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tLet 0 < a < b <1, and for ea
h edge e of Zd let !e = a or !e = b,ea
h with probability 1=2, independently. This indu
es a randommetri
 dist! on the verti
es of Zd, 
alled �rst passage per
olation. Weprove that for d > 1 the distan
e dist!(0; v) from the origin to a vertexv, jvj > 2, has varian
e bounded by C jvj= log jvj, where C = C(a; b; d)is a 
onstant whi
h may only depend on a, b and d. Some relatedvariants are also dis
ussed.1 Introdu
tionConsider the following model of �rst passage per
olation. Fix some d =2; 3; : : : , and let E = E(Zd) denote the set of edges in Zd. Also �x numbers0 < a < b < 1. Let 
 := fa; bgE 
arry the produ
t measure, whereP[!e = a ℄ = P[!e = b ℄ = 1=2 for ea
h e 2 E. Given ! = (!e : e 2 E) 2 
and verti
es v; u 2 Zd, let dist!(v; u) denote the least distan
e from v to uin the metri
 indu
ed by !; that is, the in�mum of Pe2� !e, where � rangesover all �nite paths in Zd from u to v. Let jvj := kvk1 for verti
es v 2 Zd.Theorem 1. There is a 
onstant C = C(d; a; b) su
h that for every v 2 Zd,jvj � 2, var�dist!(0; v)� � C jvjlog jvj :
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In [14℄ Kesten used martingale inequalities to prove var�dist!(0; v)� �C jvj and proved some tail estimates. Talagrand [18℄ used his \
onvexi�ed"dis
rete isoperimetri
 inequality to prove that for all t > 0,Ph jdist!(0; v)�M j � tpjvj i � C exp(�t2=C) ; (1)where M is the median value of dist!(0; v). (Both Kesten's and Talagrand'sresults apply to more general distributions of the edge lengths !e.) \Novi
ereaders might expe
t to hear next of a 
entral limit theorem being proved,"writes Durrett [8℄, des
ribing Kesten's results, \however physi
ists tell us. . . that in two dimensions the standard deviation . . . is of order jvj1=3."Re
ent remarkable work [1, 11, 7℄ not only supports this predi
tion, butsuggests what the limiting distribution and large deviation behavior is. The
ase of a 
ertain variant of oriented �rst passage per
olation is settled byJohansson [11℄. For lower bounds on the varian
e in two-dimensional �rstpassage per
olation see Newman-Piza [15℄ and Pemantle-Peres [16℄.As in Kesten's and Talagrand's earlier results, the most essential featureabout �rst passage per
olation whi
h we use is that the number of edgese 2 E su
h that modifying !e in
reases dist!(0; v) is bounded by C jvj.Another essential ingredient in the 
urrent paper is the following extensionby Talagrand [17℄ of an inequality by Kahn, Kalai and Linial [12℄. Let J be a�nite index set. For j 2 J , and ! 2 fa; bgJ let �j ! be the element of fa; bgJwhi
h is di�erent from ! only in the j-th 
oordinate. For f : fa; bgJ ! R set�jf(!) := f(!)� f(�j !)2 :Talagrand's [17, Thm. 1.5℄ inequality isvar(f) � C Xj2J k�jfk221 + log�k�jfk2=k�jfk1� ; (2)where C is a universal 
onstant. (In Se
tion 4 we supply a dire
t proof of (2)from the Bonami-Be
kner inequality. A very reasonable upper bound for C
an be obtained from this proof.)The basi
 idea in the proof of Theorem 1 is to apply this inequality tof(!) := dist!(0; v). For this, we wanted to show that, roughly,P� �ef(!) 6= 0 �is small, ex
ept for a small number of edges e. However, sin
e we were notable to prove this, we had to resort to an averaging tri
k.2



Theorem 1 should hold for other models of �rst passage per
olation, wherethe edge lengths have more general distributions. However, we 
hose to prefersimpli
ity to generality. There are some nontrivial diÆ
ulties to obtain someof the expe
ted generalizations. The relevant result of [12℄, as well as (2) relyon the Bonami-Be
kner [6, 2℄ inequality, whi
h holds for fa; bgn, but fails onsome more general produ
t spa
es. However, [5℄ does extend some of theseresults to general produ
t spa
es. See also [9℄. Talagrand's [17, Thm. 1.5℄applies to produ
t measures on fa; bgn, whi
h are not ne
essarily uniform.To �rst illustrate the basi
 te
hnique in a simpler setting we will alsoprove the following theorem about the varian
e of the �rst passage per
ola-tion diameter in graphs with symmetries. If G = �V (G); E(G)� is a �nite
onne
ted graph, and ! : E(G)! fa; bg, de�nediam!(G) := maxv;u2V (G) dist!(v; u) :(Although we have de�ned dist! only for Zd, the de�nition obviously extendsto arbitrary graphs.) Also, let diam(G) denote the diameter of G in the graphmetri
; that is, diam(G) = diam1(G).Theorem 2. Let G = �V (G); E(G)� be a �nite 
onne
ted graph, and let �be the group of automorphisms of G. Set Y := min�j�ej : e 2 E(G)	; thatis, the 
ardinality of the smallest orbit of edges under �. Let ! 2 fa; bgE(G)be random-uniform. Thenvar�diam!G� � C (b� a)2 (b=a) diamG1 + ��log�(a=b)Y=diamG��� ;where C is a universal 
onstant.One 
an also prove similar estimates for the least !-length of a 
losed pathin the m � n torus Z=mZ� Z=nZ whose proje
tion on the �rst 
oordinatehas degree 1. The details are left to the reader.2 Proof of Theorem 2Let f(!) := diam!(G). Let u1; u2 2 V (G) be a (random) pair of verti
eswhere dist!(u1; u2) = diam!(G), and let � be a path from u1 to u2 su
h thatPe2� !e = diam!(G). We use some arbitrary but �xed method for 
hoosing3



between all possible 
hoi
es for the triple (u1; u2; �). Clearly, diam!(G) �b � diam(G). Therefore, j�j � (b=a) diam(G) ; (3)where j�j denotes the number of edges in �.Let e 2 E(G). Note that if �e f(!) < 0, then we must have e 2 �. By (3),this gives Xe2E(G)P[ �e f(!) < 0 ℄ � E� j�j � � (b=a) diam(G) : (4)Fix e 2 E(G). By symmetry, P[ �ef < 0 ℄ = P[ �e0f < 0 ℄ for every e0 2 �e.Consequently,j�ejP[ �ef < 0 ℄ � Xe02E(G)P[ �e0f < 0 ℄ � (b=a) diam(G) : (5)Now 
learly, P[ �ef 6= 0 ℄ = 2P[ �ef < 0 ℄ and k�efk1 � (b�a)=2. Therefore,k�efk22 � (1=2) (b� a)2P[ �ef < 0 ℄ : (6)By Cau
hy-S
hwarz, k�efk1 �pP[ �ef 6= 0 ℄ k�efk2 : (7)By (2), we have var(f) � C Pe2E(G) k�efk22mine2E(G) log�k�e fk2=k�e fk1� :To estimate the numerator, we use (6) and (4), and for the denominator (5)and (7). The theorem easily follows.3 Proof of Theorem 1If v; u 2 Zd, and � is a path from v to u, then � will be 
alled an !-geodesi
if it minimizes !-length; that is, dist! = Pe2� !e. Given !, let 
 be an!-geodesi
 from 0 to v. Although there may be more than one su
h geodesi
,4



we require that 
 depends only on !. (For example, we may use an arbitrarydeterministi
 
hoi
e among any possible 
olle
tion of !-geodesi
s.)The general strategy for the proof of Theorem 1 is as for Theorem 2.However, the diÆ
ulty is that there is not enough symmetry to get a goodbound on P� �e dist!(0; v) < 0 �. It would have been enough to show thatP� e 2 
 � < C jvj�1=C holds with the ex
eption of at most C jvj= log jvj edges,for some 
onstant C > 0. But we 
ould not prove this. Therefore, we willneed an averaging argument, for whi
h the following lemma will be useful.Lemma 3. There is a 
onstant 
 > 0 su
h that for every m 2 N there is afun
tion g = gm : fa; bgm2 ! f0; 1; 2; : : : ; mgsatisfying k�j g � gk1 � 1for every j = 1; 2; : : : ; m2 andmaxy P[ g(x) = y ℄ � 
=m ;where x is random-uniform in fa; bgm2 .The easy proof of the lemma is left to the reader.Fix some v 2 Zd with jvj large, and set f = f(!) := dist!(0; v). Clearly,f(!) � b jvj, and therefore j
j � (b=a) jvj, where j
j denotes the number ofedges in 
. In parti
ular, f depends on only �nitely many of the 
oordinatesin !. Also, j
j � (b=a)jvj impliesXe2E P[ e 2 
 ℄ = E� j
j � � (b=a) jvj : (8)Fix m := bjvj1=4
, and let S := f1; : : : ; dg � f1; : : : ; m2g. Let 
 > 0 andg = gm be as in Lemma 3. Given x = �xi;j : fi; jg 2 S� 2 f0; 1gS letz = z(x) := dXi=1 g(xi;1; : : : ; xi;m2) ei ;where fe1; : : : ; edg is the standard basis for Rd . De�ne~f(x; !) := dist!(z; v + z) :5



We think of ~f as a fun
tion on the spa
e ~
 := fa; bgS[E. Sin
e jzj � md, itfollows that j ~f � f j � 2mdb. In parti
ular,var(f) � var( ~f) + 4mdbqvar( ~f) + 4m2d2b2 : (9)It therefore suÆ
es to �nd a good estimate for var( ~f).Let e 2 E be some edge. We want to estimate its in
uen
e:Ie( ~f) := P��e ~f(x; !) 6= ~f(x; !) � = 2P��e ~f(x; !) > ~f(x; !) � :Note that if the pair (x; !) 2 ~
 satis�es �e ~f(x; !) > ~f(x; !), then e must beon every !-geodesi
 from z to v + z. Consequently, 
onditioning on z andtranslating ! and e by �z givesIe( ~f) = 2P��e ~f(x; !) > ~f(x; !) � � 2P� e� z 2 
 � : (10)Let Q be the set of edges e0 2 E(Zd) su
h that P[ e� z = e0 ℄ > 0. TheL1 diameter of Q is O(m). (We allow the 
onstants in the O(�) notation todepend on d; a and b, but not on v.) Hen
e, the diameter of Q in the dist!metri
 is also O(m), and therefore j
 \Qj � O(m). But the lemma givesmaxz0 P� z = z0 � � (
=m)d :By 
onditioning on 
 and summing over the edges in 
 \Q, we therefore getP� e 2 
 + z �� 
 � � O(1)m1�d :Consequently, (10) and the 
hoi
e of m giveIe( ~f) � O(1) jvj�1=4 : (11)Also, (8) implies Xe2E P� e� z 2 
 �� z � � (b=a) jvj :Combining this with (10) therefore givesXe2E Ie( ~f) � 2 (b=a) jvj :6



Applying (11) yieldsXe2E Ie( ~f)1 + ��log Ie( ~f)�� � O(1) jvj= log jvj : (12)On the other hand, Is( ~f) � b � a for s 2 S. As jSj = O(1) jvj1=2 andk�qfk1 = O(1) for q 2 S [ E, we get from (12) and (2)var( ~f) � O(1) Xq2E[S Iq( ~f)1 + ��log Iq( ~f)�� � O(1) jvj= log jvj :Therefore, Theorem 1 now follows from (9).4 A proof of Talagrand's inequality (2)To prove (2), it 
learly suÆ
es to take a = 0; b = 1. For f : f0; 1gJ ! R,
onsider the Fourier-Walsh expansion of f ,f =XS�J bf(S) uS ;where uS(!) = (�1)S�! and S � ! is shorthand for Ps2S !s. For ea
h p 2 Rde�ne the operator Tp(f) :=XS�J pjSj bf(S)uS ;whi
h is of 
entral importan
e in harmoni
 analysis. The Bonami-Be
kner [6,2℄ inequality asserts that kTpfk2 � kfk1+p2 : (13)Set fj := �j f . Be
ause �j uS = uS if j 2 S and �j uS = 0 if j =2 S, wehave bfj(S) = (bf(S) j 2 S ;0 j =2 S :Sin
e kfk22 =PS�J bf(S)2, it follows thatvar(f) = X;6=S�J bf(S)2 =XS�JXj2J bfj(S)2=jSj = 2Xj2J Z 10 kTp fjk22 dp :7



Therefore, (13) gives var(f) � 2Xj2J Z 10 kfjk21+p2 dp : (14)An instan
e of the H�older inequalityE[ jfjj1+p2 ℄ � E[ f 2j ℄p2 E[ jfjj ℄1�p2implies Z 10 kfjk21+p2 dp � Z 10 �E� f 2j �p2 E� jfjj �1�p2�2=(1+p2) dp= kfjk22 Z 10 �kfjk1=kfjk2�2(1�p2)=(1+p2) dp� 2 kfjk22 Z 11=2�kfjk1=kfjk2�2(1�p2)=(1+p2) dp :Let s(p) := 2(1 � p2)=(1 + p2). Sin
e s0(p) � s0(1) = �2 when p 2 [1=2; 1℄,the above givesZ 10 kfjk21+p2 dp � 2 kfjk22 Z s(1)s(1=2)�kfjk1=kfjk2�s dss0(p)� kfjk22 Z 6=50 �kfjk1=kfjk2�s ds= kfjk22 1� �kfjk1=kfjk2�6=5log�kfjk2=kfjk1� :Now (14) impliesvar(f) � 2Xj2J kfjk22 1� �kfjk1=kfjk2�6=5log�kfjk2=kfjk1� (15)from whi
h (2) follows.Remark: It is worth noting that relation (1) 
an also be derived fromrelation (2). Indeed, let f = dist!(0; v) and for a real number s de�ne8



gs = max(f(x); s) and 
hoose s so that Ph (f(x) � s) i = u. Then it followsfrom (2) thatvar(g) � Cjvj1u=�1 + minj (log�k�jgk2=k�jgk1�)�:It follows that var(g) � C � jvj1u= log(1=u). Therefore,Ph (f(x) > s+ C 0pjvj1= log(1=u) i � u=2:This implies relation (1). (This argument is fairly general and applies togeneral events in the produ
t spa
e f0; 1gJ. For our 
ase we get an evenslight improvement for the tail estimates in 
ertain ranges. We omit thedetails.)A
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