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Abstract

Let 0 < a < b < oo, and for each edge e of Z% let w, = a or w, = b,
each with probability 1/2, independently. This induces a random
metric dist,, on the vertices of Z¢%, called first passage percolation. We
prove that for d > 1 the distance dist,, (0, v) from the origin to a vertex
v, |v| > 2, has variance bounded by C' |v|/log |v|, where C = C(a, b, d)
is a constant which may only depend on a, b and d. Some related
variants are also discussed.

1 Introduction

Consider the following model of first passage percolation. Fix some d =
2,3,..., and let E = E(Z%) denote the set of edges in Z%. Also fix numbers
0 <a<b< oo LetQ:={ab}¥ carry the product measure, where
Plw.=a] =Plw.,=0] =1/2 for each e € FE. Given w = (w, : ¢ € E) € Q
and vertices v,u € Z4, let dist, (v, u) denote the least distance from v to u
in the metric induced by w; that is, the infimum of ) . w., where a ranges
over all finite paths in Z? from u to v. Let |v| := ||v]|; for vertices v € Z¢.

Theorem 1. There is a constant C = C(d,a,b) such that for every v € Z¢,
lv| > 2,
v]

: < .
var (dist,(0,v)) < C o 0]



In [I4] Kesten used martingale inequalities to prove var(distw((],v)) <
C'|v| and proved some tail estimates. Talagrand [I8] used his “convexified”
discrete isoperimetric inequality to prove that for all ¢ > 0,

dist,, (0, v) — M| > tm] < C exp(—12/0), (1)

where M is the median value of dist, (0, v). (Both Kesten’s and Talagrand’s
results apply to more general distributions of the edge lengths w,.) “Novice
readers might expect to hear next of a central limit theorem being proved,”
writes Durrett [8], describing Kesten’s results, “however physicists tell us

. that in two dimensions the standard deviation ... is of order |v|'/3.”
Recent remarkable work [I, 0Tl [7] not only supports this prediction, but
suggests what the limiting distribution and large deviation behavior is. The
case of a certain variant of oriented first passage percolation is settled by
Johansson [I1]. For lower bounds on the variance in two-dimensional first
passage percolation see Newman-Piza [I5] and Pemantle-Peres [16].

As in Kesten’s and Talagrand’s earlier results, the most essential feature
about first passage percolation which we use is that the number of edges
e € E such that modifying w, increases dist,(0,v) is bounded by C'|v|.

Another essential ingredient in the current paper is the following extension
by Talagrand [I7] of an inequality by Kahn, Kalai and Linial [T2]. Let J be a
finite index set. For j € J, and w € {a, b}’ let 0, w be the element of {a,b}’
which is different from w only in the j-th coordinate. For f : {a,b}’ — R set

f@) = f(o;0)

pif(w) = 5
Talagrand’s [I7, Thm. 1.5] inequality is
2
var(f) < C Z 125113 (2)

< 1+1log(|lp;fll2/llpifll1)

where C'is a universal constant. (In Section @l we supply a direct proof of (&)
from the Bonami-Beckner inequality. A very reasonable upper bound for C
can be obtained from this proof.)

The basic idea in the proof of Theorem [ is to apply this inequality to
f(w) := disty(0,v). For this, we wanted to show that, roughly, P [ p. f(w) # 0]
is small, except for a small number of edges e. However, since we were not
able to prove this, we had to resort to an averaging trick.



Theorem [Mshould hold for other models of first passage percolation, where
the edge lengths have more general distributions. However, we chose to prefer
simplicity to generality. There are some nontrivial difficulties to obtain some
of the expected generalizations. The relevant result of [I2], as well as (2 rely
on the Bonami-Beckner [6, 2] inequality, which holds for {a, b}", but fails on
some more general product spaces. However, [0 does extend some of these
results to general product spaces. See also [0]. Talagrand’s [I7, Thm. 1.5]
applies to product measures on {a,b}", which are not necessarily uniform.

To first illustrate the basic technique in a simpler setting we will also
prove the following theorem about the variance of the first passage percola-
tion diameter in graphs with symmetries. If G = (V(G), E(G)) is a finite
connected graph, and w : E(G) — {a, b}, define

diam, (G) := max dist, (v, u).
v,ueV(G)
(Although we have defined dist,, only for Z<, the definition obviously extends

to arbitrary graphs.) Also, let diam(G) denote the diameter of G in the graph
metric; that is, diam(G) = diam; (G).

Theorem 2. Let G = (V(G),E(G)) be a finite connected graph, and let T
be the group of automorphisms of G. Set Y := min{|Te| : e € E(G)}; that
is, the cardinality of the smallest orbit of edges under T'. Let w € {a, b}E(G)
be random-uniform. Then

(b—a)?(b/a)diam G
1+ [log((a/b) Y/diam G)|’

var(diamw G) <C

where C is a universal constant.

One can also prove similar estimates for the least w-length of a closed path
in the m x n torus Z/mZ x Z/nZ whose projection on the first coordinate
has degree 1. The details are left to the reader.

2 Proof of Theorem
Let f(w) := diam,(G). Let uj,us € V(G) be a (random) pair of vertices

where dist, (u1, up) = diam,(G), and let 5 be a path from u; to us such that
Y ecpWe = diam,,(G). We use some arbitrary but fixed method for choosing
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between all possible choices for the triple (u,us, 3). Clearly, diam,(G) <
b-diam(G). Therefore,

8] < (b/a) diam(G) , (3)

where |3] denotes the number of edges in .
Let e € E(G). Note that if p, f(w) < 0, then we must have e € 5. By (B,
this gives

Y Plpef(w) <0] <E[|8]] < (b/a) diam(G). (4)

ecE(G)

Fix e € E(G). By symmetry, P[p.f < 0] = P[pef < 0] for every €' € Te.
Consequently,

Te|Plp.f <0]< > Plpaf <0] < (b/a)diam(G). (5)

¢'€B(Q)
Now clearly, P[p.f #0] =2P[p.f < 0] and ||pef||oc < (b—a)/2. Therefore,

lpefll3 < (1/2) (b= a)* Plpef < 0]. (6)
By Cauchy-Schwarz,

1pefllt < VP[pef #0]lpefll2- (7)
By (@), we have

ZeeE(G) lpefI3
mineep(a) 10g (|1 pe fll2/11pe flI1)

var(f) < C

To estimate the numerator, we use () and (#), and for the denominator (&)
and (). The theorem easily follows. O

3 Proof of Theorem I

If v,u € Z% and « is a path from v to u, then a will be called an w-geodesic
if it minimizes w-length; that is, dist, = > . w.. Given w, let v be an
w-geodesic from 0 to v. Although there may be more than one such geodesic,
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we require that vy depends only on w. (For example, we may use an arbitrary
deterministic choice among any possible collection of w-geodesics.)

The general strategy for the proof of Theorem [ is as for Theorem [
However, the difficulty is that there is not enough symmetry to get a good
bound on P| p, dist,(0,v) < 0]. It would have been enough to show that
P[e € v] < C|v|7"/¢ holds with the exception of at most C |v|/ log |v] edges,
for some constant C' > 0. But we could not prove this. Therefore, we will
need an averaging argument, for which the following lemma will be useful.

Lemma 3. There is a constant ¢ > 0 such that for every m € N there is a
function
2
9= 0m:{a,b}™ —{0,1,2,...,m}
satisfying
lojg—glle <1

for every 5 =1,2,...,m? and

mg?xP[g(a:) =yl <e/m,

. . . 2
where x is random-uniform in {a,b}™ .

The easy proof of the lemma is left to the reader.

Fix some v € Z% with |v| large, and set f = f(w) := dist,(0,v). Clearly,
f(w) < blv|, and therefore |y| < (b/a) |v|, where || denotes the number of
edges in 7. In particular, f depends on only finitely many of the coordinates
in w. Also, |y| < (b/a)|v| implies

Y Pleey]=E[1] < (b/a) lu]. (8)

ecE

Fix m := [|v|'/*], and let S := {1,...,d} x {1,...,m?}. Let ¢ > 0 and
g = gm be as in LemmaBl Given z = (z;;: {1,j} € S) € {0,1}* let

z=z(x) = Z 9(Tin, . Tim2) €,

=1

where {e,...,eq} is the standard basis for R?. Define

f(z,w) :=dist,(z,v + 2) .
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We think of flas a function on the space Q := {a, b}°“F. Since |z| < md, it
follows that | f — f| < 2mdb. In particular,

var(f) < var(f) 4+ 4mdby/var(f) + 4m2db? . 9)

It therefore suffices to find a good estimate for var(f).
Let e € E be some edge. We want to estimate its influence:

L(f) = P[Jef(x,w) # f(x,w)] = QP[Uef(x,w) > f(x,w)] :

Note that if the pair (z,w) € Q satisfies aef(:r,w) > f(x, w), then e must be
on every w-geodesic from z to v + 2. Consequently, conditioning on z and
translating w and e by —z gives

Ie(f)=2P[Uef(x,w)>f(x,w)]§2P[e—z€*y}. (10)

Let @ be the set of edges ¢’ € E(Z?) such that Pl[e —z=¢'] > 0. The
L' diameter of Q is O(m). (We allow the constants in the O(-) notation to
depend on d, a and b, but not on v.) Hence, the diameter of @ in the dist,
metric is also O(m), and therefore |y N Q| < O(m). But the lemma gives

H'LE:XP[Z =z ] < (¢/m)?.

By conditioning on v and summing over the edges in v N (), we therefore get
Plecy+z|y] <0(1)m' .
Consequently, () and the choice of m give
L(f) <O(1) [o|71*. (11)

Also, (B) implies
ZP e—z€y|z] <(b/a)lv|.

eck
Combining this with ([[T) therefore gives

ZI ) < 2(b/a)|v].

eck



Applying (1) yields

1.(f)
> gy S O e/ toglel (12)

On the other hand, I,(f) < b—a for s € S. As [S| = O(1) |v['/? and
llpafllec = O(1) for g € SU E, we get from ([[2) and (&)

wr(f)y <o) Y )

gemus 1T ‘loglq(f)‘

Therefore, Theorem [l now follows from ({). O

<O(1) |v|/log|v].

4 A proof of Talagrand’s inequality (2)

To prove (@), it clearly suffices to take a = 0,b = 1. For f : {0,1}/ — R,
consider the Fourier-Walsh expansion of f,

f:Zf(S)uS:
ScJ

where ug(w) = (=1)°“ and S - w is shorthand for Y _¢w,. For each p € R
define the operator

T,(f) =Y " f(S)us,

ScJ

which is of central importance in harmonic analysis. The Bonami-Beckner [6,
2] inequality asserts that

1T fll2 < [Lfllp2 - (13)

Set f; := p; f. Because pjus = ugif j € S and pjus =0if j ¢ S, we

have R
Sy Jf(S) JES,
Fs) = {0 is

Since || f||3 = Y. gcs f(S)?, it follows that

var(f) = 3 F82 =S RS =2y / T, £;12 dp.

0£ScJ ScJ jelT jeJ



Therefore, (3) gives

var(f) <237 / 15120 dp (14)

je€J

An instance of the Holder inequality

B[|f;["7" | < B[ 2] B[|f]]'

implies
! ! »? o2\ 2/(4p?)
[ Ut o < [ (BLEY RIS ) o
=108 [ 50 ap
<2008 | (5158 d.

Let s(p) := 2(1 — p?)/(1 + p?). Since s'(p) < s'(1) = —2 when p € [1/2,1],
the above gives

s(1)
[ a <215 [ Q151

6 5
<152 / (A1) d

1- (||fj||1/||fj||z)6/5 |
log (I1.f5112/11£511h)

(p)

= 1451z

Now ([[4) implies

— (U5 /0£5l12)°
< 15
;Hfalb log (|| £;1l2/11£i111) "

from which (@) follows. O

Remark: It is worth noting that relation ([Il) can also be derived from
relation (). Indeed, let f = dist,(0,v) and for a real number s define



gs = max(f(z), s) and choose s so that P { (f(x) > s)] = u. Then it follows
from (2)) that

var(g) < Clv|u/ (1 + mjin(log(||Pj9||2/||ﬂj9||1)))-

It follows that var(g) < C - |v|;u/log(1/u). Therefore,

P[(f(x) > 5+ C' |v\1/1og(1/u)} < /2.

This implies relation ([II). (This argument is fairly general and applies to
general events in the product space {0,1}7. For our case we get an even
slight improvement for the tail estimates in certain ranges. We omit the
details.)
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