Mathematical foundations of relativity Y. Itin

Tensor algebra

0.1 Tensor product — first definition

Definition 0.1: Let V and U be vector spaces on R of dimensions dimV =
m, dimU = n. Consider some basses in V' and U denoted as

{ea € Via=1,---,m}, and {fa€Via=1,---,n}
Denote by
€ @ fa = (eaafa)
an ordered set of pairs of basis vectors. Let
T = Span(e, @ fa),
It means that every ¢ € T is represented as
t=1"%4 ® fo-
We refer to T' as the pre-tensor product vector space. 1

Remark 0.2: Note, that e, ® f, is no more that only a symbol. Particularly,
we have not fixed how the expression (2e,) ® f, is connected to e, ® f,. More
generally, the question is how the basis ¢,® f, is changed under linear changes
of the basses e, and f,.




|

Consider changes of the basses in U and V/
ca=A8G,  fo=B"fs.

The general linear relations between tensor basses is

€ ® fa = Xaabﬂéa 02y faa
where .02 is a some matrix.

Definition 0.3:
1) A pre-tensor vector space with the matrix

Xaabﬂ = AabBaﬂ

is called an ordinary tensor product of the spaces U and V and denoted as
UV.
2) For the matrix

Xaabﬂ = UpAabBaﬂ pE Q

we have a pseudo tensor product of class p of the spaces U and V.
3) If det A, = det B,” = A and the matrix of the transformations is

Xaab/B = |A| _pAabBaﬂ

we have tensor density of the weight p.

4) If det A, = det B,” = A and the matrix of the transformations is

A
Xaab/j = mAabBaﬁ

we have W-tensor (twisted tensor, odd tensor, impair tensor).

5) If det A,° = det B,? = A and the vector spaces are considered on
C tensor A-densities of the weight p and anti-weight q are defined with the
matrix of the transformations

Xaabﬂ = AﬂbAiqAAabBa/B .



The vector spaces U and V' are mostly (possible always) used to be of the
same dimensions. We denote the basis of the space V as e, and the basis of
the dual space V* as 9*. The duality relation is denoted as

eq] V9’ = 6.
It is a bilinear relation: For v € V and w € V*,
v]w = viwy(eq |9°) = vw,

If the basis of the vector space V' is changed as e, = A,%8, and the dual basis
is changed as ¥9* = B%1°, the dual relations between the basses yields

80 = ea ]9’ = A" B |0" = A" B0y, = A" B,
Thus B is the reciprocal matrix.

Definition 0.4:
Tensors of the type (2,0) are the elements of the tensor space V @ V, it
means that its elements are represented as

t=1t%,Qe€,.

Tensors of the type (0,2) are the elements of the tensor space V* ® V*,
it means that its elements are represented as

t =19 Q9.

Tensors of the type (1,1) are the elements of the tensor space V @ V*, or
V*® V, they are represented as

t=1t9"Q® ey, or t=1%e, @1°.
Tensors of the type (p, q) are the elements of the tensor space
Ve---VeVv*...V*,
they are represented as

. byeby Qa1-a
t= tal---ap 170g ga1ap ®eb1---bq .



0.2 Tensor product — second definition

Definition 0.5: Let U and V be vector spaces on R.

Denote by F(V,U) the vector space free generated by the elements of the
Cartesian product V' x U, it means that F(V,U) is a set of all final linear
combinations of the pairs (v,u),v € V ,u € U.

Denote by R(V,U) the subspace of F(V,U) included the elements of the

form
(v1 + v2,u) — (vi,u) — (v2,u),

(v,u1 + ug) — (v,u1) — (v, ug),
(av,u) — a(v,u),
(v,au) — a(v,u),

where a € R, v,vy,v € V and u,uy,us € U.
Factor-space
VeU=F(V,U)/R(V,U)

is called tensor product of V and U. 1

0.3 Tensor product — third definition

Definition 0.6: The tensor product U ® V' of the vector spaces U and V' on
R is the vector space of all bilinear (linear in every argument) maps

UxV —R.
In general, a tensor of the type (p, ¢) is a multilinear map

t:y*x---xV*nyx---x‘C—HR.

v v
p times q times

Particular, forv e V,w e V*,
- a tensor of the type (1,0) (vector) is a map

v: V" >R, v(w) € R
- a tensor of the type (0,1) (1-form) is a map

v:V >R, w(v) € R



- a tensor of the type (2,0) is a map
t:V*'xV* >R, t(wy, ws) € R
- a tensor of the type (0,2) is a map
v:VxV =R, t(v,v2) € R
- a tensor of the type (1,1) (of two types) is a map

v:VxV">R, t(w,v) eR

0.4 Tensor product — fourth definition

Definition 0.7: Tensor is a set of numbers that changes under a transfor-
mations e, = A™,e,, of the basis by the “tensor rule”

Ja1--a _ Am a —1\b1 —1\b mi-m
t pbl---bq—A ml"'Apmp(A ) (A )q t P ri-ong

ni Nng

0.5 Tensor operations

1. Addition of tensors
Let tensors 7" and 7" be of the same type (r,s). T + T" is the tensor of the
type (r,s) such that forall X; e V,i=1,---s,w; € V*,j=1,---r

(T+T,)(w11"'7w’raX1a"'7Xs) =
T(wla"'awraXl,"'aXs)+Tl(wla"':wraX1,"'aXs)

In components,
(T + Tl)al"'arbl...bs = TalmaTbl...bs + Tlalmarbl...b

8

2. Multiplication of a tensor by a scalar

(OéT)(w1,'",wr,Xl,"',Xs) = aT(wl’...’wT’Xl’...’Xs)

In components,
a1a  rrarea
(O!T) b, = o " by --bs

5



3. Tensor product Let tensors T and T" be of the types (r,s) and (p,q).
Tensor product is the tensor of the type (r 4+ p,s + ¢), which maps the
elements X1, --- X1, €V, wy, -, w,4p € V* into the number

(T ® T,)(Xla T 'Xs-l—qawh Ty w'r-f—p) =
T(Xla Tt XSa Wi, -+, wr)Tl(Xs—I—la e Xs—|—q7 Wr41,° ", wr—l—p)

In components,

1\ a1 -Gp 4 . a1-a 1Qr 41 Qg
(T@T) " by berg = T Tbl---bsT " T b1 -bstg

4. Contraction of a tensor
Let tensor T be of the type (r, s). T" is the tensor of the type (r—1,s—1)
such that forall X; € V,i=1,---s-1, w; € V*,j=1,---7r =1

! —_ a
T(wla'";wr—laXla"',Xs—l) _T(wl’...’ﬁ ;"',wr—I,XI,"',eay"'aXs—l)

In components,

So, contraction occurs when a pair of indices (one a subscript, the other a
superscript) of a mixed tensor are set equal to each other so that a summation
over that index takes place (due to the Einstein summation convention). The
result is another tensor whose rank is reduced by 2.

5. Symmetrization of a tensor

Let T be a tensor of type (2,0). Its symmetrization is the tensor S(7) of
type (2,0) such that for all wy,w, € V*

S(T) = %(T(wl, wy) + T (wa, wy)

In components,
1

2!
The symmetrization can be applied for arbitrary number of up or dawn
indices. For instance,

T(ab) — (Tab + Tba)

1
K®peay = i(Ka(bcd) + K%aey + K cba) + K (capy + K (ave) + K (dep))



a 1 a a
K% peya = E(K (bed) + K% (cba))

a 1 a a
K*@jena = o7 (K bed) + K (dev))

2!
5. Antisymmetrization of a tensor
Let T be a tensor of type (2,0). Its antisymmetrization is the tensor S(T')
of type (2,0) such that for all wy, wy € V*

1
A(T) = E(T(wla w2) - T(w2aw1)
In components,
1
[ab] _— = (rab _ ba
Tl = 2!(T T°)

The symmetrization can be applied for arbitrary number of up or dawn
indices. For instance,

a 1 a a a a a a
K%peq = §(K (bed) — K vde) — K (cba) + K (cap) + K (dbe)y — K (dep))

a 1 a a
K ba = E(K (bed) — K% (cba))

1

Kpe1a = E(Ka(bcd) — K*%qep))

0.6 Tensor algebra

In abstract algebra, a graded algebra is an algebra over a field, in which
there is a consistent notion of the weight of an element. The idea is that the
weights of elements should add, when elements are multiplied. One has to
allow the ’inconsistent’ addition of elements of different weights. A formal
definition follows.

Let G be an Abelian group. A G-graded algebra A is an algebra with a
direct sum decomposition

A=P A

]
such that
AiA; C Ay
An element of the i-th subspace A; is said to be a homogeneous, or a pure,
element of degree 1.



Important example of graded algebras is the tensor algebra T°V of a
vector space V defined as a direct sum of all tensor spaces

TV =PT1?

pq

The basis of the algebra is the union of all tensor basses
]-7 €a, 19(1’ e
and the element is defined as

a1+,8a€a+7a19a+"'-



