1 Action functional, Euler-Lagrange equations

Definition 1.1: Consider a curve

$$\gamma: \mathbb{R} \to R^n, \qquad x = x(t).$$

The action functional on the curve is defined as

$$\Phi(\gamma) = \int_{t_2}^{t_1} L(\gamma) dt \,,$$

thus $L(\gamma)$ is a function on the infinity space of differential curves to \mathbb{R} .

Example 1.2: The length of a curve $\gamma = \{x(t) | t_1 \le t \le t_1\}$ is a functional

$$\ell = \int_{t_1}^{t_2} \sqrt{1 + \dot{x}^2(t)} dt \,.$$

Variation of a curve

$$\tilde{\gamma} = \gamma + h$$
 $\tilde{x}(t) = x(t) + h(t)$

Definition 1.3: Functional $\Phi(\gamma)$ is differentiable if

$$\Phi(\gamma + h) - \Phi(\gamma) = F(\gamma, h) + R(\gamma, h),$$

where F is a linear function of h, while $R(\gamma,h)=\mathcal{O}(h^2)$ in the sense that $|h|<\epsilon$ and $|dh/dt|<\epsilon$ yield $|R|< C\epsilon^2$.

Theorem 1.4: For $L(x, \dot{x}, t)$ $x(t) : \mathbb{R} \to \mathbb{R}^n$ a differential function from 3 variables, the functional

$$\Phi(\gamma) = \int_{t_2}^{t_1} L(x,\dot{x},t) dt \,,$$

is differentiable and

$$F(h) = \int_{t_2}^{t_1} \left[\frac{\partial L}{\partial x} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) \right] h dt + \left(\frac{\partial L}{\partial \dot{x}} h \right) \Big|_{t_2}^{t_1}$$

Lemma 1.5: If a continuous function f(t) satisfies

$$\int_{t_1}^{t_2} f(t)h(t)dt = 0$$

for any continuous function h(t) with $h(t_1) = h(t_2) = 0$, then f(t) = 0.

Theorem 1.6: The curve x = x(t) is an extremal of the functional

$$\Phi(\gamma) = \int_{t_2}^{t_1} L(x, \dot{x}, t) dt,$$

if and only if, along the curve,

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{x}}\right) - \frac{\partial L}{\partial x} = 0.$$

For a one point in the 3 dimensional space $x=x^ie_i\in\mathbb{R}^3$. For N points in the 3 dimensional space $x=x^ie_i\in\mathbb{R}^{3N}$.

2 Energy

Theorem 2.1: For a Lagrangian, which is not depends on time t explicitly,

$$L = L(x, \dot{x})$$

the scalar (real function) of the energy

$$E := \frac{\partial L}{\partial \dot{x}} \dot{x} - L$$

is preserved along the trajectory x = x(t), that means E does not depend of time.

Proof: For a shift of the time coordinate $t \to t + \tau$,

$$\delta L \ := \ L(x(t+\tau), \dot{x}(t+\tau)) - L(x, \dot{x}) = \Big(\frac{\partial L}{\partial x} \, \dot{x} + \frac{\partial L}{\partial \dot{x}} \, \ddot{x}\Big)\tau + \mathcal{O}(\tau^2)$$

Using the Euler-Lagrange equation

$$\delta L = \left(\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}}\right) \dot{x} + \frac{\partial L}{\partial \dot{x}} \ddot{x}\right) \tau + \mathcal{O}(\tau^2) = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \dot{x}\right) \tau + \mathcal{O}(\tau^2).$$

The shift of the time coordinate is an invariance transformation of the Lagrangian, so $\delta L=0$ for arbitrary τ , particularly in every order of τ . Thus

$$\frac{dE}{dt} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \dot{x} \right) = 0.$$

Remark 2.2: In all the expression above the scalar product of the vectors is subtended. For instance the expression for the energy, in the components, is

$$E = \frac{\partial L}{\partial \dot{x}^i} \, \dot{x^i} - L$$

Observe the positions of the indices (down-up)! The summation in i is subtended. \blacksquare

For a Lagrangian of the form

$$L = T(\dot{x}) - U(x)$$

the energy takes the form

$$E = \frac{\partial T}{\partial \dot{x}} \dot{x} - T + U$$

If $T(\dot{x})$ is the homogeneous function of the order 2, than

$$E = T + U$$

- the total energy is the sum of the kinetic energy T and the potential energy U.

3 Momentum

Theorem 3.1: For a Lagrangian, which is not depends on time x explicitly,

$$L = L(\dot{x}, t)$$

the vector of the momentum

$$p := \frac{\partial L}{\partial \dot{x}}$$

is preserved along the trajectory x = x(t), that means p does not depend of time.

Proof: For a shift of the space coordinate $x \to x + m$, where $x, m \in \mathbb{R}^3$

$$\frac{\partial L}{\partial x} = 0$$

Using the Euler-Lagrange equation (it means restricting this equation to th trajectory !)

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) = 0 \quad ===> \quad \frac{dp}{dt} = 0.$$

Remark 3.2: In the components

$$p_i = \frac{\partial L}{\partial \dot{x^i}}$$

We can write it as a usual vector

$$p^i = \delta^{ij} \frac{\partial L}{\partial \dot{x^i}}$$

Remark 3.3: Observe the relation

$$E = p_i x^i - L = \delta_{ij} p^i x^i - L$$

For the Lagrangian rewrites as L = L(x, p), it is called *Hamiltonian*

$$H = px - L(x, p).$$

4 Examples

1-point system

Lagrangian is

$$L = \frac{m\dot{x}^2}{2} \, .$$

The equation of motion (EL) is

$$m\ddot{x}=0.$$

The energy is

$$E = \frac{m\dot{x}^2}{2} \,.$$

The momentum is

$$p = mx$$
.

2-point system

Lagrangian is

$$L = \frac{m_1 \dot{x}^2}{2} + \frac{m_2 \dot{y}^2}{2} - \frac{k m_1 m_2}{||x - y||} \,.$$

The equations of motion are

$$m_1 \ddot{x} = -rac{k m_1 m_2 (x-y)}{||x-y||^2} \, .$$

$$m_2\ddot{y} = rac{km_1m_2(x-y)}{||x-y||^2} \,.$$

The total energy is

$$E = \frac{m_1 \dot{x}^2}{2} + \frac{m_2 \dot{y}^2}{2} + \frac{k m_1 m_2}{||x - y||}.$$

The forces are

$$^{(1)}F = -^{(2)}F$$

- the third law of Newton.

The momentum is not preserved.