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Abstract

We propose and discuss two conjectures on the nature of informa-

tion leaks (decoherence) for quantum computers. These conjectures,

if (or when) they hold, are damaging for quantum error-correction as

required by fault-tolerant quantum computation.

The first conjecture asserts that information leaks for a pair of

substantially entangled qubits are themselves substantially positively

correlated.

The second conjecture asserts that in a noisy quantum computer

with highly entangled qubits there will be a strong effect of error

synchronization.

We present a more general conjecture for arbitrary noisy quantum

systems: prescribing (or describing) noisy quantum systems at a state

ρ is subject to error E which “tends to commute” with every unitary

operator that stabilizes ρ.
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1 Quantum computers and the threshold the-

orem

Quantum computers are hypothetical devices based on quantum physics. A

formal definition of quantum computers was pioneered by Deutsch [1], who

also realized that they can outperform classical computation. The idea of a

quantum computer can be traced back to works by Feynman, Manin, and

others, and this development is also related to reversible computation and

connections between computation and physics that were studied by Bennett

in the 1970s. Perhaps the most important result in this field and certainly

a major turning point was Shor’s discovery [2] of a polynomial quantum

algorithm for factorization. The notion of a quantum computer along with

the associated complexity class BQP has generated a large body of research,

in theoretical and experimental physics, computer science, and mathematics.

For background on quantum computing, see Nielsen and Chuang’s book [3].

Of course, a major question is whether quantum computers are feasible.

An early critique of quantum computation (put forward in the mid-90s by

Landauer [4, 5], Unruh [6], and others) concerned the matter of noise:

[N] The postulate of noise: Quantum systems are noisy.

The foundations of noisy quantum computational complexity were laid

by Bernstein and Vazirani in [7]. A major step in showing that noise can

be handled was the discovery by Shor [8] and Steane [9] of quantum error-

correcting codes. The hypothesis of fault-tolerant quantum computation

(FTQC) was supported in the mid-90s by the “threshold theorem” [10, 11,

12, 13], which asserts that under certain natural assumptions of statistical

independence on the noise, if the rate of noise (the amount of noise per

step of the computer) is not too large, then FTQC is possible. It was also

proved that high-rate noise is an obstruction to FTQC. Several other crucial

requirements for fault tolerance were also described in [14, 15].
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The study of quantum error-correction and its limitations, as well as

of various approaches to fault-tolerant quantum computation, is extensive

and beautiful; see, e.g., [16, 17, 18, 19]. Concerns about noise models with

statistical dependence are mentioned in several places, e.g., [21, 22]. Specific

models of noise that may be problematic for quantum error-correction are

studied in [23]. Current FTQC methods apply even to more general models

of noise than those first considered, which allow various forms of time- and

space-statistical dependence; see [24].

The purpose of this paper is to present two conjectures concerning de-

coherence for quantum computers which, if (or when) true, are damaging

for quantum error-correction and fault-tolerance. We will now state these

conjectures informally.

The first conjecture concerns entangled pairs of qubits.

[A] A noisy quantum computer is subject to error with the property that

information leaks for two substantially correlated qubits have a sub-

stantial positive correlation.

We emphasize that Conjecture [A] (and Conjecture [D] below) refer to

part of the overall error affecting a noisy quantum computer (or a noisy

quantum system), which we call detrimental. Other forms of errors and, in

particular, errors consistent with current noise models may also be present.

(We conjecture that the effects of detrimental errors described by Conjectures

[B] and [C] cannot be remedied by additional errors of a different nature.)

Error-synchronization refers to a situation where, while the error rate is

small, there is a substantial probability for errors affecting a large fraction

of qubits.

[B] In any quantum computer at a highly entangled state there will be a

strong effect of spontaneous error-synchronization.

We will refer informally to a pure state of a quantum computer that up

to a small error is induced by its “marginal distribution” on small sets of
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qubits as “approximately local.” We pose a related conjecture to the two

conjectures above regarding the effect of detrimental decoherence:

[C] The states of noisy quantum computers are approximately local.

Section 2 gives more background on noise and fault-tolerance. The main

Section 3 is devoted to mathematical formulations of the above conjectures.

In the Appendix, stronger versions of Conjecture [A] are formulated and

some connections with Conjectures [B] and [C] are indicated. Section 4 dis-

cusses extensions of these conjectures to a more general framework. We first

consider more general quantum systems and pose and discuss the following

extension:

[D] A description (or prescription) of a noisy quantum system at a state ρ

is subject to error described by a quantum operation E that tends to

commute with every unitary operator that stabilizes ρ.

(Here, “tends to commute” reflects a small bias towards commutativity

that will be described formally in Section 4.) We also briefly discuss classical

noise. Section 5 discusses examples that may give the conjectured behavior

and actual models of noise that may demonstrate them. Section 6 discusses

related aspects of computational complexity and Section 7 concludes.

2 Quantum computers, noise and fault toler-

ance

The state of a digital computer having n bits is a string of length n of

zeros and ones. As a first step towards quantum computers we can consider

(abstractly) stochastic versions of digital computers where the state is a

(classical) probability distribution on all such strings. Quantum computers

are similar to these (hypothetical) stochastic classical computers and they
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work on qubits (say n of them). The state of a single qubit q is described by

a unit vector u = a|0 > +b|1 > in a two-dimensional complex space Uq. (The

symbols |0 > and |1 > can be thought of as representing two elements of a

basis in Uq.) We can think of the qubit q as representing ′0′ with probability

|a|2 and ′1′ with probability |b|2. The state of the entire computer is a unit

vector in the 2n-dimensional tensor product of these vector spaces Uq’s for the

individual qubits. The state of the computer thus represents a probability

distribution on the 2n strings of length n of zeros and ones. The evolution of

the quantum computer is via “gates.” Each gate g operates on k qubits, and

we can assume k ≤ 2. Every such gate represents a unitary operator on Ug,

the (2k-dimensional) tensor product of the spaces that correspond to these k

qubits.

Moving from a qubit q to the probability distribution on ‘0’ and ‘1’ that it

represents is called a “measurement” and it can be considered as an additional

1-qubit gate. We will assume that measurements of qubits that amount to a

sampling of 0-1 strings according to the distribution these qubits represent

is the final step of the computation.

The postulate of noise is essentially a hypothesis about approximations.

The state of a quantum computer can be prescribed only up to a certain

error. For FTQC there is an important additional assumption on the noise,

namely, on the nature of this approximation. The assumption is that the

noise is “local.” This condition asserts that the way in which the state of

the computer changes between computer steps is statistically independent,

for different qubits. We will refer to such changes as “storage errors” or as

“qubit errors.” In addition, the gates that carry the computation itself are

imperfect. We can suppose that every such gate involves a small number of

qubits and that the gate’s imperfection can take an arbitrary form, so that

the errors (referred to as “gate errors”) created on the few qubits involved

in a gate can be statistically dependent. (Of course, qubit errors and gate

errors propagate along the computation.)
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The basic picture we have of a noisy computer is that at any time during

the computation we can approximate the state of each qubit only up to some

small error term ǫ. Nevertheless, under the assumptions concerning the errors

mentioned above, computation is possible. The noisy physical qubits allow

the introduction of logical “protected” qubits that are essentially noiseless.

Our conjectures apply to the same model of quantum computers but

they require a more general notion of errors. They require that the storage

errors will not be statistically independent (in fact, they should be instead

very dependent) or that the gate errors will not be restricted to the qubits

involved in the gates and will be of sufficiently general form. (Note that

the errors may also reflect the translation from the ideal notion of quantum

computers to a physical realization.)

3 A mathematical formulation

In this section we give a mathematical formulations for Conjectures [A], [B],

and [C]. Our setting is as follows. We have a quantum computer running on

n qubits. The ideal (or “intended”) state of the computer is pure. We want

to propose a picture for noisy quantum computation based on this model.

The errors can be described by a unitary operator on the computer qubits

and the neighborhood qubits or as a quantum operation E on the space of

density matrices for these n qubits. We will not give a specific model of

detrimental error but rather describe some of its expected properties.

3.1 Two qubits

We first describe a measure of information leak. For a state ρ of the computer

and a set A of qubits let ρ|A be the induced state on A.

Consider a quantum operation E. Note that when the state τ of the

quantum computer is a tensor product pure state then for every set A of
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qubits, S(τ |A) = 0. Here, S(∗) is the (von Neumann) entropy function; see,

e.g., [3], Ch. 11. The information leak of the noise operator E from the set of

qubits A, w.r.t. τ , can be measured by the entropy S((E(τ)|A). For a tensor

product state τ and a qubit a define LE(a; τ) = S(E(τ)|a)); more generally,

for a set A of qubits define

LE(A; τ) = S(E(τ)|A)).

We will now state mathematically a version of Conjecture [A]. Our setting

is as follows. Let ρ be the “intended” (“ideal”) pure state of the computer

and consider two qubits a and b. We use as the (rather standard) measure

of entanglement between qubits at pure states

ENT (ρ; a, b) = S(ρ|a) + S(ρ|b) − S(ρ|{a,b}).

As a measure of correlation of information leaks we use

ELE(a, b; τ) = LE(a; τ) + LE(b; τ) − LE({a, b}; τ).

Conjecture [A] can be formulated as follows:

For every tensor product state τ ,

ELE(a, b; τ) ≥ K(LE(a; τ), LE(b; τ)) · ENT (ρ; a, b), (1)

whereK(x, y)/min(x, y)2 >> 0 when x and y are positive and small. (K(x, y) =

0, when min(x, y) = 0 so that relation (1) tells us nothing about noiseless

entangled qubits.)

In the Appendix we will describe and motivate several stronger forms of

Conjecture [A], and point out alternative mathematical formulations.

A simple extention that we would like to mention at this point is to pairs

of qudits rather than pairs of qubits. The term qudit is used to denote a unit

of quantum information in a d-level quantum system. Relation (1) extends

to qudits without any change. This applies, in particular, to two disjoint sets

of qubits in a quantum computer.
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Remark: Consider two qudits a and b, with d and d′ possible levels

respectively. The ideal pure state of this pair of qudits is represented by a

d by d′ matrix. Our conjecture (roughly) asserts that when the state is not

represented by (or close to) a rank one matrix then neither is the error. (Or at

least part of the error.) We expect that in wider contexts it is not reasonable

to expect noisy data described by general matrices to be well approximated

up to a rank-one error matrix.

3.2 Error synchronization

A simple way to describe error-synchronization is in terms of the expansion

of the quantum operation E in terms of multi-Pauli operators. A quantum

operation E can be expressed as a linear combination

E =
∑

vIP I ,

where I is a multi-index i1, i2, . . . , in, where ik ∈ {0, 1, 2, 3} for every k, P I

is the quantum operation that corresponds to the tensor product of Pauli

operators described by the multi-index I on the individual qubits, and vI are

vectors. We can describe the error distribution of E by

f(t) =:
∑

{‖vI‖2

2
: |I| = t},

and regard
∫
f(t)t as the error rate.

Suppose that the error rate is a. All noise models studied in the original

papers of the “threshold theorem,” as well as some extensions that allow

time- and space- dependencies (e.g., [24]), have the property that f(t) decays

exponentially (with n) for t = (a + ǫ)n, where a is the error rate and ǫ > 0

is any fixed real number.

In contrast, we say that E leads to error-synchronization if f(≥ t) is

substantial for some t >> a. We say that E leads to a strong error-

synchronization if f(≥ t) is substantial for t = 1/2 − δ where δ = o(1) as n
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tends to infinity, and to very strong error-synchronization if f(≥ t) is substan-

tial for t = 3/4 − δ where δ = o(1) as n tends to infinity. A random unitary

operator on the qubits of the computer with or without additional qubits

representing the environment admits a very strong error-synchronization.

3.3 Censorship

Here is a suggestion for an entropy-based mathematical formulation for Con-

jecture [C]. We remind the reader that in this section we always assume that

the “ideal” state of the quantum computer (before the noise is applied) is a

pure state. Some adjustments to our conjectures will be required when the

ideal state itself is a mixed state.

Let ρ be a pure state on a set A = {a1, a2, . . . , an} of n qubits. Define

ENT (ρ;A) = −S(ρ) + maxS(ρ∗),

where ρ∗ is a mixed state with the same marginals on proper sets of qubits

as ρ, i.e., ρ∗|B = ρ|B for every proper subset B of A.

Next, define

ẼNT (ρ) =
∑

{ENT (ρ;B) : B ⊂ A}.

In this language a way to formulate the censorship conjecture is:

Conjecture [C]: There is a polynomial P (perhaps even a quadratic polyno-

mial) such that for any quantum computer on n qubits, which describes a

pure state ρ,

ẼNT (ρ) ≤ P (n). (2)
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4 Extensions

4.1 General quantum systems

The purpose of Section 3 was to describe formally the conjectures on decoher-

ence of quantum computers based on the basic model for such a computer. In

the context of general quantum systems these conjectures are thus somewhat

arbitrary. (In particular, we always talk about Hilbert spaces of dimensions

2m.) The main idea behind the conjectures is that the error-independence

assumption (for different qubits) amounts to an extremely strong dependence

of the errors on the tensor product structure of the Hilbert space describing

the state of the computer. It can be useful to suggest and examine formula-

tions of our conjectures which do not depend on the tensor product structure

of the Hilbert space in question.

We want to consider quantum physical systems described by a complex

Hilbert space V . Our conjectures suggest that if E represents the error for

state ρ and E ′ represents the error for state U(ρ), for a unitary operator U

on V , then E ′ will be “close” to U−1EU . In particular, this implies that if

U(ρ) = ρ then E ′ is “close” to U−1EU ; hence UE is “close” to EU . In other

words, E and U “tend” to commute if U(ρ) = ρ.

Here is a first attempt at a formal conjecture. We will restrict our at-

tention to the case where the error is described by a quantum operation E

which is a convex combination of unitary operators.

[D] There is an α > 0 such that a prescription (or description) of a noisy

quantum system at a state ρ is subject to error E with the property

that for every unitary operator U such that U(ρ) = ρ

‖EU − UE‖2 ≤ (1 − α)
√

2. (3)

Here we do not insist that the prescribed (or described) state be pure.
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Remark: Greg Kuperberg pointed out that at a thermodynamics equi-

librium a certain limiting error E will actually commute with every U that

stabilizes ρ. One possible way to regard Conjecture [D] is as a statement

referring to non-equilibrium thermodynamics.1

4.2 Classical noise

Conjectures [A] and [B] were motivated and originally formulated in [26] also

for “natural” noisy classical correlated systems. For example, the analog

of [A] asserts that in a noisy system the errors for two highly correlated

elements tend to be substantially correlated. Because of the heuristic (or

subjective) nature of the notion of noise in classical systems (and of the

notion of probability itself), such a formulation, while of interest, leads to

several difficulties.

Understanding noise and the study of de-noising methods span wide areas.

(For example, in machine learning we can see the example where text and

speech represent respectively the intended (ideal) and noisy signals.) Certain

statistical methods of de-noising are based on assumptions that run contrary

to [A]. However, our conjectures are in agreement with insights asserting

that such statistical de-noising methods will leave a substantial amount of

noise uncorrected. Moreover, “natural” examples of noisy highly correlated

classical systems exhibit a moderate degree of dependence and appear to be

in agreement with Conjecture [C].

1In this context, the works (and even the small controversy) on quantum analogs of

“Onsager’s regression theorem” come to mind.
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5 Examples and models

5.1 Unprotected quantum circuits

A basic remaining challenge is to present concrete models of noise that sup-

port our conjectures.

We first point out that error-synchronization is a familiar phenomenon for

error propagation of unprotected quantum programs (or circuits). Take the

standard model of independent errors and suppose that the error rate is so

small that it accumulates at the end of the computation to a small constant-

rate error. It is instructive to see in this context that error-synchronization

(and also [A] and [C]) are often created. (This goes back to Unruh [6].)

Understanding the nature of errors described by ordinary models of noise

applied to unprotected programs is of further interest. We should offer a

precise definition of “unprotected programs.” A random circuit leading to a

given state ρ or a random perturbation of a specific circuit leading to ρ may

serve this purpose. In such a model the errors for a certain state ρ of the

computer do depend systematically on the state itself, and understanding

this further may be of interest.

Remark: For noise propagation for unprotected programs the error rate

is also related to the intended state. In this paper we assume that the

error rate (in each computer cycle) is small and fixed. Trying to understand

systematic relations between the error rate itself and the intended state ρ

may be of interest. A natural informal conjecture would be

[E] In any noisy quantum computer the more entangled the intended state

is, the higher the (detrimental) error rate.

Conjecture [E] is close to the negation of the FTQC hypothesis and as

such it cannot be very useful. If FTQC fails then propagation of errors will

make the error rate dependent on the amount of computation leading to ρ. A

useful form of [E] should relate directly (not through computational notions)
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the error rate to an entanglement measure and perhaps be formulated for

general quantum systems. One possibility for such a connection is that when

the evolution of a quantum system is prescribed, the rate of detrimental

errors depends on the overall space of unitary operators which describe the

incremental changes along the evolution.2 3

5.2 Models

As much as error propagation for unprotected programs may supply useful

insights it is not directly relevant to our conjectures. We emphasize that

a model for decoherence that supports conjectures [A] and [B] (and [E])

should already exhibit [A] and [B] (and [E]) for the “new errors” — either

storage errors or gate errors4 or both — and thus be quite different from

current models and current perceptions regarding noise. Models that satisfy

our conjectures may be based on the storage-errors (in a single computer

cycle) being represented by a rather primitive (but quick) stochastic quantum

program (or circuit).

Remarks: 1) Such noise models can be regarded as a further step in the

direction considered recently by Aharonov, Kitaev, and Preskill [24] (and a

few earlier works). In these works, interactions between nearby qubits that

2In some models of decoherence (such as those related to “Lindblad dynamics”), when

the decoherence is described as the effect of several non-commuting noise operations, the

rate of decoherence is related to “uncertainty measures” for the quantum nature of these

noise operators. Thus properties of decoherence in the spirit of our conjectures may reflect

on the rate of decoherence.
3The rate of detrimental decoherence may reflect the process leading to the current state

and also the ability of the device to carry the prescribed evolution ahead. For example,

the rate of detrimental decoherence for faraway entangled photons may well be zero. But

any intervention to bring them back together in order to carry additional joint operations

is expected to introduce strong correlation between their errors.
4As mentioned we should allow gate errors to “apply” also to qubits not involved in

the gate. Allowing this may reflect several concerns expressed in the literature regarding

the qubit/gate model such as the issue of “slow” gates [27].
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lead to statistical dependence between the noise acting on them is considered

and it is shown that the threshold theorem prevails if the independence as-

sumption still applies to faraway qubits. Interactions between nearby qubits

expressed by a quick quantum circuit may lead to errors that are not covered

by the assumptions of [24].

2) Klesse and Frank [28] described a physical system in which qubits

(spins) are coupled to a bath of massless bosons and thet reached (after

certain simplifications) a noise model with error-synchronization.

3) The earlier models suggested by Alicki, Horodecki, Horodecki, and

Horodecki [23] appear to be relevant to our conjectures.

4) Let me also mention the relevance of cluster states defined by Briegel

and Raussendorf (see, [29]). The description of cluster states involves an

array of qubits located on the vertices of a rectangular lattice in the plane

(or in space). Cluster states are “generated” by local entanglement between

pairs of nearby qubits on the lattice grid. They can be regarded as the

quantum analogs of the Ising and Potts classical models.

Controlled creation and manipulation of cluster states can be important

for building quantum computers. On the other hand, cluster states and the

local processes leading to them can possibly serve as a basis for concrete

models of detrimental decoherence.

6 Computation complexity

Scott Aaronson’s interesting “Sure/Shor challenge” [30] ask for restrictions

on feasible (physical) states for quantum computers which do not allow for

polynomial time factoring of integers and at the same time do not violate

what can already be demonstrated empirically. This looks like a difficult

challenge. In a similar spirit, while it looks intuitively correct that our con-

jectures are damaging for quantum computation, proving it, and especially

proving a reduction all the way to the classical model of computation, is not
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going to be easy.

A realistic task would be to show that our conjectures exclude fault tol-

erance based on linear quantum error-correction, e.g., deriving relations (1)

and (2) (or even (3)) for any form of “protected qubits” obtained by linear

quantum error-correction.5

A more ambitious goal than excluding quantum linear error-correction

would be finding a reduction of noisy quantum computation (with detrimen-

tal errors) to the computational power of log-depth quantum circuits. (This

will still fall short of Aaronson’s challenge in view of a result by Cleve and

Watrous [31].) Such reductions are known under the standard assumptions

on noise, for reversible quantum computation [15], and when the error rate

is above 45% [20].

When we insist on small error rate it may well be the case that log-

depth polynomial size quantum circuits represent the true complexity power

of quantum computers with detrimental errors. Consider a log-depth circuit,

and suppose that the storage (and gate) errors demonstrate perfect error-

synchronization. If we run the computation a polynomial number of times,

with high probability there will be no errors in one of the runs. If we replace

a given log-depth circuit by a larger one capable of correcting local errors

we may reach polynomial size (or quasi-polynomial size) circuits that are

immune to low-rate errors of the kind considered in this paper.

5Following is a simple argument proposed by Kuperberg why even the simplest form of

conjecture [A] would not allow quantum computation. “If quantum computing is possible,

then a quantum computer could have prepared a state S and then communicated it to

the system that has the noise operation E. If it is true quantum computing, then S

can be secret from E, for reasons similar to those that make quantum key distribution

possible. In this case E can act on S but it cannot otherwise depend on it.” The difficulty

with this argument (as with a similar argument in Section 8.1) is that moving from a

logical protected state S to a physical realization of S on a different device requires some

computation and fault tolerance and thus relies on assumptions regarding errors which we

cannot assume. Still Kuperberg’s proposed reduction can be useful.
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7 Conclusion

If (or when) true, our conjectures on the nature of information leaks (deco-

herence) for quantum computers are damaging to the possibility of storing

and manipulating highly entangled quantum qubits. The conjectures do not

contravene quantum mechanics and, to the best of my knowledge, established

physics phenomena. Nor do our conjectures contravene with the feasibility

of classical forms of error-correction and fault-tolerant computation.

Testing these conjectures empirically may be possible for quantum com-

puters with a relatively small number of qubits. The conjectures can also

be refuted by constructions of highly stable qubits based on strong entangle-

ment, such as stable non-Abelian anyons [17, 32, 33].
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8 Appendix: Conjecture [A] - stronger forms

Given a quantum operation E our measure

L(A) = LE(A; τ)

for the information leaks for a set A of qubits depended on a pure tensor

product state τ . The two-qubits basic property of detrimental decoherence

was made for every τ separately. For the stronger conjectures below we will

continue to make the statements in terms of an auxiliary tensor product state

τ . We will write L(A) = LE(A; τ) and similarly delete E and τ from other

definitions based on L(A).

An alternative approach is as follows: Let ψ be the state of the computer’s

qubits and the environment that is represented by a set N of qubits. Let U

be a unitary operator of the computer and environment qubits representing

the noise. A standard measure of the information that the environment has

on the qubits in A is

L′(A) = S(U(ψ)|A) + S(U(ψ)|N) − S(U(ψ)|A∪N).

For our purposes we take ψ = ψ0(A)⊗ψ1(N) where ψ1(N) is any pure state

on the environement and ψ0(A) is the mixed state of maximum entropy on A.

I would expect that L′(A) can replace L(A) for the formulation of Conjecture

[A] and the stronger conjectures below.

8.1 Two qubits: A stronger version

We proceed to describe and motivate a stronger form of Conjecture [A] and

an extension to more than two qubits.
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The expression S(ρ|a) + S(ρ|b) − S(ρ|{a,b}) was used as a measure of en-

tanglement between two qubits. We would like to replace it by a measure

that can be called “emergent entanglement,” which we are now going to de-

fine. This measure, denoted by EE(ρ; a, b), captures (roughly) the expected

amount of entanglement among the two qubits when we measure some other

qubits, “look at the outcome,” and condition on all possible outcomes for the

measurement. It appears to be related to Briegel and Raussendorf’s notion

of “persistent entanglement” [34].

For every representation ω of ρ|{a,b} as a mixture (convex combination)

of joint states

ρ|{a,b} =

t∑

i=1

pkρk,

let

ENTω(ρ; a, b) =
∑

pkENT (ρk; a, b).

Define

EE(ρ; a, b) = maxENTω(ρ; a, b),

where the maximum is taken over all representations ω. (We can assume

that ω is a mixture of pure joint states.)

A strong form of relation (1) is

EL(a, b) ≥ K(L(a), L(b)) · EE(ρ; a, b), (4)

where, as before, K(x, y)/min(x, y)2 >> 0 when x and y are positive and

small.

The motivation for this strong version of Conjecture [A] comes from con-

sidering the state of a quantum computer that applies a fault-tolerant com-

putation. The state of the computer is t-wise independent for a large value

of t; hence every two qubits are statistically independent and Conjecture [A]

does not directly apply. Consider an error-correcting code and let s be the

minimal number of qubits whose state “determines” that of the others, so
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that once they are measured and their values are “looked at” the state of the

other qubits is determined. When we measure and look at the values of s−1

qubits, we see a very strong dependence between every pair of remaining

qubits.

Now, if we assume Conjecture [A] and also assume that “measuring and

looking at” the contents of some qubits does not induce errors on other

qubits (this is a standard assumption in current noise models), we see that

the conclusion of Conjecture [A] should apply to pairs of qubits in a quantum

computer running FTQC even though pairs of qubits are independent.

(Of course, this argument does not prove that for noisy quantum com-

puters relation (5) follows from relation (1) since it relies on an assumption

regarding the errors that we do not make. See also Section 6.)

8.2 More qubits

Here is a suggestion for an extension of the above conjecture from pairs of

qubits to larger sets of qubits. This suggestion goes beyond Conjectures [A]

and [B] and is related to a strong error-synchronization.

For a set A = {a1, a2, . . . , am} of m qubits recall that

ENT (ρ;A) = −S(ρ) + maxS(ρ∗),

where ρ∗ is a mixed state with the same marginals on proper sets of qubits

as ρ, i.e., ρ∗|B = ρ|B for every proper subset B of A.

Define in a similar way

EL(A) = −LE(A) + maxLE∗(A),

where E∗ is a quantum operation that satisfies E∗|B = E|B for every proper

set B of A.

Using these definitions we will extend our conjectures, given by relations

(1) and (4), from pairs of qubits to larger sets of qubits. Let ρ be an ideal
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state of the computer and let A be a set of m qubits. Extending (1) we

conjecture that

EL(A) ≥ KmENT (ρ|A). (5)

Here, Km = Km({L(a) : a ∈ A}) is substantially larger than min{L(a))) :

a ∈ A}2 and it vanishes when all the individual information leaks vanish.

Here again we further conjecture that for every representation ω of the

state ρ|A as a convex combination ρ|A =
∑
pkρk of pure joint states,

EL(A) ≥ Km

∑
pkENT (ρk;A). (6)

Remark: The value of ENT (ρ;A) is intended to serve as a measure of

the additional information when we pass from “marginal distributions” on

proper subsets of qubits to the entire distribution on all qubits.

We will mention now some mathematical challenges. It will be interesting

to prove relation (2) based on relation (5), and to formulate and prove weak

and strong forms of error-synchronization based, respectively, on relations

(1) and (5). A further goal would be to derive, based on the assumptions on

noise for the physical qubits (relations (5) and (6)), the same relations as well

as relation (2), for “protected” qubits, namely logical qubits represented by

quantum error-correction. It will also be of interest to find the right general

formulation of “tend to commute” as in relation (3) and to relate it to the

specific conjectures for quantum computers.

The additional conjectures of this section are meant to draw the following

picture: we have an ideal notion of a quantum computer that has extraor-

dinary physical and computational properties. Next come noisy quantum

computers with an ideal notion of noise. If the noise rate is small then

FTQC is possible. Next come noisy quantum computers that satisfy relation

(1). For those, fault tolerance will require controlling the error rate as well as

K2, which we expect to be much harder. This model is also an idealization as

long as K3 = 0 and so on. For such highly entangled states as those required
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in quantum algorithms, Ki will be more and more damaging for larger values

of i.
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