## 1 Groups of transformations

# 1.1 Vector space $V = \mathbb{R}^2$

Basis  $e_i = \{e_1, e_2\}$ 

$$x = x^{1}e_{1} + x^{2}e_{2} = \sum_{i=1}^{2} x^{i}e_{i} = x^{i}e_{i}$$

Einstein's summation notation:

- 1) In every expression, the indices can appear only once (free indices) or twice (indices of summation).
- 2) An index of summation appears in each term both as a subscript and as a superscript and the sigma summation symbol is omitted.
- 3) The same free indices have to appear in both sides of an equation in the same position.

The transformation of the basis

$$e_i = h_i{}^j \tilde{e}_j$$

Thus

$$x = x^i e_i = x^i h_i{}^j \tilde{e}_j = \tilde{x}^j \tilde{e}_j .$$

This yields the transformation of coordinates

$$\tilde{x}^j = x^i h_i{}^j .$$

The transformations are reversible

$$det h \neq 0$$

Levi-Civita symbol

$$\varepsilon_{ij} = \varepsilon^{ij} = \left(\begin{array}{cc} 0 & 1\\ -1 & 0 \end{array}\right)$$

Proposition 1.1: The determinant can be represented as

$$\det(h) = \frac{1}{2!} \varepsilon^{ij} \varepsilon_{mn} h_i{}^m h_j{}^n$$

**Proposition 1.2:** The group of matrices

$$H = \{h_i{}^j \mid \det h \neq 0\} = GL(2, \mathbb{R})$$

is a disjoint union of two sets

$$H_1 = \{h_i{}^j \, | \, \det(h) > 0\} \qquad --- ext{a subgroup}$$
  $H_2 = \{h_i{}^j \, | \, \det(h) < 0\} \qquad --- ext{non a subgroup}$ 

**Proposition 1.3:**  $H_1$  is a normal subgroup of H:  $hgh^{-1} \in H_1$  for every  $g \in H_1$  and for every  $h \in H$ .

## 1.2 Vector space $V = \mathbb{R}^n$

Basis  $e_i = \{e_1, e_2 \cdots e_n\}$ 

$$x = x^i e_i$$

The transformation of the basis

$$e_i = h_i{}^j \tilde{e}_j$$

yields the transformation of coordinates

$$\tilde{x}^j = x^i h_i{}^j$$
.

The transformations are reversible

$$det(h) \neq 0$$

**Definition 1.4:** Levi-Civita symbol

$$\varepsilon_{i_1\cdots i_n} = \varepsilon_{j_1\cdots j_n} = \begin{cases} & 1 & \text{if } (i_1\cdots i_n) \text{ is an even permutation of } (1,\cdots,n) \\ & -1 & \text{if } (i_1\cdots i_n) \text{ is an odd permutation of } (1,\cdots,n) \\ & 0 & \text{if } (i_1\cdots i_n) \text{ is not a permutation of } (1,\cdots,n) \end{cases}$$

**Proposition 1.5:** The determinant can be represented as

$$\det(h) = \frac{1}{n!} \varepsilon^{i_1 \cdots i_n} \varepsilon_{j_1 \cdots j_n} h_{i_1}^{j_1} \cdots h_{i_n}^{j_n}$$

# 1.3 Vector space $V = \mathbb{R}^2$ with a scalar product

Euclidean scalar product

$$(x,y) = x^{1}y^{1} + x^{2}y^{2} = \sum_{i=1}^{2} x^{i}y^{i} = \delta_{ij}x^{i}y^{j}$$
$$\delta_{ij} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$(x,x) \ge 0 \quad ==> |x| = (x,x)^{1/2} \quad \text{norm}$$

Scalar product under transformation of the basis

$$(x,y) = \delta_{mn} \tilde{x}^m \tilde{x}^n = \left(\delta_{mn} h_i^m h_j^n\right) x^i y^j$$

Transformation of a basis that preserves the scalar product satisfied the equation

$$\delta_{mn}h_i^m h_j^n = \delta_{ij} \quad \langle = = = \rangle \quad h^T h = I$$

The transformations form a group, denoted as  $O(2, \mathbb{R})$ .

Two solutions of the equation

$$h_1 = \begin{pmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{pmatrix} \in SO(2, \mathbb{R})$$

$$h_1 = \begin{pmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{pmatrix} \in SO(2, \mathbb{R})$$

$$h_2 = \begin{pmatrix} \cos \phi & -\sin \phi \\ -\sin \phi & -\cos \phi \end{pmatrix} = \begin{pmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

# 1.4 Vector space $V = \mathbb{R}^3$ with a scalar product

Euclidean scalar product

$$(x,y) = \delta_{ij} x^i y^j$$

$$\delta_{ij} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Transformation of a basis that preserves the scalar product satisfied the equation

$$\delta_{mn}h_i^mh_j^n = \delta_{ij} \quad <===> \quad h^Th = I$$

The transformations form a group, denoted as  $O(3, \mathbb{R})$ .

#### Theorem 1.6: Euler

Every matrix  $h \in SO(3)$  is represented as  $g = g_1g_2g_3$ , where

$$g_1 = \begin{pmatrix} \cos \phi & -\sin \phi & 0 \\ -\sin \phi & -\cos \phi & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$g_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & -\sin \theta & -\cos \theta \end{pmatrix}$$

$$g_3 = \begin{pmatrix} \cos \psi & -\sin \psi & 0 \\ -\sin \psi & -\cos \psi & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

## 2 Space-time

## 2.1 Vector space $V = \mathbb{R}^4$

Basis  $e_{\alpha} = \{e_0, e_1 e_2, e_n\}$ 

$$x = x^{\alpha} e_{\alpha} = x^{0} e_{0} + x^{i} e_{i}, \qquad \alpha = 0, 1, 2, 3 \qquad i = 1, 2, 3$$

The transformation of the basis

$$e_{\alpha} = h_{\alpha}{}^{\beta} \tilde{e}_{\beta}$$

yields the transformation of coordinates

$$\tilde{x}^{\beta} = x^{\alpha} h_{\alpha}{}^{\beta} .$$

The transformations are reversible

#### 2.2 Aristotle space-time

Vector space is a direct product  $\mathbb{R} \times \mathbb{R}^3$ . The transformation of basses in two vector spaces are independent.

$$h = \begin{pmatrix} * & 0 & 0 & 0 \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & {h_i}^j \end{pmatrix}, \qquad h_i{}^j \in GL(3, \mathbb{R})$$

The transformations preserved both norms

$$||t|| = |t|, \quad \text{for} \quad t \in \mathbb{R}$$

$$||x|| = \sqrt{(x^1)^2 + (x^2)^2 + (x^3)^2}, \quad \text{for} \quad x \in \mathbb{R}^3$$

are

$$h = \begin{pmatrix} \pm 1 & 0 \\ 0 & {h_i}^j \end{pmatrix}$$
,  $h_i^j \in SO(3, \mathbb{R})$ 

## 2.3 Affine space

Let  $\mathcal{A}$  be an affine space with an associated vector space  $V \simeq \mathbb{R}^4$ . For a fixed basis point  $O \in \mathcal{A}$ , an arbitrary point  $P \in \mathcal{A}$  is represented as

$$P = O + x = O + x^{\alpha} e_{\alpha}, \qquad x \in V$$

Two different types of transformations appear in the affine space.

• Change of the basis point

$$O = O' + m$$
,  $m \in V$ 

• Transformation of the basis

$$e_{\alpha} = h_{\alpha}{}^{\beta} e_{\beta} , \qquad h_{\alpha}{}^{\beta} \in GL(4, \mathbb{R})$$

Corresponding transformation of the components — <u>affine transformations</u>

$$\tilde{x}^{\beta} = x^{\alpha} h_{\alpha}{}^{\beta} + m^{\beta}$$

**Proposition 2.1:** Affine transformations form a group.

## 2.4 Affine space + a fixed linear map

Consider an affine space  $\mathcal{A}$  endowed with a linear map

$$t: \mathcal{A} \times \mathcal{A} \to \mathbb{R}$$
  $<===>$   $t: V \to \mathbb{R}$ 



$$P - Q = x^{\alpha} e_{\alpha} = x^{i} e_{i}, \qquad \alpha = 0, 1, 2, 3 \qquad i = 1, 2, 3$$

For every two simultaneous events (right figure)

$$t(P - Q) = t(x^{i}e_{i}) = x^{i}t(e_{i}) = 0$$
 ===>
$$t(e_{i}) = 0$$

We require this equation to preserve also after a change of the basis

$$t(\tilde{e}_i) = 0$$

Thus

$$t(e_i) = t(h_i^{\alpha} \tilde{e}_{\alpha}) = h_i^{0} t(\tilde{e}_0) + h_i^{j} t(\tilde{e}_j) = 0.$$

Consequently

$$h_i^{\ 0}=0.$$

The matrix of transformation of the basis that preserves the linear map t is of the form

## 2.5 Galileo spacetime

Galileo spacetime = Affine space + a linear map+norm in  $\mathbb{R}$  + norm in  $\mathbb{R}^3$ . Events — points in Galileo spacetime.

Norm in  $\mathbb{R}$ 

$$\tau = |t(P - Q)|$$

For two non-simultaneous events

$$\tau = |t(x^{\alpha}e_{\alpha})| = |x^{0}||t(e_{0})|$$

Change of the basis gives

$$\tau = |x^0||h_0^0||t(\tilde{e}_0)|$$

Requirement

$$|t(e_0)| = |t(\tilde{e}_0)|$$

gives

$$|h_0^{\ 0}| = 1$$

#### Norm in $\mathbb{R}^3$

For two simultaneous events

$$d = |d(P - Q)| = (x, x)^{1/2} = \delta_{ij}x^{i}x^{j}$$

Change of the basis gives

$$d = \delta_{mn} h_i{}^m h_j{}^n x^i x^j$$

Invariance of the norm gives

$$\delta_{mn}h_i{}^mh_j{}^n = \delta_{ij} = = > h_i{}^m \in O(3, \mathbb{R}).$$

**Proposition 2.2:** The matrix of transformation of the basis that preserves the Galileian structure is of the form

$$h = \begin{pmatrix} \pm 1 & 0 & 0 & 0 \\ v_1 & * & * & * \\ v_2 & * & * & * \\ v_3 & * & * & * \end{pmatrix},$$

where the matrix  $3 \times 3$  is from  $O(3, \mathbb{R})$ , while  $v_i \in \mathbb{R}$ . The dimension of the Galileian group is 10 = 1 + 3 + 3 + 3.