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1 Action functional, Euler-Lagrange equations
Definition 1.1: Consider a curve
v:R—R", z =z(t).

The action functional on the curve is defined as

B(y) = / "Ly,

ta

thus L(vy) is a function on the infinity space of differential curves to R. I

Example 1.2: The length of a curve v = {z(t) [t1 <t < t1} is a functional

(2]
(= [ i+ @20)dt.
t1
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Variation of a curve
Yy=v+h Z(t) = z(t) + h(¢)
Definition 1.3: Functional ®(v) is differentiable if
(y+h) = @) = F(v,h) + R(v, h)

where F is a linear function of h, while R(v, h) = O(h?) in the sense that |h| < €
and |dh/dt| < e yield |R| < Ce® . 1

Theorem 1.4: For L(xz,&,t) z(t) : R = R" a differential function from 3
variables, the functional

is differentiable and

o= [ 2 (30 (320
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Lemma 1.5: If a continuous function f(t) satisfies
to
F@h(t)dt =0
t1
for any continuous function h(t) with h(t1) = h(t2) =0, then f(t) = 0.
Theorem 1.6: The curve x = x(t) is an extremal of the functional
t1
80) = [ L0,
t2

if and only if, along the curve,

d(oLy_oL_,

dt \ 0% or
For a one point in the 3 dimensional space = = z’e; € R3.
For N points in the 3 dimensional space x = z’e; € RV,

2 Energy

Theorem 2.1: For a Lagrangian, which is not depends on time t explicitly,
L = L(z,%)
the scalar (real function) of the energy

oL
E:=—%-1L
0%
is preserved along the trajectory © = xz(t), that means E does not depend of
time.

Proof: For a shift of the time coordinate t — t + 7,

L L
0L = L{z(t+7),&(t+ 7)) — L(z, &) = (g_a: z+ g_x ;'U')T + 0O(1?)
Using the Euler-Lagrange equation
d (OL\. OL . o\
0L = (E<%)x+ %w)7+(’)(r )=
d (0L . 9
E(%x)T + O(17).

The shift of the time coordinate is an invariance transformation of the La-
grangian, so L = 0 for arbitrary 7, particularly in every order of 7. Thus

d (9L
@ ai(5)



Remark 2.2: In all the expression above the scalar product of the vectors is
subtended. For instance the expression for the energy, in the components, is

_ L -

B=aa”

i L

Observe the positions of the indices (down-up)! The summation in ¢ is sub-
tended. I

For a Lagrangian of the form
L=T()-U(z)
the energy takes the form

e=%i_riv
ot

If T(<) is the homogeneous function of the order 2, than
E=T+U

- the total energy is the sum of the kinetic energy T' and the potential energy U.

3 Momentum

Theorem 3.1: For a Lagrangian, which is not depends on time x explicitly,

L = L(&,t)
the vector of the momentum
oL
P= %

is preserved along the trajectory x = x(t), that means p does not depend of time.

Proof: For a shift of the space coordinate  — = + m, where z,m € R?

OL
%—0

Using the Euler-Lagrange equation (it means restricting this equation to th
trajectory !)

|
Remark 3.2: In the components
oL
P o



We can write it as a usual vector

pz' — 5138_L

|
Remark 3.3: Observe the relation
E=pga'—L=6;p'az" — L
For the Lagrangian rewrites as L = L(x, p), it is called Hamiltonian

H = pr — L(z,p) .

4 Examples

1-point system
Lagrangian is

o md
2
The equation of motion (EL) is
mi =0
The energy is
-2
m
E=—
2
The momentum is
p=mz
2-point system
Lagrangian is
P2 2 kmym:
I = m1T + may” 112

2 2 -yl
The equations of motion are
kmime(xz — y)
llz -yl
kmima(z —y)
llz -yl

mls'é:—

mgﬂ =

The total energy is
mig2  maegy?  kmimg

E= .
2 2 llz - yl|

The forces are
Op—-_@Ff

- the third law of Newton.
The momentum is not preserved.



