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Maxwell equations and their symmetry

0.1 Maxwell equations

Definition 0.1: The electric and magnetic phenomena are described by two
independent vector fields:

E:R' 5 R, E = E(t,z) — — — electric field.
H:R' >R, H=H(t,z) — — — magnetic field.
1

Remark 0.2: Note that 3-vectors (vectors of 3 components) are correct defined
objects in Galileian spacetime. Which other objects are defined? I

Differential operations

Definition 0.3: Gradient of a scalar field ¢ : R®> — R is a map grad : R — R®
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Definition 0.4: Divergence of a vector field H : R* — R® is a map div : R® —
R
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Definition 0.5: Rotor (Curl) of a vector field H : R* — R® is a map
rot : R — R3
é1 €92 €3

rot H=| 2 2 .2 |,

where the determinant is to be evaluated by the first row. I
Definition 0.6: Laplacian of a scalar field ¢ : R® -+ Risamap A: R — R

Ap = divgrad



Mazxwell’s system

Definition 0.7: The electric and magnetic fields satisfy the system of partial
differential equations

(1) divE =p,
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(2) rot E + e 0,
(3) divH =0,
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where p : R? = R is a scalar field, called electric charge density, while J : R® —
R3 is a vector field, called electric current. Il

Remark 0.8: The derivative operators (grad,div,rot) are introduced only for
fields on R%. The Galileian space is 4 dimensional. However, because of the
fixed time map, the time coordinate is only as a parameter. So the differential
operators can be considered also fields defined on the Galileian space, as they
used in the Maxwell system. I

Remark 0.9: Usually the support of the electric charge density and the electric
current are points and lines in R3. In most points they can be taken to be zero.

Problem 0.10: What are the symmetries of the Maxwell system and how they
are related to the group of symmetries of the Galileian space? 1

Theorem 0.11:
1) For an arbitrary vector field M : R® — R® a vector field A : R® — R® is
defined such that

divM =0 iff M =rotA.

2) For an arbitrary vector field N : R® — R® a scalar field ¢ : R® — R is defined
such that
rot N =0 iff N =gradyp.

Theorem 0.12: Mazwell system is equivalent to the system of Poisson type
equations
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where the vector potential A is defined from

H=rotA,



the scalar potential is defined from

0A
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ot + grad ¢

and they satisfied the Lorenz gauge condition
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Remark 0.13: The Laplacian of the vector is considered here in a component-

wise form
AA = (AAY)e, -

0.2 Symmetries of Maxwell equations

Instead of looking for the symmetries of the Maxwell system itself we will con-
sider the equation for the scalar potential

Recall that in the affine space {4, V'} we have two types of the the transfor-
mations:
(1) The shift of the basis point

O—=-0+m, OeA, meV
(2) The change of the basis in V
ea = holes,  ho” € GL(4,R)
Corresponding change of the coordinates of a point in A* is
i = 2%ho” +mP

The shift of the basis point does not changes the equation (*).
Consider different subgroups of GL(4, R).
1) rotations

t=t, F=azx+by,
Z=z, 7 =cr+dy,
Correspondingly,
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Thus the invariance of the equation (*) requires

a2+ =1, A+d>=1, ac+bd=0.



The solution of this system is

Z= cosfx+sinfy

9 = —sinf x + cosf y,

i.e., the corresponding matrix is from O(2).
2) (t,z) - transformations (pseudo-rotations, busts)

t =at + bz, I =ct+dr,

=y, Z=z,
Correspondingly,
P 0% 2 2 % % 2 2 %
= - = — — 2 — = — —_— -
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Thus the invariance of the equation (*) requires
a?-v=1, —-d>=1, ac—bd=0.
The solution of this system is

t =cosh@ t +sinhf z
& = sinh@ t + coshd x.

It is easy to check that such matrices compose a group, which is called the group
of pseudo-rotations O(1,1).

Denote
1

v
sinh = —— ,coshf = ——
V1—1?

V1 -2

Thus, we derive the Lorentz transformations

1

The result: The transformation of the Galileian spacetime are not the invariant
transformations of the Maxwell equations. The pure Galileian transformations
are replaced by new Lorentz transformations. Consequently, also the Galileian
spacetime has to be replaced by some other model.



0.3 Minkowski spacetime

Definition 0.14: Minkowski vector space M is a vector space V ~ R* endowed
with a bilinear for (Minkowski “vector product”) (+,-) : V' x V' — R such that
for two arbitrary vectors u = u%e, € V, v = v% €y €V

(u,v) = uP® —ulv! —u2v? —uv® = nusue?

where
Nep = diag(l,—1,—1,—1).

|
The square of a vector
(w,u) = (u°)? = (u')* = (u?)* = (u®)?
is not positive defined, so different types of vectors are defined
e Spacelike vectors with (u,u) <0
e Timelike vectors with (u,u) > 0
e Null (light) vectors with (u,u) =0

Under a transformation of a basis e, = A,° €z the components of a vector
u = u®e, change as @° = u® A",

Proposition 0.15: The transformation of the basis preserved the Minkowski
vector product are satisfied

nuuAauAﬁV = Napg -

Proposition 0.16: The set of the transformation (with positive determinant)
preserved the Minkowski vector product is with group 6 generators, which in-
cludes the rotations (8 generators) and the Lorentz transformations (3 genera-
tors). The group is denoted as SO(1,3).

Definition 0.17: Null cone in the Minkowski vector space M is a set of all null
vectors. 1

Definition 0.18: Minkowski spacetime is an affine space A* with associated
Minkowski vector space. I
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