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J. Kahn∗ and G. Kalai†

Abstract

We give counterexamples to a conjecture of Benny Chor and an-
other of the second author, both from the late 80s, by exhibiting func-
tions for which the influences of large coalitions are unexpectedly small
relative to the expectations of the functions.

1 Introduction

For a set T we use Ω(T ) for the discrete cube {0, 1}T and µT for the
uniform probability measure on Ω(T ). In this paper f will always be a
Boolean function on Ω([n]) (that is, f : Ω([n]) → {0, 1}, where, as usual,
[n] = {1, . . . , n}), and we will write µ for µ[n]. We reserve x, y for elements
of Ω([n]) and set |x| =

∑
xi.

Following Ben-Or and Linial [2] we define, for a given f and S ⊂ [n], the
influence of S toward one to be

I+
S (f) = µ[n]\S({u ∈ Ω([n]\S) : ∃v ∈ Ω(S), f(u, v) = 1})− µ(f). (1)

Similarly, the influence of S toward zero is

I−S (f) = µ[n]\S({u ∈ Ω([n]\S) : ∃v ∈ Ω(S), f(u, v) = 0})− (1− µ(f)) (2)

and the (total) influence of S is

IS(f) = I+
S (f) + I−S (f).

Suppose µ(f) = 1/2. It then follows from a theorem of Kahn, Kalai and
Linial [10] (Theorem 2.2 below, henceforth “KKL”) that for every a > 0
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there is an S ⊂ [n] of size an with I+
S (f) ≥ 1/2− n−c, where c > 0 depends

on a. (See Theorem 2.3.) Benny Chor conjectured in 1989 that one can
in fact achieve I+

S (f) ≥ 1/2 − cn (where, again, c < 1 depends on a). The
conjecture has been “in the air” since that time, though as far as we know
it has appeared in print only in [11, 13].

In this note we disprove Chor’s conjecture and another, similar conjec-
ture from the same period.

For our purposes the subtracted terms in (1) and (2) are mostly a dis-
traction, and it sometimes seems clearer to speak of J+

S (f) := I+
S (f) + µ(f)

and J−
S (f) := I−S (f) + (1 − µ(f)). Thus, for example, J+

S (f) is the proba-
bility that a uniform setting of the variables in [n] \ S doesn’t force f = 0,
and Chor’s conjecture predicts an S with J+

S (f) ≥ 1 − cn. The following
statement shows that this need not be the case.

Theorem 1.1. For any fixed α, δ ∈ (0, 1) there are a C and an f with
µ(f) = α and J+

S (f) < 1− n−C for every S ⊆ [n] of size (1/2− δ)n.

We should note that one cannot expect to go much beyond |S| = (1/2−δ)n;
for example if µ(f) = 1/2, then it follows from the “Sauer-Shelah Theorem”
(Theorem 2.5) that there is an S of size n/2 with J+

S (f) = 1.
Another consequence of KKL (see Theorem 2.4 below) is that there is

a β > 0 such that for any f with µ(f) > n−β there is an S of size (say)
0.1n with influence 1− o(1). A conjecture of the second author, again from
the late 80s, asserts that the same conclusion holds even assuming only
µ(f) > (1− ε)n for sufficiently small ε. This conjecture turns out to be false
as well:

Theorem 1.2. For any fixed ε, δ > 0 there are an α > 0 and Boolean
functions f such that µ(f) > (1 − ε)n and no set of size (1/2 − δ)n has
influence to 1 more than exp[−nα].

(This can be strengthened a bit to require µ(f) > exp[−n1−c] for some fixed
c = cδ > 0.)

It would be interesting to see how close one can come to the positive
result (i.e. Theorem 2.4) mentioned before Theorem 1.2. For example, could
it be that there is some fixed β for which one can find f ’s with µ(f) ≈ n−β

for which no S of size 0.1n has influence Ω(1)? We will discuss this question
further in the next section.

Each of our examples is of the form f = ∧m
i=1Ci, where the Ci’s are

random ∨’s of k literals using k distinct variables (henceforth “k-clauses”).
These f ’s, which may be thought of as variants of the “tribes” construction
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of Ben-Or and Linial (see below), were inspired by a paper of Ajtai and Linial
[1] and share with it the following curious feature. It’s easy to see that any
f can be converted to a monotone (i.e. increasing) f ′ with µ(f ′) = µ(f)
and each influence (I+

S and so on) for f ′ no larger than the corresponding
influence for f ; thus it’s natural to look for f ’s with small influences among
the increasing functions. But the present random examples, like those of
[1], do not do this, and it’s not easy to see what one gets by monotonizing
them.

2 Background and perspective

Influence

We write I`(f) for I{`}(f). A form of the classic edge isoperimetric inequality
for Boolean functions is

Theorem 2.1. For any (Boolean function) f with µ(f) = t,

I(f) :=
n∑

k=1

I`(f) ≥ 2t log2(1/t). (3)

(This convenient version is easily derived from the precise statement, due to
Hart [7]; see also [9, Sec. 7] for a simple inductive proof.)

While (3) is exact or close to exact (depending on t), it typically gives only
a weak lower bound on the maximum of the I`(f)’s, namely

max
`

I`(f) ≥ 2t log2(1/t)/n. (4)

For t not too close to 0 or 1, the following statement from [10] gives better
information.

Theorem 2.2 (KKL). There is a fixed c > 0 such that for any f with
µ(f) = t, there is a k ∈ [n] with

I`(f) ≥ ct(1− t) log n/n. (5)

Recall that J`(f) = µ(f)+I`(f). Repeated application of Theorem 2.2 gives
the following two corollaries.

Theorem 2.3. For all a, t ∈ (0, 1) there is a c such that for any f with
µ(f) = t there is an S ⊆ [n] with |S| ≤ an and

J+
S (f) ≥ 1− n−c

(that is, I+
S (f) ≥ (1− t)− n−c).
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Similarly (either by the same argument or by applying Theorem 2.3 to the
function 1 − f(x)) there is a small S′ with J−

S′(f) ≥ 1 − n−c (i.e. I−S′(f) ≥
t − n−c), and combining these observations we find that there is in fact a
small S′′ (e.g. S ∪ S′) with IS′′(f) ≥ 1− n−c.

Theorem 2.4. For every δ, ε > 0, there is an α > 0 such that for large
enough n and any f with µ(f) ≥ n−α, there is an S ⊆ [n] with |S| = δn and

J+
S (f) ≥ 1− ε.

The conjecture of Chor stated in Section 1 asserts that the n−c in Theorem
2.3 can be replaced by something exponential in n, and the conjecture stated
before Theorem 1.2 proposes a similar weakening of the n−α lower bound
on µ(f) in Theorem 2.4. As already noted, we will show below that these
conjectures are incorrect.

Tribes

The original “tribes” examples of Ben-Or and Linial [2] are Boolean func-
tions of the form f = ∨m

i=1Ci, where the “tribes” Ci are ∧’s of k (distinct)
variables and each variable belongs to exactly one tribe. The dual of such
an f (so “dual tribes”) is g = ∧m

i=1Di, where Di is the ∨ of the variables in
Ci (so again, each variable belongs to exactly one Di).

When k = log n − log log n − log ln(1/t), we have 1 − µ(f) = µ(g) ≈ t
(where log = log2 and f, g are as above). For fixed t ∈ (0, 1) both construc-
tions show that Theorem 2.2 is sharp (up to the value of c).

On the other hand, when t = O(n−c) for a fixed c > 0, f shows that
(4) is tight up to a multiplicative constant, depending on c; for exam-
ple, k = 2 log n − log log n gives µ(f) ≈ 1/(2n) and I`(f) ≈ 2 log n/n2 =
Θ(µ(f) log(1/µ(f))/n) for each `. (In contrast, for µ(g) ≈ 1/n, we should
take k = log n − 2 log log n − 1, in which case I`(g) = Θ(log2 n/n2) and (4)
is off by a log.)

For f (again, as above) with µ(f) ∈ (Ω(1), 1 − Ω(1)), there are sets of
size log n with large influence towards 1, while no set of size o(n/ log n) has
influence Ω(1) towards 0. (The corresponding statement with the roles of 0
and 1 reversed holds for g.) The Ajtai-Linial construction mentioned in the
introduction shows that there are Boolean functions h with µ(h) ≈ 1/2 and
IS(h) < o(1) for every S of size o(n/ log2 n).
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Trace

We now briefly consider influences from a different point of view. For a set
X let 2X = {S : S ⊂ X},

(
X
k

)
= {S ⊂ X : |S| = k} and

(
X
<k

)
= {S ⊂ X :

|S| < k}. For F ⊂ 2X and Y ⊂ X, the trace of F on Y is

F|Y = {S ∩ Y : S ∈ F}.

Let X = [n]. The following “Sauer-Shelah Theorem” determines, for
every n and m, the minimum T such that for each F ⊆ 2X of size T there
is some Y ∈

(
X
m

)
on which the trace of F is complete, meaning F|Y = 2Y .

Such a Y is said to be shattered by F .

Theorem 2.5 (The Sauer-Shelah Theorem). If F ⊂ 2X and |F| >
(

n
<r

)
,

then F shatters some Y ∈
(
X
r

)
.

That this is sharp is shown by F =
(

X
<r

)
, the Hamming ball of radius r − 1

about ∅ with respect to the usual Hamming metric on 2X ≡ Ω(X).
Theorem 2.5 was proved around the same time by Sauer [14], Shelah and

Perles [15], and Vapnik and Chervonenkis [16]. It has many connections, ap-
plications and extensions in combinatorics, probability theory, model theory,
analysis, statistics and other areas.

The connection between traces and influences is as follows. Let f be a
Boolean function on Ω([n]) and F = f−1(1). It is easy to see (identifying
Ω([n]) and 2[n] as usual) that for S ⊆ [n] and T = [n]\S,

J+
S (f) = 2−|T ||F|T |.

Thus, in the language of traces, we are interested in the effect of relaxing
“F shatters Y ” to require only that F|Y contain a large fraction of 2Y .

The following arrow notation (e.g. [4, 6]) is convenient. Write (N,n) →
(M, r) if every F ⊆ 2[n] of size N has a trace of size at least M on some
S ∈

(
[n]
r

)
; for example the Sauer-Shelah Theorem says (

(
n

<r

)
+1, n) → (2r, r).

One might hope that Hamming balls would again give the best examples
in our relaxed setting, which would say, for example, that for m ≤ n,

(
(

n
<r

)
+ 1, n) → (

(
m
<r

)
+ 1,m). (6)

But (6), which was first considered by Bollobás and Radcliffe [3] and would
have implied both of the conjectures disproved here, was shown in [3] to be
false for fixed k and (large) m = n/2. (For r = n/2 and m = n− 1, it fails
for the original tribes example discussed above.)
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A consequence of (6) is that for fixed δ, ε > 0 and large r,

(
(

n
<(1+ε)r/2

)
, n) → ((1− δ)2r, r),

which would imply our second conjecture from the introduction. Here a
counterexample with n � r was given by Kalai and Shelah [12], but this
seems not very relevant to present concerns, for which the regime of interest
has n a little smaller than 2r.

A problem

Question 2.6. For fixed α, δ > 0, what is the largest t ∈ (0, 1/2) for which
one can find Boolean functions f with µ(f) = t and I+

S (f) < α for every
S ⊆ [n] of size (1/2− δ)n?

As far as we know t > n−β (with β depending on α, δ) is possible.

3 Examples

In each construction we consider, for suitable k and m, f = ∧m
i=1Ci, where

the Ci’s are random ∨’s of k literals using k distinct variables (henceforth
“k-clauses”) and show that f is likely to have the desired properties. We use
gi for the specification associated with Ci, and write Ci ∼ x if some entry
of x agrees with gi. We say Ci misses S ⊆ [n] if the indices of all variables
in Ci lie in [n] \ S.

Let s = (1/2 − δ)n. We will always use S for an s-subset of [n] and
(for such an S) set mS = |{i : Ci misses S}|. (Following common practice
we omit irrelevant floor and ceiling symbols, pretending all large numbers
are integers. As in the case of k, m and s, parameters not declared to be
constants are assumed to be functions of n.) We use log for log2.

Both constructions will make use of the next two observations, with
Theorem 1.1 following immediately from these and Theorem 1.2 requiring a
little more work.

Lemma 3.1. If k = o(
√

n) and (1/2 + δ)km = ω(n) then w.h.p.

mS ∼ (1/2 + δ)km ∀S ∈
(
[n]
s

)
. (7)

(where, as usual, an ∼ bn means an/bn → 1 and with high probability (w.h.p.)
means with probability tending to 1, both as n →∞).
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Proof. For a given S, mS has the binomial distribution B(m, p), with p =(
n−s

k

)
/
(
n
k

)
∼ (1/2 + δ)k (using k = o(

√
n) for the “∼”). Thus EmS = mp

and, by “Chernoff’s Inequality” (e.g. [8, Theorem 2.1]),

Pr(mS 6∈ ((1− ζ)mp, (1 + ζ)mp) < exp[−Ω(ζ2mp)],

for ζ ∈ (0, 1). Applying this with a ζ which is both ω(
√

n/(mp)) and o(1)
gives Pr(mS 6∼ mp) < 2−ω(n), and the union bound then gives (7).

The next lemma is stated to cover both applications, though nothing so
precise is needed for Theorem 1.1.

Lemma 3.2. If there is a ξ for which

exp[−ξ2n] = o((1− 2−k)m) (8)

and
[(1 + 2ξ)/4]k = o(1/m), (9)

then w.h.p.
µ(f) ∼ (1− 2−k)m. (10)

Proof. This is a simple second moment method calculation (similar to what’s
done in [1], though described differently there).

Recalling that x, y always denote elements of {0, 1}n, write Ax for the
event {f(x) = 1} and 1x for its indicator, and set X =

∑
1x = 2nµ(f).

Then Pr(Ax) = (1 − 2−k)m and EX = (1 − 2−k)m2n; so we just need to
show EX2 ∼ E2X (equivalently, EX2 < (1 + o(1))E2X), since Chebyshev’s
Inequality then gives Pr(|X − EX| > ζEX) = o(1) for any fixed ζ > 0.

We have

EX2 =
∑

x

∑
y

E1x1y =
∑

x

Pr(Ax)
∑

y

Pr(Ay|Ax),

so will be done if we show that for a fixed x,∑
y

Pr(Ay|Ax) < (1 + o(1))(1− 2−k)m2n.

Since the sum is the same for all x, it’s enough to prove this when x = 0.
Set Z = {y : |y| < (1/2 − ξ)n} and recall that by Chernoff’s Inequality,
|Z| < exp[−2ξ2n]2n. It is thus enough to show that (for x = 0)

y 6∈ Z ⇒ Pr(Ay|Ax) < (1 + o(1))(1− 2−k)m, (11)
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since then, using (8), we have∑
y

Pr(Ay|Ax) < |Z|+
∑
y 6∈Z

Pr(Ay|Ax) < (1 + o(1))(1− 2−k)m2n.

Now since x = 0, we have Ax = {gi 6= 1 ∀i}; so if, for a given y 6∈ Z, we
set β = βy = Pr(Ci ∼ y|gi 6= 1) (a function of |y|), then Pr(Ay|Ax) = βm.
Aiming for a bound on β, we have

1− 2−k = Pr(Ci ∼ y)
= Pr(gi = 1) Pr(Ci ∼ y|gi = 1) + Pr(gi 6= 1) Pr(Ci ∼ y|gi 6= 1)
= 2−k Pr(Ci ∼ y|gi = 1) + (1− 2−k)β

and

Pr(Ci ∼ y|gi = 1) > 1− (1− |y|/n)k ≥ 1− (1/2 + ξ)k =: 1− ν

(using the fact that if gi = 1, then gi 6∼ y iff all indices of variables in Ci

belong to {j : yj = 0}). Combining, we have

β < (1− 2−k)−1[1− 2−k − 2−k(1− ν)] = (1− 2−k)
[
1 + 2−k(ν−2−k)

(1−2−k)2

]
,

which with (9) gives βm < (1 + o(1))(1− 2−k)m (which is (11)).

Proof of Theorem 1.1. Notice that it’s enough to prove this with µ(f) ∼
α (rather than “= α”); for then, since f−1(1) ⊆ g−1(1) trivially implies
J+

S (f) ≤ J+
S (f) for all S, we can choose β ∈ (α, 1) and a g with µ(g) ∼ β

possessing the desired small influences, and shrink g−1(1) to produce f .
Let k = C log n, with C = Cδ chosen so that (1 + 2δ)k = ω(n) (e.g.

C = 1/δ does this), and m = 2k ln(1/α) = nC ln(1/α). Here all we use
from Lemma 3.1 (whose hypotheses are satisfied for our choice of k and m)
is the fact that w.h.p. mS 6= 0 for all S, whence each J+

S (f) is at most
1− 2−k = 1− n−C . On the other hand, by Lemma 3.2 (with, for example,
ξ = 0.1), we have µ(f) ∼ α w.h.p. So w.h.p. f meets our requirements.

Proof of Theorem 1.2. Here, intending to recycle n, m and f , we rename
these quantities n, m and f . We may of course assume δ is fairly small. Let

8



(for example) ξ = δ/3, fix ε with 0 < ε < ξ2, and set k = (1 + δ) log n and
m = ε2kn. These values are easily seen to give the hypotheses of Lemmas
3.1 and 3.2. In particular, we can say that w.h.p. the supports of the Ci’s
are chosen so (7) holds (note this says nothing about the values specified by
the gi’s) and

µ(f) ∼ (1− 2−k)m ∼ e−εn. (12)

Set n = (1/2 + δ)n. Fix S (∈
(
[n]
s

)
), set m = mS , and let f = fS be

the ∧ of the m Ci’s—w.l.o.g. C1, . . . , Cm—that miss S. Thus f is the ∧
of m ∼ (1/2 + δ)km = ε(1 + 2δ)kn random k-clauses from a universe of n
variables. Theorem 1.2 (with α = δ) thus follows from

Claim A. Pr(µ(f) > exp[−nδ]) < o(2−n)

(since then w.h.p. we have µ(fS) ≤ exp[−nδ] for every S).

Remarks. The actual bound in Claim A will be exp[−Ω(m)], so much smaller
than 2−n. Note that here it doesn’t matter whether we take µ to be our
original measure (i.e. µ uniform on {0, 1}n) or uniform measure on Q :=
{0, 1}n; but it’s now more natural to think of the latter—and we will do
so in what follows—since our original universe plays no further role in this
discussion. It may also be worth noting that, unlike in the proof of Lemma
3.2, the second moment method is not strong enough to give the exponential
bound in Claim A.

Claim B. If X ⊆ Q, µ(X) = β > exp[−o(n/ log2 n)] and ζ = o(2−k), then
for a random k-clause C,

Pr(µ(C ∧X) > (1− ζ)µ(X)) < 1/2

(where C ∧X = {x ∈ X : C ∼ x}).

Remark. This is probably true for β greater than something like exp[−n/k].
The bound in the claim is just what the proof gives, and is more than enough
for us since we’re really interested in much larger β.

To see that Claim B implies Claim A, set fj = ∧j
i=1Ci and notice that

µ(f) ≥ β implies (for example)

|{i : µ(fi) < (1− 5 ln(1/β)
m )µ(fi−1)}| < m/5 (13)

(and, of course, µ(fi) ≥ β ∀i). But if we take β = exp[−nδ] then our choice
of parameters gives

ζ := 5m−1 ln(1/β) = o(2−k)
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(using m/ ln(1/β) = Θ(n(1+δ) log(1+2δ)+1−δ) and 2k = n1+δ), so Claim B
bounds the probability of (13) by(

m
m/5

)
2−4m/5 = o(2−n).

Proof of Claim B. Let G be the bipartite graph on Q ∪ W , where W is
the set of (n − k)-dimensional subcubes of Q and, for (x,D) ∈ Q ×W , we
take x ∼ D if x ∈ D. (So we’ve gone to complements: for a clause C the
corresponding subcube is D = {y : C 6∼ y}, so C ∧X = X \D.)

Assuming Claim B fails at X, fix T ⊆ W with |T | = |W |/2 and

D ∈ T ⇒ µ(D ∩X) < ζµ(X),

and set R = W \ T .
Consider the experiment: (i) choose x uniformly from X; (ii) choose D

uniformly from the members of W containing x; (iii) choose y uniformly
from D.

Claim C. Pr(y ∈ X) > (2− o(1))β.

Proof. Since each triple (x,D, y) with x ∈ X and x, y ∈ D is produced by
(i)-(iii) with probability |X|−1 · 2k|W |−1 · 2k−n, we just need to show that
the number of such triples with y ∈ X is at least

(2− o(1))β|X||W |2n2−2k = (2− o(1))|X|2|W |2−2k.

Writing d for degree in G, we have∑
x∈X

dT (x) =
∑
D∈T

dX(D) < |T |ζ|X|,

implying∑
D∈R

dX(D) =
∑
x∈X

(d(x)− dT (x))

> |X||W |2−k − ζ|T ||X| = (1− o(1))|X||W |2−k.

The number of (x,D, y)’s as above is thus∑
D∈W

d2
X(D) ≥

∑
D∈R

d2
X(D) ≥ (

∑
D∈R

dX(D))2/|R|

> (1− o(1))|X|2|W |2|R|−12−2k = (2− o(1))|X|2|W |2−2k.
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Let T (x) be the random element of Q gotten from x by choosing K

uniformly from
([n]

k

)
and randomly (uniformly, independently) revising the

xi’s with i 6∈ K. Then y gotten from x by (ii) and (iii) above is just T (x),
so the next assertion contradicts Claim C, completing the proof of Claim B
(and Theorem 1.2).

Claim D. If µ(X) > exp[−o(n/ log2 n)] and x is uniform from X, then
Pr(T (x) ∈ X) < (1 + o(1))µ(X).

Remark. If X is a subcube of codimension n/k, say X = {x : x ≡ 0 on L}
with |L| = n/k, then for any x ∈ X,

Pr(T (x) ∈ X) =
∑

t

Pr(|K ∩ L| = t)2−(|L|−t) = µ(X)
∑

t

Pr(|K ∩ L| = t)2t,

and, since |K ∩ L| is essentially Poisson with mean 1, the sum is approxi-
mately e−1

∑
t 2t/t! = e. So Claim D fails for µ(X) = 2−n/k and, as earlier,

it’s natural to guess that it holds if µ(X) is much bigger than this.

Proof of Claim D. Let Qr = {y ∈ Q : |y| ≤ r}. The assumption on µ(X)
implies that µ(Qr−1) < µ(X) ≤ µ(Qr) for some r > (1/2 − o(1/k))n, so
Claim D follows from

Claim E. If ϕ = o(1/k) and r > (1/2−ϕ)n, then for any x ∈ Q and X ⊆ Q
with

µ(X) ≤ µ(Qr), (14)

Pr(T (x) ∈ X) < (1 + o(1))µ(Qr). (15)

Proof. We may assume x = 0, so that Pr(T (x) = y) is a decreasing function
of |y|. We thus maximize Pr(T (x) ∈ X) subject to (14) by taking X = Qr,
and (15) is then a routine calculation using

µ(X) = Pr(Bin(n, 1/2) ≤ r)

and
Pr(T (x) ∈ X) = Pr(Bin(n− k, 1/2) ≤ r)

(where Bin(·, ·) denotes a binomially distributed r.v.).
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