Exterior algebra

0.1 Symmetric tensors

Let T_0^2 be the linear space of tensors of type (2,0) on a vector space V of dimension n. The dimension of T_0^2 is n^2 . Let a basis of T_0^2 be $e_a \otimes \varepsilon_b$.

Consider a subset of basis elements

$$S(e_a \otimes \varepsilon_b) = e_a \otimes \varepsilon_b + e_b \otimes \varepsilon_a$$

Consider a linear space

$$S(T_0^2) = Span(S(e_a \otimes \varepsilon_b)).$$

This is a subset of T_0^2 of symmetric tensors.

Proposition 0.1: 1. Every symmetric tensor is represented as

$$T = \frac{1}{2!} T^{ab} S(e_a \otimes \varepsilon_b) ,$$

where $T^{ab} = T^{ba}$.

- 2. The dimension of $S(T_0^2)$ is n(n+1)/2.
- 3. The space $S(T_0^2)$ does not depend on the basis used for its definition, i.e., if a tensor is symmetric in some basis it is symmetric in every basis.

A symmetric tensor of type (p,0) defined analogously by the basis

$$S(e_{a_1}\otimes\cdots\otimes e_{a_p})$$

where S is the operator of even permutations. Every symmetric tensor is represented as

$$T = \frac{1}{p!} T^{a_1 \cdots a_p} S(e_{a_1} \otimes \cdots \otimes e_{a_p}).$$

A symmetric tensor of type (0, p) defined by the basis

$$S(\vartheta^{a_1} \otimes \cdots \otimes \vartheta^{a_p})$$

and represented as

$$T = \frac{1}{p!} T_{a_1 \cdots a_p} S(\vartheta^{a_1} \otimes \cdots \otimes \vartheta^{a_p}).$$

0.2 Antisymmetric tensors

Let T_0^2 be the linear space of tensors of type (2,0) on a vector space V of dimension n. The dimension of T_0^2 is n^2 . Let a basis of T_0^2 be $e_a \otimes \varepsilon_b$.

Consider a subset of basis elements

$$A(e_a \otimes \varepsilon_b) = e_a \otimes \varepsilon_b - e_b \otimes \varepsilon_a$$

Consider a linear space

$$A(T_0^2) = Span(A(e_a \otimes \varepsilon_b)).$$

This is a subset of T_0^2 of antisymmetric tensors.

Proposition 0.2: 1. Every antisymmetric tensor is represented as

$$T = \frac{1}{2!} T^{ab} A(e_a \otimes \varepsilon_b) ,$$

where $T^{ab} = -T^{ba}$.

- 2. The dimension of $S(T_0^2)$ is n(n-1)/2.
- 3. The space $A(T_0^2)$ does not depend on the basis used for its definition, i.e., if a tensor is antisymmetric in some basis it is antisymmetric in every basis

An antisymmetric tensor of type (p,0) defined analogously by the basis

$$A(e_{a_1}\otimes\cdots\otimes e_{a_p})$$

where A is the operator of odd permutations. Every antisymmetric tensor is represented as

$$T = \frac{1}{p!} T^{a_1 \cdots a_p} A(e_{a_1} \otimes \cdots \otimes e_{a_p}).$$

An antisymmetric tensor of type (0, p) defined by the basis

$$A(\vartheta^{a_1}\otimes\cdots\otimes\vartheta^{a_p})$$

and represented as

$$T = \frac{1}{p!} T_{a_1 \cdots a_p} A(\vartheta^{a_1} \otimes \cdots \otimes \vartheta^{a_p}).$$

Proposition 0.3: An antisymmetric tensor of type (p,0) or (0,p) with p > n is zero (dim V = n).

0.3 Exterior forms

<u>An exterior p-form</u> is an antisymmetric tensor of type (0, p). A basis of exterior forms is denoted as

$$\vartheta^{a_1} \wedge \cdots \wedge \vartheta^{a_p} = A(\vartheta^{a_1} \otimes \cdots \otimes \vartheta^{a_p}).$$

Exterior p-form - another definition An exterior p-form is an antisymmetric linear map

$$w: \underbrace{V \times \cdots \times V}_{p \text{ factors}} \to \mathbb{R},$$

i.e.,

$$w(v_1, \dots, v_a, \dots, v_b, \dots, v_p) = -w(v_1, \dots, v_b, \dots, v_a, \dots, v_p)$$

The linear space of all p-forms is denoted as $\Lambda^p(V)$. Its dimension is

$$dim\Lambda^{p}(V) = \frac{n!}{p!(n-p)!}$$

For n=4 the dimensions of spaces of p-forms are

$$p = 0, 1, 2, 3, 4$$

 $dim = 1, 4, 6, 4, 1$

Exterior product

Definition 0.4: Exterior product (wedge product, Grassmann product) of a p-form and a q-forms is a linear mapping

$$\wedge : (\Lambda^p(V), \Lambda^q(V)) \to \Lambda^{p+q}(V), \qquad (\alpha, \beta) \to \alpha \wedge \beta,$$

such that

$$(\alpha \wedge \beta)(v_1, \dots, v_{p+q}) = \frac{1}{p!q!} \sum_{\pi} (\operatorname{sign} \pi) \pi [\alpha(v_1, \dots, v_p) \beta(v_{p+1}, \dots, v_{p+q})]$$

In particular, if α and β are 1-forms

$$\alpha \wedge \beta = \alpha \otimes \beta - \beta \otimes \alpha$$

Proposition 0.5:

1)
$$(\alpha \wedge \beta) \wedge \gamma = \alpha \wedge (\beta \wedge \gamma)$$

$$(\alpha + \beta) \wedge \gamma = \alpha \wedge \gamma + \beta \wedge \gamma$$

3)
$$k(\alpha \wedge \beta) = (k\alpha) \wedge \beta = \alpha \wedge (k\beta)$$

4)
$$\alpha \wedge \beta = (-1)^{pq}\beta \wedge \gamma$$

Definition 0.6: Interior product (inner product, contraction) of a vector and a p-form is a linear mapping

$$\rfloor: V \times \Lambda^p(V) \to \Lambda^{p-1}(V),$$

such that

$$(X \rfloor w)(v_1, \dots, v_{p-1}) = w(X, v_1, \dots, v_{p-1})$$

For
$$p = 0$$
, $X \rfloor w = 0$.
For $p = 1$, $X \rfloor w = w(X)$, particular $e_a \rfloor \vartheta^b = \delta_b^a$.

Proposition 0.7:

1)
$$v \rfloor (\alpha + \beta) = v \rfloor \alpha + v \rfloor \beta$$

$$(v+u) | \alpha = v | \alpha + u | \alpha$$

$$3) \qquad v | u | w = -u | v | w$$

4)
$$v \rfloor (\alpha \wedge \beta) = (v \rfloor \alpha) \wedge \beta + (-1)^{\deg \alpha} \alpha \wedge (v \rfloor \beta)$$

Definition 0.8: Grassmann (exterior) algebra is a \mathbb{Z} -graded algebra defined on the direct sum

$$\Lambda^{\bullet}(V) = \bigoplus_{p=0}^{n} \Lambda^{p}(V)$$

Vector spaces with pseudo-scalar product

Definition 0.9: <u>Euclidean metric</u> on a vector space V is a symmetric tensor of type (2,0) such that for some basis $\{e_a\}$ on V

$$g(e_a, e_b) = g_{ab} = diag(+1, +1, \dots, +1)$$
.

<u>Lorentzian metric</u> on a vector space V is a symmetric tensor of type (2,0) such that for some basis $\{e_a\}$ on V

$$g(e_a, e_b) = g_{ab} = diag(-1, +1, \dots, +1)$$
.

<u>Pseudo-Euclidean metric</u> on a vector space V is a symmetric tensor of type (2,0) such that for some basis $\{e_a\}$ on V

$$g(e_a, e_b) = g_{ab} = diag(-1, \dots, -1, +1, \dots, +1)$$
.

Definition 0.10: Scalar product of two vectors $X, Y \in V$

$$(X,Y) = g(X,Y)$$

Musical isomorphisms

Definition 0.11: Define isomorphism (flat)

$$^{\flat}: V \to V^* \qquad \text{for } X \in V \quad ^{\flat}: X \mapsto X^{\flat} \in V^*$$

such that for every $Y \in V$

$$Y | X^{\flat} = g(X, Y)$$

Definition 0.12: Define isomorphism (sharp)

$$^{\sharp}: V^* \to V \qquad \text{for } w \in V^* \quad ^{\sharp}: w \mapsto w^{\sharp} \in V$$

such that for every $Y \in V$

$$Y|w = g(w^{\sharp}, Y)$$

Definition 0.13: Scalar product of 1-forms $\alpha, \beta \in V^*$

$$\hat{g}(\alpha,\beta) = g(\alpha^{\sharp},\beta^{\sharp})$$

Notations:

$$g(e_a, e_b) = g_{ab}$$
 $\hat{g}(\vartheta^a, \vartheta^b) = g^{ab}$

Proposition 0.14:

$$g^{ab}g_{ac} = \delta^b_c$$

Metrical volume form

Definition 0.15: Let ϑ^a be a basis in V^* . Define a volume form

$$vol = \vartheta^1 \wedge \dots \wedge \vartheta^n = \frac{1}{n!} \varepsilon_{a_1 \dots a_n} \vartheta^{a_1} \wedge \dots \wedge \vartheta^{a_n}$$

Proposition 0.16: Volume form is a twisted tensor.

Hodge map

Definition 0.17: Hodge map is a linear map

$$*: \Lambda^p \to \Lambda^{n-p}$$
, where $n = dimV$

that satisfies

$$*(w \wedge \phi) = \phi^{\sharp} | *w$$

for every w — p-form, and ϕ — 1-form. In addition,

$$*1 = vol = \frac{1}{n!} \varepsilon_{a_1 \cdots a_n} \vartheta^{a_1} \wedge \cdots \wedge \vartheta^{a_n}$$

Example 0.18:

$$*\vartheta^a = \frac{1}{3!} g^{am} \varepsilon_{mnpq} \vartheta^n \wedge \vartheta^p \wedge \vartheta^q$$

In Lorentzian metric with signature (+, -, -, -), for orthonormal coframe ϑ^a (Check!)

$$*\vartheta^{0} = \vartheta^{1} \wedge \vartheta^{2} \wedge \vartheta^{3}$$

$$*\vartheta^{1} = \vartheta^{0} \wedge \vartheta^{2} \wedge \vartheta^{3}$$

$$*\vartheta^{2} = -\vartheta^{0} \wedge \vartheta^{1} \wedge \vartheta^{3}$$

$$*\vartheta^{3} = \vartheta^{0} \wedge \vartheta^{1} \wedge \vartheta^{2}$$

Proposition 0.19:

$$*^{2} = (-1)^{p(n-p)+i}$$

$$*w_{1} \wedge w_{2} = *w_{2} \wedge w_{1}$$

$$*w \wedge \vartheta^{a} = -g^{ab} * (e_{b} | w)$$