|
Jake Solomon
Institute of Mathematics
Hebrew University, Givat Ram
Jerusalem, 91904, Israel
|
| Photo by Yannai Gonczarowski |
Office: Manchester 309
Email: my first name @math.huji.ac.il
Phone: +972 2 658 4187
My research interests are differential geometry, symplectic geometry and related aspects of physics.
My Curriculum Vitae.
Together with Emmanuel Farjoun, Ruth Lawrence-Naimark and Zlil Sela, I organize the Hebrew University topology and geometry seminar.
Papers
-
Metric description of defects in amorphous materials
(with R. Kupferman),
arXiv:1306.1624.
-
Curvature of the space of positive Lagrangians,
to appear in Geom. Funct. Anal.,
arXiv:1301.6660.
-
The open Gromov-Witten-Welschinger theory of blowups of the projective plane
(with A. Horev),
arXiv:1210.4034.
-
A reverse isoperimetric inequality for J-holomorphic curves
(with Y. Groman),
arXiv:1210.4001.
-
The Calabi homomorphism, Lagrangian paths and special Lagrangians,
to appear in Math. Ann. (2013),
arXiv:1209.4737,
DOI: 10.1007/s00208-013-0946-x.
-
A Γ-structure on Lagrangian Grassmannians
(with P. Albers and U. Frauenfelder),
to appear in Comment. Math. Helv.,
arXiv:1209.4505.
-
Can mean-curvature flow be made non-singular?
(with M. Kazhdan and M. Ben-Chen),
Computer Graphics Forum 31 (2012), no. 5, 1745-1754,
arXiv:1203.6819, DOI: 10.1111/j.1467-8659.2012.03179.x.
-
A Riemannian approach to reduced plate, shell, and rod theories
(with R. Kupferman), to appear in J. Funct. Anal. (2013),
arXiv:1201.3565,
DOI:10.1016/j.jfa.2013.09.003.
-
Symplectic cohomology and q-intersection numbers
(with P. Seidel),
Geom. Funct. Anal. 22 (2012), no. 2, 443-477,
arXiv:1005.5156, DOI:10.1007/s00039-012-0159-6.
-
Symmetries of Lagrangian fibrations
(with R. Castano-Bernard and D. Matessi),
Adv. Math. 225 (2010), no. 3, 1341-1386,
arXiv:0908.0966, DOI:10.1016/j.aim.2010.04.001.
-
Disk enumeration on the quintic threefold
(with R. Pandharipande and J. Walcher),
J. Amer. Math. Soc. 21 (2008), 1169-1209,
arXiv:math/0610901, DOI:10.1090/S0894-0347-08-00597-3.
-
Intersection theory on the moduli space of holomorphic curves with Lagrangian boundary conditions,
MIT Thesis,
arXiv:math/0606429.