(1) for q 2 S [ E, we get from (12) and (2)var( ~f) � O(1) Xq2E[S Iq( ~f)1 + ��log Iq( ~f)�� � O(1) jvj= log jvj :Therefore, Theorem 1 now follows from (9).4 A proof of Talagrand's inequality (2)To prove (2), it learly suÆes to take a = 0; b = 1. For f : f0; 1gJ ! R,onsider the Fourier-Walsh expansion of f ,f =XS�J bf(S) uS ;where uS(!) = (�1)S�! and S � ! is shorthand for Ps2S !s. For eah p 2 Rde�ne the operator Tp(f) :=XS�J pjSj bf(S)uS ;whih is of entral importane in harmoni analysis. The Bonami-Bekner [6,2℄ inequality asserts that kTpfk2 � kfk1+p2 : (13)Set fj := �j f . Beause �j uS = uS if j 2 S and �j uS = 0 if j =2 S, wehave bfj(S) = (bf(S) j 2 S ;0 j =2 S :Sine kfk22 =PS�J bf(S)2, it follows thatvar(f) = X;6=S�J bf(S)2 =XS�JXj2J bfj(S)2=jSj = 2Xj2J Z 10 kTp fjk22 dp :7



Therefore, (13) gives var(f) � 2Xj2J Z 10 kfjk21+p2 dp : (14)An instane of the H�older inequalityE[ jfjj1+p2 ℄ � E[ f 2j ℄p2 E[ jfjj ℄1�p2implies Z 10 kfjk21+p2 dp � Z 10 �E� f 2j �p2 E� jfjj �1�p2�2=(1+p2) dp= kfjk22 Z 10 �kfjk1=kfjk2�2(1�p2)=(1+p2) dp� 2 kfjk22 Z 11=2�kfjk1=kfjk2�2(1�p2)=(1+p2) dp :Let s(p) := 2(1 � p2)=(1 + p2). Sine s0(p) � s0(1) = �2 when p 2 [1=2; 1℄,the above givesZ 10 kfjk21+p2 dp � 2 kfjk22 Z s(1)s(1=2)�kfjk1=kfjk2�s dss0(p)� kfjk22 Z 6=50 �kfjk1=kfjk2�s ds= kfjk22 1� �kfjk1=kfjk2�6=5log�kfjk2=kfjk1� :Now (14) impliesvar(f) � 2Xj2J kfjk22 1� �kfjk1=kfjk2�6=5log�kfjk2=kfjk1� (15)from whih (2) follows.Remark: It is worth noting that relation (1) an also be derived fromrelation (2). Indeed, let f = dist!(0; v) and for a real number s de�ne8
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